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Correlation decay method (assuming A = A(G) is constant) yields a
(deterministic) FPTAS for:

@ The number of weighted independent sets with weight A > 0 for A
small enough (Weitz, 2006)

@ The number of matchings in a graph (Bayati, Gamarnik, Katz, Nair
and Tetali, 2007)

@ The number of k-colorings of a graph for k > aA + 1 for « large
enough (Lu and Yin, 2013)

e Partition function of real symmetric matrices A with |A;; —1| < ¢/A
(for some constant ¢) (Lu and Yin, 2013)
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Low order Taylor approximations yield a (deterministic) QPTAS for:

@ Permanent of complex matrices Z with |Z; ; — 1| < 0.5 (Barvinok,
2016+)

@ Permanent of real matrices Z with 6 < Z; ; <1 (Barvinok, 2016+)

@ The partition function of complex symmetric matrices A with
|Ajj — 1] <0.34/A(G) (Barvinok and Sobéron, 2016)

@ The partition function of a complex-valued Boolean polynomial
(Barvinok, 2015+)

o The Tutte polynomial, Z(u, v)(G) := Y acg ukAvIAl for any fixed
v € C and u € C with |u| large enough (depending on v and A(G)).
(R., 2015+)
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Definition
A k-color edge-coloring model h is a collection of symmetric tensors
{h9} gen with hd € (CK)®d.
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Definition
A k-color edge-coloring model h is a collection of symmetric tensors
{h9} gen with hd € (CK)®d.

Let e, ..., ex be the standard basis for CX. Then we can write
h= Y. W (P)epn) @ ©eya).
¢:[d]—[K] |
Definition

The partition function of h is the graph parameter defined by
G = (V,E)— p(G)(h) with

= Y. [T (96(v)).

¢:E—[K] veV
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Definition
A tensor network is a pair (G, h) where h is a collection of symmetric
tensors {h"},cy(g) with h¥ € (Ck)®deg(v),

Let e, ..., e be the standard basis for CX. Then we can write
=3, h(P)epa)®: - ® epa).
¢:[d]—[K] |
Definition

The contraction of (G, h) is defined by G = (V, E) — p(G)(h) with

Z H (h"(¢(6(v)))

P:E—[k] veV
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An example: counting perfect matchings

=2 w(9) = {

1if Y9, 0(i) =d+1
0 otherwise



1if Y9, 0(i) =d+1
0 otherwise

k=2 1(9) = {



1if Y9, 0(i) =d+1
0 otherwise

k=2 1(9) = {
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Where do you find edge-coloring models?

p(G) (N =)

$:E(G)—[k]veV(G)

[T ns(@((v)))
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p(G)(h) =Y. T n*=(g(6(v)))

$:E(G)—[k]veV(G)

Theoretical computer science: holant problems, tensor networks

Statistical physics: partition functions of the vertex model (de la
Harpe and Jones 1993)

Knot theory: Lie algebra weight systems

Invariant theory: invariants of the (complex) orthogonal group
Ox={geC* | gg" =1} p(G)(gh) =p(G)(h).
Combinatorics: counting perfect matchings, counting graph
homomorphisms
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Definition
Let A be a symmetric n X n matrix. The partition function of A is the
graph invariant given by G = (V, E) — p(G)(A) with

p(G)(A) = Y, T Apww

¢:V—[n] uveE
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Definition
Let A be a symmetric n X n matrix. The partition function of A is the
graph invariant given by G = (V, E) — p(G)(A) with

p(G)(A) = Y, T Apww

¢:V—[n] uveE

Lemma (Szegedy 2007)

Write A= BT B (for some complex matrix B). Let by, ..., b, be the
columns of B. Define h? by hY = Y7, b??. Then

Guus Regts 29 March 2016

9 /24



Theorem (R. 2015)

Let (G, h) be a tensor network, where G has n vertices. If

|hv(¢) — 1| < 03;5 for each ¢ : [deg(v)] — [k] and each v, then for

each ¢ > 0 we can (deterministically) compute in time n®(°gn/¢) 5

number ¢ such that
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Let x € Ck be such that x"x # 0 and let X9 := x®9,

Theorem (R. 2015)

Let (G, h) be a tensor network, where G has n vertices. If

|hv(¢p) — X9(¢)| is sufficiently small for each ¢ : [deg(v)] — [k] and each

v, then for each ¢ > 0 we can (deterministically) compute in time

n©Uogn/e) 3 number & such that

SRR
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o Let (G, h) be given. Let 1 be the all-ones model. Define
p(2) = p(G)( + 2(h — 1),

Then p(0) = kIE(®)l and p(1) = p(G)(h).
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approximated by a low-order Taylor polynomial around 0.
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o Let (G, h) be given. Let 1 be the all-ones model. Define
p(2) = p(G)( + 2(h — 1),

Then p(0) = kIEG)] and p(1) = p(G)(h).
o If p(z) # 0 for all |z| < g with g > 1, then In(p(1)) is well
approximated by a low-order Taylor polynomial around 0.

@ The Taylor polynomial can be expressed in terms of the derivatives of
p at 0.

@ p(G)(h) # 0 for all bounded degree graphs G and all h close enough
to 1.
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Lemma (Barvinok 2015)

Let p be a polynomial of degree n such that p(z) # 0 for all |z| < q with
qg>1. Letf(z) =Inp(z) and let T,(z) = Y7 f(k)(O)zk—k!. Then for

m = O(In(n/¢)) we have that

et <
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Lemma (Barvinok 2015)

Let p be a polynomial of degree n such that p(z) # 0 for all |z| < q with
qg>1. Letf(z) =Inp(z) and let T,(z) = Y7 f(k)(O)zk—k!. Then for
m = O(In(n/¢)) we have that

et <

Proof sketch:
Write

p(z) = p(0) ] (1 —2z/a)).
i=1

Then

f(z) =In(p(z)) = In(p(0)) + éln(l —z/a;).

Guus Regts 29 March 2016 13 /24



Using the standard Taylor approximation of the natural logarithm,
In(1+x) = = ¥4 +(—x)', we find that

In(l — 1/06,') =
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Using the standard Taylor approximation of the natural logarithm,
In(1+x) = = ¥4 +(—x)', we find that

In(1—1/2) ij (a,-)j Fim

with

1 1) 1 1
Rml < ), ——= (=) < ;
~ m+1\gqg m+1(1-1/q)gm+!
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Using the standard Taylor approximation of the natural logarithm,
In(1+x) = = ¥4 +(—x)', we find that

In(1—1/2) ij (a,-)j Fim

with

1 1\’ 1 1
|Rm| < — =] < :
~ m+1\gqg m+1(1-1/q)gm+!
This implies that

n 1
m1(1—1/q)qm

(1) = Tm(D)] <
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Using the standard Taylor approximation of the natural logarithm,

In(1+x) = = ¥4 +(—x)', we find that

In(1—1/2) ij (a,-)j Fim

with

1 1\’ 1 1
Rm| < ), —— =) < :
~ m+1\gqg m+1(1-1/q)gm+!
This implies that

n 1
m1(1—1/q)qm

(1) = Tm(D)] <

Taking m = O(log(n/¢)) we get |f(1) — Tm(1)| < € and applying exp to

both sides we have the lemma.
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Let (G, h) be given. Let 1 be the all-ones model. Define
p(2) = p(G)( + 2(h — 1),

Then p(1) = kIE(@)l and p(1) = p(G)(h).
If p(z) # 0 for all |z| < g with ¢ > 1, then In(p(1)) is well
approximated by order In(|V/|) Taylor polynomial around 0.

The Taylor polynomial of In(p(1)) can be expressed in terms of the
derivatives of p at 0.

p(G)(h) # 0 for all bounded degree graphs G and all h close enough
to 1.
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Computing derivatives |
Recall f(z) = Inp(z). So
f’(z) _ p'(z)
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Computing derivatives |
Recall f(z) = Inp(z). So
f’(z) _ p'(z)

p(z)

that is p'(z) = p(z)f'(2)

Guus Regts

[m] = = =

E DA
29 March 2016 16 / 24



Recall f(z) = Inp(z). So

f'(z) =

So

Guus Regts

p'(z)
p(z)

that is p/'(z) = p(2)f'(2)
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Recall f(z) = Inp(z). So

p'(z)
p(z)

that is p/'(z) = p(2)f'(2)

f'(z) =

So

More generally,

Guus Regts 29 March 2016 16 / 24



Recall f(z) = Inp(z). So

! _p’(z) atis p'(z) = p(2)f'(z
f2) = 25 thats 5 (2) = p(a)F'(2)

So

More generally,

i=0

As p(0) # 0 this yields a nondegerate triangular system to compute
£(m)(0) in terms of the p(k)(0) in O(m?) time.
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Computing derivatives |l

Recall that p(z) = p(G)(1+z(h—1). S

p(z)= Y} [T@+z(h"(9(6(v)))-1)
¢:E—[K] veV
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Recall that p(z) = p(G)(1+ z(h—1). So

p(z)= ). TIa+z(h"(9((v))) —1))

$:E—[k] veV

=37 L ¥ I @ew) 1)

i UCV ¢p:E—[k] veU
|U|=i
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Recall that p(z) = p(G)(1+ z(h—1). So

p(z)= ). TIa+z(h"(9((v))) —1))

$:E—[k] veV

=37 L ¥ I @ew) 1)

i UCV ¢p:E—[k] veU
|U|=i

So p{™(0) can be computed in time O(|V|™).
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Let (G, h) be given. Let 1 be the all-ones model. Define
p(2) = p(G)( + 2(h — 1),

Then p(1) = kIE(@)l and p(1) = p(G)(h).
If p(z) # 0 for all |z| < g with ¢ > 1, then In(p(1)) is well
approximated by order log(|V/|) Taylor polynomial at 0.

The Taylor polynomial of In(p(1)) can be expressed in terms of the
derivatives of p at 0 at cost |V/|™ for order m

p(G)(h) # 0 for all bounded degree graphs G and all h close enough
to 1.

Guus Regts 29 March 2016 18 / 24



Theorem (R. 2015)

Let (G, h) be a tensor network. If |h¥($) — 1| < A(()g)f’il for each
¢ : [deg(v)] — [k] and each v, then

p(G)(h) # 0.

Proof is by sophisticated induction.
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Let (G, h) be given. Let 1 be the all-ones model. Define
p(2) = p(G)(1 +2(h—1)).

Then p(1) = kIE(®)l and p(1) = p(G)(h).
If p(z) # 0 for all |z| < g with ¢ > 1, then In(p(1)) is well
approximated by order log(|V/|) Taylor polynomial at 0.

The Taylor polynomial of In(p(1)) can be expressed in terms of the
derivatives of p at 0 at cost |V/|™ for order m

p(G)(h) # 0 for all graphs G and all h such that

0.355

|hY(¢) — 1] < AG)+1

for all v and ¢.
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o Correlation decay method, for counting independent sets, matchings,
graph coloring etc., is based on absence of phase transition, i.e.,
uniqueness of Gibss measure.
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o Correlation decay method, for counting independent sets, matchings,
graph coloring etc., is based on absence of phase transition, i.e.,
uniqueness of Gibss measure.

@ The method presented here is also based on absence of phase
transition, i.e., via the Lee-Yang theorem no complex zeros = no
phase transition.
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o Correlation decay method yields an FPTAS, but currently only seems
to work for positive real numbers, i.e., # weighted independent sets
with weight A > 0, partition function of symmetric matrices A with
A;j > 0, the chromatic polynomial at positive integers.
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o Correlation decay method yields an FPTAS, but currently only seems
to work for positive real numbers, i.e., # weighted independent sets
with weight A > 0, partition function of symmetric matrices A with
A;j > 0, the chromatic polynomial at positive integers.

@ The method presented here only seems to yield a QPTAS, but works
for complex numbers: partition function of complex valued symmetric
matrices/edge-coloring models, the Tutte/chromatic polynomial at a
complex number, etc.

@ Partition functions of complex edge-coloring models make sense!
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Together with Alexander Barvinok and Viresh Patel:

@ Try to push QPTAS to FPTAS: faster computation of derivatives
indicates that this can be done in certain cases: partition functions of
complex edge-coloring models/symmetric matrices and Tutte
polynomial on bounded degree graphs!

@ Try to find larger zero-free regions. Also other shapes than disks.
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Thank you for your attention!
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