
Basis Collapse in Holographic Algorithms Over
All Domain Sizes

Sitan Chen
Harvard College

March 29, 2016



Introduction
Matchgates/Holographic Algorithms: A Crash Course
Basis Size and Domain Size
Collapse Theorems

Setup
Overview of Proof
Group Property
Simulation

Rank Rigidity
Matchgate Identities
Implies Cluster Existence
Base Case
Inductive Step

Epilogue
k 6= 2K?
Next Steps
Acknowledgments



Holographic algorithms reduce counting problems into the
problem of counting perfect matchings in a graph G = (V,E).

• Perfect matching: M ⊂ E for which every v ∈ V belongs to
exactly one edge e ∈M
• [Valiant ’79]: Counting perfect matchings in arbitrary

graphs is #P-complete.

• [Fisher-Temperley 1961, Kasteleyn 1961]: Counting perfect
matchings in planar graphs is in P.



More generally, if every edge e of G has some weight w(e),
define

PerfMatch(G) =
∑

perfect matchings M

(∏
e∈M

w(e)

)
.

Theorem (FKT algorithm)

If G is a planar weighted graph, PerfMatch(G) can be computed
in polynomial time.

Idea.

For an arbitrary graph G with adjacency matrix A, the Pfaffian

Pf(A) =
∑

perfect matchings M

sgn(M)

(∏
e∈M

w(e)

)

satisfies Pf(A)2 = det(A). For planar graphs, can flip the signs
of some entries of A to make Pf and PerfMatch agree.



(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) ∧ (x4 ∨ x5 ∨ x6)



(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) ∧ (x4 ∨ x5 ∨ x6)



Imagine: each vertex v on the left propagates signals along its
outgoing edges indicating whether v is assigned 1 (green) or 0
(black).



Each satisfying assignment corresponds to a collection of signals
satisfying two constraints:

Consistency : If xi is a vertex
on the left, the two signals xi
generates must be the same.

Satisfaction: If Cj is a vertex
on the right, at least one of the
three signals it receives must be
1.

00 1
01 0
10 0
11 1

000 0
001 1
010 1
011 1
100 1
101 1
110 1
111 1



Goal: encode these bit vectors using the matching properties of
graphs

Definition

A matchgate is a weighted graph G with designated subsets of
its vertices called external nodes X. We say that it is of arity
|X|.

Definition

The standard signature G of matchgate G of arity n is a vector
of dimension 2n with entries indexed by bitstrings of length n.
For Z ⊂ X corresponding to bitstring α, Γα = PerfMatch(Γ\Z).



00 3
01 0
10 0
11 5



000 0
001 3
010 3
011 0
100 3
101 0
110 0
111 5



We want planar matchgates G and R whose standard
signatures respectively match the vectors encoding the
consistency and satisfaction constraints:

Consistency : If xi is a vertex
on the left, the two signals xi
generates must be the same.

Satisfaction: If Cj is a vertex
on the right, at least one of the
three signals it receives must be
1.

00 1
01 0
10 0
11 1

000 0
001 1
010 1
011 1
100 1
101 1
110 1
111 1



(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) ∧ (x4 ∨ x5 ∨ x6)



(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) ∧ (x4 ∨ x5 ∨ x6)



(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) ∧ (x4 ∨ x5 ∨ x6)



Unfortunately, no recognizer has standard signature
(0, 1, 1, 1, 1, 1, 1, 1):

Observation (Parity Condition)

Because a graph with an odd number of vertices has no perfect
matchings, given any matchgate G, the indices of the nonzero
entries in its standard signature must have the same parity.



• The saving grace: rewrite number of perfect matchings of
matchgrid Ω as an inner product and apply a change of
basis.

• Suppose there are w wires in Ω, generators G1, ...Gg, and
R1, ..., Rr recognizers, then

PerfMatch(Ω) =
∑

z∈{0,1}w,
z=x1◦···◦xr◦

y1◦···◦yg

 g∏
i=1

Gi
yi

r∏
j=1

Rj
xj

 = 〈G,R〉,

where G = ⊗iGi and R = ⊗iRi with the order of tensoring
specified by the wires.

• Regard G as an element in X = C2w and R as an element
in X∗: PerfMatch(Ω) is the result of applying dual vector
R to G, which is independent of the choice of basis for X.



Definition

Given a 2× 2 basis matrix M , the signature with respect to M
of a generator G of arity n is the vector G satisfying

G = M⊗nG.

The signature with respect to M of a recognizer R of arity n is
the vector R satisfying

R = RM⊗n.



• Suffices to find a basis M of matchgates G and R whose
signatures with respect to M match the vectors encoding
the consistency and satisfaction constraints.

• Over C and F2, this still cannot be done.

• [Valiant ’06, Cai-Lu ’07]: Over F7, take M =

(
1 3
6 5

)
,

G = (3, 0, 0, 5), and R = (0, 3, 3, 0, 3, 0, 0, 5).



00 3
01 0
10 0
11 5
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001 3
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011 0
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• The number of different values that objects in a counting
problem can take on is called the domain size.

• Domain size 2:

I Boolean satisfying assignments
I Vertex covers
I Perfect matchings
I Ice problems

• Domain size k

I k-colorings



Over domain size k:

• Arity-n signatures are now vectors of dimension kn.

• M now has width k because

G = M⊗nG R = RM⊗n.







• Domain size 2: encode True/False by presence/absence
of one external node

• Domain size k: encode colors {1, ..., k} by removal of some
subset of a group of ` external nodes

I Arities are now multiples of `
I External nodes grouped into blocks of `, with wires

connecting matchgates blockwise.
I If Γ has n blocks, Γ has 2`n entries.
I M has height 2` because

G = M⊗nG R = RM⊗n.

I We call ` the basis size.
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We will regard standard signatures as matrices:

Definition

For standard signature G of generator G, the t-th matrix form
G(t) (1 ≤ t ≤ n) is the 2` × 2(n−1)` matrix of entries of G where
the rows are indexed by αt ∈ {0, 1}` and the columns are
indexed by α1 · · ·αt−1αt+1 · · ·αn ∈ {0, 1}(n−1)`.



We will also regard signatures as matrices:

Definition

For signature G of generator G, the t-th matrix form G(t)
(1 ≤ t ≤ n) is the k × kn−1 matrix of entries of G where the
rows are indexed by αt ∈ [k] and the columns are indexed by
α1 · · ·αt−1αt+1 · · ·αn ∈ [k]n−1.

Note: we will denote row indices by superscripts and column
indices by subscripts.



Definition

A generator G is full rank if there exists t for which
rank(G(t)) = k.

It turns out we may assume that rank(M) = k. But we know

G(t) = MG(t)(MT )⊗(n−1).

So if G is of full rank,

rank(G(t)) = k.



Key to understanding the ultimate capabilities of holographic
algorithms for solving counting problems over a given domain
size:

Question

Given k, what is the smallest ` for which any holographic
algorithm over domain size k with a full-rank matchgate can be
simulated by one with basis size `?

domain size basis size

Cai-Lu ’08 2 1

Cai-Fu ’14 3 1
4 2

C ’15, Xia ’15 k blog2 kc
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Definition

Z ⊂ {0, 1}n is a cluster if there exists s ∈ {0, 1}n and positions
p1, ..., pm ∈ [n] such that each member of Z is of the form

s⊕
(⊕

j∈J epj

)
for some J ⊂ {p1, ..., pm}, where epj is the

bitstring consisting of zeroes everywhere except position pj .

We write Z as s+ {ep1 , ..., epm} (s only unique up to the bits
outside of positions p1, ..., pm).

e.g. {000, 001, 100, 101} is a cluster denoted 000 + {e1, e3}.



For now, assume k = 2K . Steps of proof:

1. Cluster existence: Any standard signature of rank at
least 2K contains a cluster of 2K linearly independent rows

(hardest part of the proof )

2. Group property: Inverses of standard signatures are also
standard signatures

(adapted from Li/Xia result in
matchgate character theory)

3. Simulation: Use 1 and 2 to simulate with a basis of size
K

(technique due to Cai/Fu)
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Lemma (Group Property)

Full-rank 2K × 2(n−1)K standard signatures G(t) have right
inverses (under matrix multiplication) that are also standard
signatures.
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We use the approach introduced by Cai-Fu for simulation given
cluster existence and group property have been proven. Take
any holographic algorithm over domain size k = 2K .

1. By cluster existence, can pick out a generator G with
full-rank signature and find a cluster Z = s+ {ep1 , ..., epK}
of 2K linearly independent rows. Suppose WLOG s = 0`.

2. Let MZ denote the submatrix of M with rows indexed by
Z. This will be the basis of size log k = K we use for the
simulation.



G∗←Z = (MZ)⊗nG Gt
c←Z = (MZ)⊗(t−1)⊗M⊗(MZ)⊗(n−t)G



• Modifying generators is easy:

G∗←Zi = (MZ)⊗niGi

has signature Gi with respect to new basis MZ

• Modifying recognizers is more subtle. Can write

Rj =
(
Rj(M/MZ)⊗mi

)
(MZ)⊗mj .

Is Rj(M/MZ)⊗mi a valid recognizer standard signature?



3. Define T = M(MZ)−1.

4. By construction,

Gt
c←Z(t) = TG∗←Z(t).

5. By group property, G∗←Z(t) has a right-inverse, so
right-multiply by this on both sides to conclude that T is a
standard signature.



Over the new basis MZ :

6. Replace each recognizer Ri with RiT
⊗mi

7. Replace each generator Gj with G∗←Zj .

8. These new matchgates have the same signatures as the
originals, but over a basis of size K, so we’re done.
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The key ingredient:

Theorem (Rank Rigidity)

The rank of any standard signature Γ (in matrix form) is
always a power of two.
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Our methods are primarily algebraic and rely on the
characterization of the set of all standard signatures as the
variety cut out by a certain collection of quadratic relations:

Theorem (Matchgate Identities)

A 2` × 2(n−1)` matrix Γ is the t-th matrix form of the standard
signature of some generator matchgate iff for all
ζ, η ∈ {0, 1}(n−1)` and σ, τ ∈ {0, 1}`, the following matchgate
identity (MGI) holds. Let ζ ⊕ η = eq1 ⊕ · · · ⊕ eqd′ and
σ ⊕ τ = ep1 ⊕ · · · ⊕ epd, where q1 < · · · < qd′ and p1 < · · · < pd.
Then if d is even,

d∑
i=1

(−1)i+1Γ
(σ⊕ep1⊕epi )
ζ Γ

(τ⊕ep1⊕epi )
η = ±

d′∑
j=1

(−1)j+1Γ
(σ⊕ep1 )
(ζ⊕eqj )

Γ
(τ⊕ep1 )
(η⊕eqj )

.



d∑
i=1

(−1)i+1Γ
(σ⊕ep1⊕epi )
ζ Γ

(τ⊕ep1⊕epi )
η = ±

d′∑
j=1

(−1)j+1Γ
(σ⊕ep1 )
(ζ⊕eqj )

Γ
(τ⊕ep1 )
(η⊕eqj )

.

Definition

A 2` × 2m matrix M is a pseudo-signature if for all σ, τ for
which wt(σ ⊕ τ) is even, its entries satisfy the corresponding
MGI up to a factor of ±1 on the right-hand side.

E.g. (matrix-form) standard signatures, clusters of rows, and
their transposes are all pseudo-signatures.



The matchgate identities allow us to deduce key linear algebraic
relationships between the rows of any pseudo-signature Γ.

Example

Suppose that d = 2, σ = 0000, τ = 0011, ζ = 1100, η = 1111.
Then the MGIs become

Γ0000
1100Γ

0011
1111 − Γ0011

1100Γ
0000
1111 = ±

(
Γ0001
1101Γ

0010
1110 − Γ0001

1110Γ
0010
1101

)
.

1100 1101 1110 1111

0000 0 0

0001 0 0

0010 0 0

0011 0 0



Example (Cont’d)

• Rows Γ1100 and Γ1111 are linearly dependent if Γ1101 and
Γ1110 are linearly dependent.

• Similarly, rows Γ0000 and Γ1111 are linearly dependent if
I Γ0001 and Γ1110

I Γ0010 and Γ1101

I Γ0100 and Γ1011

I Γ1000 and Γ0111

are linearly dependent



Lemma

Let σ, τ ∈ {0, 1}` be such that σ ⊕ τ =
⊕2d

j=1 epi. If row Γ(σ⊕epi )

is linearly dependent with row Γ(τ⊕epi ) for all 1 ≤ i ≤ 2d, then
row Γσ is linearly dependent with row Γτ .

Coordinate-free interpretation: linear relations among wedges of
rows of even parity yield linear relations among wedges of rows
of odd parity.



Definition

For V a vector space with basis {ej}, the second exterior power
of V , denoted Λ2V , is the vector space given by quotienting
V ⊗ V by the relation v ⊗ w ∼ −w ⊗ v for all v, w ∈ V . We
denote the image of v ⊗ w under this quotient map by v ∧ w.
Λ2V has basis {ei ∧ ej}i<j .

Explicitly, if v =
∑
viei and w =

∑
wiei, then

v ∧ w =
∑
i<j

(viwj − vjwi)ei ∧ ej =
∑
i<j

∣∣∣∣vi vj
wi wj

∣∣∣∣ ei ∧ ej .
In particular, v and w are linearly dependent iff v ∧ w = 0.



By the MGIs, linear relations among wedges of rows of even
parity yield linear relations among wedges of rows of odd parity.

Example

Γ0000 ∧ Γ1111 = 0

implies that

Γ0001 ∧ Γ1110 − Γ0010 ∧ Γ1101 + Γ0100 ∧ Γ1011 − Γ1000 ∧ Γ0111 = 0



By the MGIs, linear relations among wedges of rows of even
parity yield linear relations among wedges of rows of odd parity.

Example

µ · (Γ0000 ∧ Γ1111) + ν · (Γ0011 ∧ Γ1100) = 0

implies that

µ · (Γ0001 ∧Γ1110−Γ0010 ∧Γ1101 + Γ0100 ∧Γ1011−Γ1000 ∧Γ0111)±

ν ·(Γ0010∧Γ1101−Γ0001∧Γ1110+Γ0111∧Γ1000−Γ1011∧Γ0100) = 0
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Claim

Rank rigidity implies cluster existence.

Proof.

Suppose Γ is a 2` × 2m pseudo-signature of rank 2K .

Can assume Γ has no proper clusters of rows with the same
rank as Γ. Otherwise, if there were such a cluster
Z = σ + {eq1 , ..., eq`′}, replace Γ by ΓZ and ` by `′, and ignore
bits in positions outside of q1, ..., q`′ .



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111



`−K+1=1︷︸︸︷
0

K−1︷︸︸︷
0000

0 0001
...

...
0 1111



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1110 0101



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1110 0101



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000
1111 0001
...

...
1111 1111



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000
1111 0001
...

...
1111 1111
1110 1010



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000
1111 0001
...

...
1111 1111
1110 1010



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000
1111 0001
...

...
1111 1111
1110 1010



`−K+1︷︸︸︷
0000

K−1︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000
1111 0001
...

...
1111 1111

All other rows must be zero. By the MGIs,

Γ0z◦0K−1 ∧ Γ1z◦0K−1
= 0,

a contradiction.
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Theorem

If Γ is a 2K+1 × 2m pseudo-signature with rank at least 2K + 1,
then rank(Γ) = 2K+1.

Sketch.

Inductively, we know that Γ contains a cluster Z of 2K linearly
independent rows, say 0K+1 ⊕ {e2, ..., eK+1}. Because
rank(Γ) ≥ 2K + 1, there exists a row outside the linear span of
Z.



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1001 lay in the span of the red rows, so

Γ1001 ∧ Γ0000 =
∑

σ red, even

aσ ·
(
Γσ ∧ Γ0000

)
.

LHS: Γ1000 ∧ Γ0001

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1001 lay in the span of the red rows, so

Γ1001 ∧ Γ0000 =
∑

σ red, even

aσ ·
(
Γσ ∧ Γ0000

)
.

LHS: Γ1000 ∧ Γ0001

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1010 lay in the span of the red rows, so

Γ1010 ∧ Γ0000 =
∑

σ red, even

aσ ·
(
Γσ ∧ Γ0000

)
.

LHS: Γ1000 ∧ Γ0010

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗, Γ1000 ∧ Γ0001



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1100 lay in the span of the red rows, so

Γ1100 ∧ Γ0000 =
∑

σ red, even

aσ ·
(
Γσ ∧ Γ0000

)
.

LHS: Γ1000 ∧ Γ0100

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗, Γ1000 ∧ Γ0001, Γ1000 ∧ Γ0010



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1011 lay in the span of the red rows, so

Γ1011 ∧ Γ0001 =
∑

σ red, odd

aσ ·
(
Γσ ∧ Γ0001

)
.

LHS: Γ1001 ∧ Γ0011

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗, Γ0000 ∧ Γ1001



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1101 lay in the span of the red rows, so

Γ1011 ∧ Γ0001 =
∑

σ red, odd

aσ ·
(
Γσ ∧ Γ0001

)
.

LHS: Γ1001 ∧ Γ0101

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗, Γ0000 ∧ Γ1001, Γ1001 ∧ Γ0011



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1110 lay in the span of the red rows, so

Γ1110 ∧ Γ0001 =
∑

σ red, odd

aσ ·
(
Γσ ∧ Γ0001

)
.

LHS: Γ1111 ∧ Γ0000, Γ1100 ∧ Γ0011, Γ1010 ∧ Γ0101, Γ0110 ∧ Γ1001

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗, Γ0000 ∧ Γ1001, Γ1001 ∧ Γ0011, Γ1001 ∧ Γ0101



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ1111 lay in the span of the red rows, so

Γ1111 ∧ Γ0000 =
∑

σ red, even

aσ ·
(
Γσ ∧ Γ0000

)
.

LHS: Γ1110 ∧ Γ0001, Γ1101 ∧ Γ0010, Γ1011 ∧ Γ0100, Γ0111 ∧ Γ1000

RHS: Γ0∗∗∗ ∧ Γ0∗∗∗, Γ1000 ∧ Γ0001, Γ1000 ∧ Γ0010, Γ1000 ∧ Γ0100



Even columns:
0000
0011
0101
0110
1001
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110
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Theorem

Suppose ` > K + 1. If Γ is a 2` × 2m pseudo-signature of rank
≥ 2K + 1, then there exists a cluster Z ( {0, 1}` for which ΓZ is
also of rank ≥ 2K + 1.

Suppose to the contrary. Inductively we know Γ has a cluster Z
of 2K linearly independent rows, say 0` + {ep1 , ..., epK}.



`−K︷︸︸︷
0000

K︷︸︸︷
0000

0000 0001
...

...
0000 1111



`−K︷︸︸︷
0000

K︷︸︸︷
0000

0000 0001
...

...
0000 1111
1110 0101



`−K︷︸︸︷
0000

K︷︸︸︷
0000

0000 0001
...

...
0000 1111
1110 0101



`−K︷︸︸︷
0000

K︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000



`−K︷︸︸︷
0000

K︷︸︸︷
0000

0000 0001
...

...
0000 1111
1111 0000



To show Γ0` and Γ1`−K◦0` are linearly dependent, by MGIs it’s
enough to show:

Lemma

Γ0`⊕ej = 0 for all j 6= p1, ..., pK .

Proof.

For i ∈ {p1, ..., pK} and j 6∈ {p1, ..., pK}, define:

• Ti: all rows u for which ui = 0

• T ji : all rows u for which ui = uj = 0

• Zi: Z ∩ Ti
Note that

Zi ⊂ T ji ⊂ Ti.

So inductively, proper cluster T ji has rank a power of two, either
2K−1 or 2K .



Proof (Cont’d).

• If rank(T ji ) = 2K−1, then span(T ji ) = span(Zi). This is true
for all i ∈ {p1, ..., pK}, so

Γ0`⊕ej ∈ ∩Ki=1span(Zi) = span({Γ0`}).

• If rank(T ji ) = 2K , then span(Ti) = span(T ji ) ⊂ span(Z), a
contradiction.



Introduction
Matchgates/Holographic Algorithms: A Crash Course
Basis Size and Domain Size
Collapse Theorems

Setup
Overview of Proof
Group Property
Simulation

Rank Rigidity
Matchgate Identities
Implies Cluster Existence
Base Case
Inductive Step

Epilogue
k 6= 2K?
Next Steps
Acknowledgments



Theorem (Fu/Yang ’13)

Suppose a basis collapse theorem holds on domain size 2. Then
if a holographic algorithm uses a 2` × k basis of rank 2, then the
same collapse theorem holds for this holographic algorithm.



Theorem

Suppose a basis collapse theorem holds on domain size r. Then
if a holographic algorithm uses a 2` × k basis of rank r, then the
same collapse theorem holds for this holographic algorithm.



By rank rigidity, G(t) must have rank a power of two. If G is a
full-rank signature, by

G(t) = MG(t)(MT )⊗(n−1),

we know M must have rank a power of two. So if k 6= 2K , we’re
done inductively by the collapse theorem for domain size 2K ,
where K = blog2 kc.
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• Work out the case where no full-rank matchgate exists

• Use the collapse theorem to initiate a study of holographic
algorithms over higher domains
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