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Introduction: FPTAS for partition functions

Correlation decay method (assuming ∆ = ∆(G ) is constant) yields a
(deterministic) FPTAS for:

The number of weighted independent sets with weight λ ≥ 0 for λ
small enough (Weitz, 2006)

The number of matchings in a graph (Bayati, Gamarnik, Katz, Nair
and Tetali, 2007)

The number of k-colorings of a graph for k > α∆ + 1 for α large
enough (Lu and Yin, 2013)

Partition function of real symmetric matrices A with |Ai ,j − 1| ≤ c/∆
(for some constant c) (Lu and Yin, 2013)
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Introduction: QPTAS for partition functions

Low order Taylor approximations yield a (deterministic) QPTAS for:

Permanent of complex matrices Z with |Zi ,j − 1| ≤ 0.5 (Barvinok,
2016+)

Permanent of real matrices Z with δ ≤ Zi ,j ≤ 1 (Barvinok, 2016+)

The partition function of complex symmetric matrices A with
|Ai ,j − 1| ≤ 0.34/∆(G ) (Barvinok and Sobéron, 2016)

The partition function of a complex-valued Boolean polynomial
(Barvinok, 2015+)

The Tutte polynomial, Z (u, v)(G ) := ∑A⊆E uk(A)v |A| for any fixed
v ∈ C and u ∈ C with |u| large enough (depending on v and ∆(G )).
(R., 2015+)
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Partition functions of edge-coloring models

Definition

A k-color edge-coloring model h is a collection of symmetric tensors
{hd}d∈N with hd ∈ (Ck)⊗d .

Let e1, . . . , ek be the standard basis for Ck . Then we can write

hd = ∑
φ:[d ]→[k ]

hd (φ)eφ(1) ⊗ · · · ⊗ eφ(d).

Definition

The partition function of h is the graph parameter defined by
G = (V ,E ) 7→ p(G )(h) with

p(G )(h) = ∑
φ:E→[k ]

∏
v∈V

(hdeg(v )(φ(δ(v))).

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 5 / 24



Partition functions of edge-coloring models

Definition

A k-color edge-coloring model h is a collection of symmetric tensors
{hd}d∈N with hd ∈ (Ck)⊗d .
Let e1, . . . , ek be the standard basis for Ck . Then we can write

hd = ∑
φ:[d ]→[k ]

hd (φ)eφ(1) ⊗ · · · ⊗ eφ(d).

Definition

The partition function of h is the graph parameter defined by
G = (V ,E ) 7→ p(G )(h) with

p(G )(h) = ∑
φ:E→[k ]

∏
v∈V

(hdeg(v )(φ(δ(v))).

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 5 / 24



Partition functions of edge-coloring models

Definition

A k-color edge-coloring model h is a collection of symmetric tensors
{hd}d∈N with hd ∈ (Ck)⊗d .
Let e1, . . . , ek be the standard basis for Ck . Then we can write

hd = ∑
φ:[d ]→[k ]

hd (φ)eφ(1) ⊗ · · · ⊗ eφ(d).

Definition

The partition function of h is the graph parameter defined by
G = (V ,E ) 7→ p(G )(h) with

p(G )(h) = ∑
φ:E→[k ]

∏
v∈V

(hdeg(v )(φ(δ(v))).

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 5 / 24



Partition functions of edge-coloring models

Definition

A tensor network is a pair (G , h) where h is a collection of symmetric
tensors {hv}v∈V (G ) with hv ∈ (Ck)⊗ deg(v ).

Let e1, . . . , ek be the standard basis for Ck . Then we can write

hv = ∑
φ:[d ]→[k ]

hv (φ)eφ(1) ⊗ · · · ⊗ eφ(d).

Definition

The contraction of (G , h) is defined by G = (V ,E ) 7→ p(G )(h) with

p(G )(h) = ∑
φ:E→[k ]

∏
v∈V

(hv (φ(δ(v))).
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An example: counting perfect matchings

k = 2; hd (φ) :=
{

1 if ∑d
i=1 φ(i) = d + 1

0 otherwise

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 7 / 24



An example: counting perfect matchings

k = 2; hd (φ) :=
{

1 if ∑d
i=1 φ(i) = d + 1

0 otherwise

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 7 / 24



An example: counting perfect matchings

k = 2; hd (φ) :=
{

1 if ∑d
i=1 φ(i) = d + 1

0 otherwise

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 7 / 24



An example: counting perfect matchings

k = 2; hd (φ) :=
{

1 if ∑d
i=1 φ(i) = d + 1

0 otherwise

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 7 / 24



Where do you find edge-coloring models?

p(G )(h) = ∑
φ:E (G )→[k ]

∏
v∈V (G )

hdeg(v )(φ(δ(v)))

Theoretical computer science: holant problems, tensor networks

Statistical physics: partition functions of the vertex model (de la
Harpe and Jones 1993)

Knot theory: Lie algebra weight systems

Invariant theory: invariants of the (complex) orthogonal group
Ok = {g ∈ Ck×k | ggT = I} p(G )(gh) = p(G )(h).

Combinatorics: counting perfect matchings, counting graph
homomorphisms
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Counting graph homomorphisms

Definition

Let A be a symmetric n× n matrix. The partition function of A is the
graph invariant given by G = (V ,E ) 7→ p(G )(A) with

p(G )(A) := ∑
φ:V→[n]

∏
uv∈E

Aφ(u),φ(v ).

Lemma (Szegedy 2007)

Write A = BTB (for some complex matrix B). Let b1, . . . , bn be the
columns of B. Define hd by hd = ∑n

i=1 b
⊗d
i . Then

p(G )(h) = p(G )(A).
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Main result

Theorem (R. 2015)

Let (G , h) be a tensor network, where G has n vertices. If
|hv (φ)− 1| ≤ 0.35

∆(G )+1
for each φ : [deg(v)]→ [k ] and each v, then for

each ε > 0 we can (deterministically) compute in time nO(log n/ε) a
number ξ such that

e−ε ≤
∣∣∣∣p(G )(h)

ξ

∣∣∣∣ ≤ eε.
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Main result

Let x ∈ Ck be such that xT x 6= 0 and let X d := x⊗d .

Theorem (R. 2015)

Let (G , h) be a tensor network, where G has n vertices. If
|hv (φ)− X d (φ)| is sufficiently small for each φ : [deg(v)]→ [k ] and each
v, then for each ε > 0 we can (deterministically) compute in time
nO(log n/ε) a number ξ such that

e−ε ≤
∣∣∣∣p(G )(h)

ξ

∣∣∣∣ ≤ eε.

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 11 / 24



Proof: high level overview

Let (G , h) be given. Let 1 be the all-ones model. Define

p(z) = p(G )(1 + z(h− 1)).

Then p(0) = k |E (G )| and p(1) = p(G )(h).

If p(z) 6= 0 for all |z | ≤ q with q > 1, then ln(p(1)) is well
approximated by a low-order Taylor polynomial around 0.

The Taylor polynomial can be expressed in terms of the derivatives of
p at 0.

p(G )(h) 6= 0 for all bounded degree graphs G and all h close enough
to 1.
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Approximating polynomials I

Lemma (Barvinok 2015)

Let p be a polynomial of degree n such that p(z) 6= 0 for all |z | ≤ q with

q > 1. Let f (z) = ln p(z) and let Tm(z) = ∑m
k=0 f

(k)(0) z
k

k ! . Then for
m = O(ln(n/ε)) we have that

e−ε ≤
∣∣∣∣ p(1)

eTm(1)

∣∣∣∣ ≤ eε.

Proof sketch:
Write

p(z) = p(0)
n

∏
i=1

(1− z/αi ).

Then

f (z) = ln(p(z)) = ln(p(0)) +
n

∑
i=1

ln(1− z/αi ).
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Approximating polynomials II

Using the standard Taylor approximation of the natural logarithm,
ln(1 + x) = −∑∞

i=1
1
i (−x)i , we find that

ln(1− 1/αi ) =

−
m

∑
j=1

1

j

(
1

αi

)j

+ Rm,

with

|Rm| ≤ ∑
j>m

1

m+ 1

(
1

q

)j

≤ 1

m+ 1

1

(1− 1/q)qm+1
.

This implies that

|f (1)− Tm(1)| ≤
n

m+ 1

1

(1− 1/q)qm+1
.

Taking m = O(log(n/ε)) we get |f (1)− Tm(1)| ≤ ε and applying exp to
both sides we have the lemma.
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Proof: high level overview

Let (G , h) be given. Let 1 be the all-ones model. Define

p(z) = p(G )(1 + z(h− 1)).

Then p(1) = k |E (G )| and p(1) = p(G )(h).

If p(z) 6= 0 for all |z | ≤ q with q > 1, then ln(p(1)) is well
approximated by order ln(|V |) Taylor polynomial around 0.

The Taylor polynomial of ln(p(1)) can be expressed in terms of the
derivatives of p at 0.

p(G )(h) 6= 0 for all bounded degree graphs G and all h close enough
to 1.
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Computing derivatives I

Recall f (z) = ln p(z). So

f ′(z) =
p′(z)

p(z)

that is p′(z) = p(z)f ′(z)

So
p(2)(z) = p(z)f (2)(z) + p′(z)f ′(z).

More generally,

p(m)(z) =
m−1
∑
i=0

(
m− 1

i

)
p(i)(z)f (m−i)(z).

As p(0) 6= 0 this yields a nondegerate triangular system to compute
f (m)(0) in terms of the p(k)(0) in O(m2) time.
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Computing derivatives II

Recall that p(z) = p(G )(1 + z(h− 1). So

p(z) = ∑
φ:E→[k ]

∏
v∈V

(1 + z(hv (φ(δ(v)))− 1))

=
n

∑
i=0

z i ∑
U⊆V
|U |=i

∑
φ:E→[k ]

∏
v∈U

(hv (φ(δ(v)))− 1).

So p(m)(0) can be computed in time O(|V |m).
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Proof: high level overview

Let (G , h) be given. Let 1 be the all-ones model. Define

p(z) = p(G )(1 + z(h− 1)).

Then p(1) = k |E (G )| and p(1) = p(G )(h).

If p(z) 6= 0 for all |z | ≤ q with q > 1, then ln(p(1)) is well
approximated by order log(|V |) Taylor polynomial at 0.

The Taylor polynomial of ln(p(1)) can be expressed in terms of the
derivatives of p at 0 at cost |V |m for order m

p(G )(h) 6= 0 for all bounded degree graphs G and all h close enough
to 1.
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Zero-free regions

Theorem (R. 2015)

Let (G , h) be a tensor network. If |hv (φ)− 1| ≤ 0.355
∆(G )+1

for each

φ : [deg(v)]→ [k ] and each v, then

p(G )(h) 6= 0.

Proof is by sophisticated induction.

Guus Regts Approximation algorithms for partition functions of edge-coloring models29 March 2016 19 / 24



Proof: high level overview

Let (G , h) be given. Let 1 be the all-ones model. Define

p(z) = p(G )(1 + z(h− 1)).

Then p(1) = k |E (G )| and p(1) = p(G )(h).

If p(z) 6= 0 for all |z | ≤ q with q > 1, then ln(p(1)) is well
approximated by order log(|V |) Taylor polynomial at 0.

The Taylor polynomial of ln(p(1)) can be expressed in terms of the
derivatives of p at 0 at cost |V |m for order m

p(G )(h) 6= 0 for all graphs G and all h such that

|hv (φ)− 1| ≤ 0.355

∆(G ) + 1

for all v and φ.
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Phase transitions

Correlation decay method, for counting independent sets, matchings,
graph coloring etc., is based on absence of phase transition, i.e.,
uniqueness of Gibss measure.

The method presented here is also based on absence of phase
transition, i.e., via the Lee-Yang theorem no complex zeros ⇒ no
phase transition.
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Comparison

Correlation decay method yields an FPTAS, but currently only seems
to work for positive real numbers, i.e., # weighted independent sets
with weight λ > 0, partition function of symmetric matrices A with
Ai ,j > 0, the chromatic polynomial at positive integers.

The method presented here only seems to yield a QPTAS, but works
for complex numbers: partition function of complex valued symmetric
matrices/edge-coloring models, the Tutte/chromatic polynomial at a
complex number, etc.

Partition functions of complex edge-coloring models make sense!
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Further work

Together with Alexander Barvinok and Viresh Patel:

Try to push QPTAS to FPTAS: faster computation of derivatives
indicates that this can be done in certain cases: partition functions of
complex edge-coloring models/symmetric matrices and Tutte
polynomial on bounded degree graphs!

Try to find larger zero-free regions. Also other shapes than disks.
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Thank you for your attention!
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