Basis Collapse in Holographic Algorithms Over All Domain Sizes

Sitan Chen Harvard College

March 29, 2016

Introduction

Matchgates/Holographic Algorithms: A Crash Course

Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

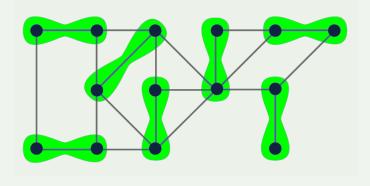
Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

 $k \neq 2^{K}$? Next Steps Acknowledgments Holographic algorithms reduce counting problems into the problem of *counting perfect matchings* in a graph G = (V, E).

- Perfect matching: $M \subset E$ for which every $v \in V$ belongs to exactly one edge $e \in M$
- [Valiant '79]: Counting perfect matchings in arbitrary graphs is #P-complete.
- [Fisher-Temperley 1961, Kasteleyn 1961]: Counting perfect matchings in planar graphs is in P.



More generally, if every edge e of G has some weight w(e), define

$$\operatorname{PerfMatch}(G) = \sum_{\operatorname{perfect matchings } M} \left(\prod_{e \in M} w(e) \right).$$

Theorem (FKT algorithm)

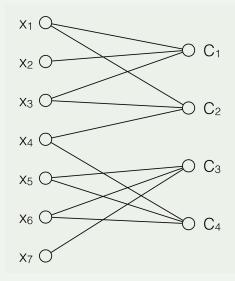
If G is a planar weighted graph, $\operatorname{PerfMatch}(G)$ can be computed in polynomial time.

Idea.

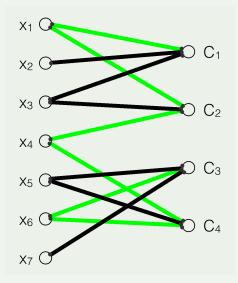
For an arbitrary graph G with adjacency matrix A, the *Pfaffian*

$$Pf(A) = \sum_{\text{perfect matchings } M} sgn(M) \left(\prod_{e \in M} w(e)\right)$$

satisfies $Pf(A)^2 = det(A)$. For planar graphs, can flip the signs of some entries of A to make Pf and PerfMatch agree.



Imagine: each vertex v on the left propagates signals along its outgoing edges indicating whether v is assigned 1 (green) or 0 (black).



Each satisfying assignment corresponds to a collection of signals satisfying two constraints:

Consistency: If x_i is a vertex on the left, the two signals x_i generates must be the same. Satisfaction: If C_j is a vertex on the right, at least one of the three signals it receives must be 1.

000	0
001	1
010	1
011	1
100	1
101	1
110	1
111	1

00	1
01	0
10	0
11	1

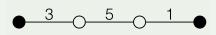
Goal: encode these bit vectors using the matching properties of graphs

Definition

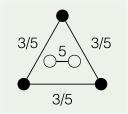
A matchgate is a weighted graph G with designated subsets of its vertices called *external nodes* X. We say that it is of arity |X|.

Definition

The standard signature \underline{G} of matchgate G of arity n is a vector of dimension 2^n with entries indexed by bitstrings of length n. For $Z \subset X$ corresponding to bitstring α , $\underline{\Gamma}^{\alpha} = \operatorname{PerfMatch}(\Gamma \setminus Z)$.



00	3
01	0
10	0
11	5



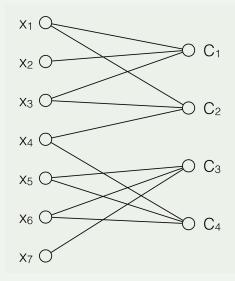
000	0
001	3
010	3
011	0
100	3
101	0
110	0
111	5

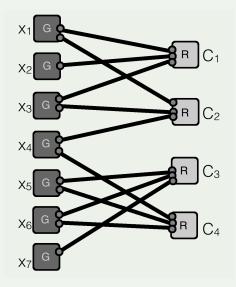
We want *planar* matchgates G and R whose standard signatures respectively match the vectors encoding the consistency and satisfaction constraints:

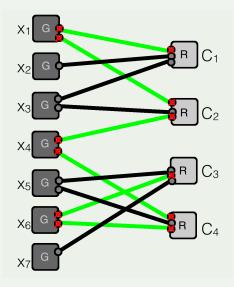
Consistency: If x_i is a vertex on the left, the two signals x_i generates must be the same. Satisfaction: If C_j is a vertex on the right, at least one of the three signals it receives must be 1.

00	1
01	0
10	0
11	1

000	0
001	1
010	1
011	1
100	1
101	1
110	1
111	1







Unfortunately, no recognizer has standard signature (0, 1, 1, 1, 1, 1, 1):

Observation (Parity Condition)

Because a graph with an odd number of vertices has no perfect matchings, given any matchgate G, the indices of the nonzero entries in its standard signature must have the same parity.

- The saving grace: rewrite number of perfect matchings of matchgrid Ω as an inner product and apply a change of basis.
- Suppose there are w wires in Ω , generators $G_1, ..., G_g$, and $R_1, ..., R_r$ recognizers, then

$$\operatorname{PerfMatch}(\Omega) = \sum_{\substack{z \in \{0,1\}^w, \\ z = x_1 \circ \cdots \circ x_r \circ \\ y_1 \circ \cdots \circ y_g}} \left(\prod_{i=1}^g \underline{G_i}^{y_i} \prod_{j=1}^r \underline{R_j}^{x_j} \right) = \langle \mathbf{G}, \mathbf{R} \rangle,$$

where $\mathbf{G} = \bigotimes_i \underline{G_i}$ and $\mathbf{R} = \bigotimes_i \underline{R_i}$ with the order of tensoring specified by the wires.

Regard G as an element in X = C^{2^w} and R as an element in X*: PerfMatch(Ω) is the result of applying dual vector R to G, which is *independent of the choice of basis for X*.

Definition

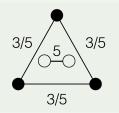
Given a 2×2 basis matrix M, the signature with respect to M of a generator G of arity n is the vector G satisfying

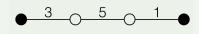
 $\underline{G} = M^{\otimes n}G.$

The signature with respect to M of a recognizer R of arity n is the vector R satisfying

$$R = \underline{R}M^{\otimes n}.$$

- Suffices to find a basis M of matchgates G and R whose signatures with respect to M match the vectors encoding the consistency and satisfaction constraints.
- Over \mathbb{C} and \mathbb{F}_2 , this still cannot be done.
- [Valiant '06, Cai-Lu '07]: Over \mathbb{F}_7 , take $M = \begin{pmatrix} 1 & 3 \\ 6 & 5 \end{pmatrix}$, $\underline{G} = (3, 0, 0, 5)$, and $\underline{R} = (0, 3, 3, 0, 3, 0, 0, 5)$.





00	3
01	0
10	0
11	5

000	0
001	3
010	3
011	0
100	3
101	0
110	0
111	5

Introduction

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

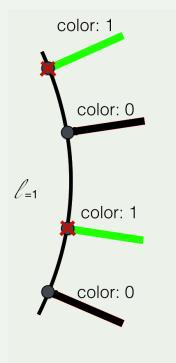
 $k \neq 2^{K}$? Next Steps Acknowledgments

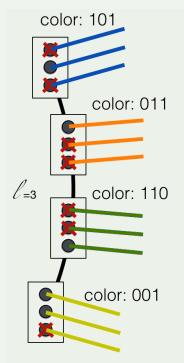
- The number of different values that objects in a counting problem can take on is called the domain size.
- Domain size 2:
 - Boolean satisfying assignments
 - Vertex covers
 - Perfect matchings
 - ▶ Ice problems
- Domain size k
 - ► *k*-colorings

Over domain size k:

- Arity-*n* signatures are now vectors of dimension k^n .
- M now has width k because

$$\underline{G} = M^{\otimes n} G \qquad R = \underline{R} M^{\otimes n}$$





- Domain size 2: encode TRUE/FALSE by presence/absence of one external node
- Domain size k: encode colors $\{1, ..., k\}$ by removal of some subset of a group of ℓ external nodes
 - Arities are now multiples of ℓ
 - ▶ External nodes grouped into blocks of ℓ, with wires connecting matchgates blockwise.
 - If Γ has *n* blocks, $\underline{\Gamma}$ has $2^{\ell n}$ entries.
 - *M* has height 2^{ℓ} because

$$\underline{G} = M^{\otimes n} G \quad R = \underline{R} M^{\otimes n}.$$

• We call ℓ the basis size.

Introduction

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size

Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

 $k \neq 2^{K}$? Next Steps Acknowledgments We will regard standard signatures as matrices:

Definition

For standard signature \underline{G} of generator G, the *t*-th matrix form $\underline{G}(t)$ $(1 \leq t \leq n)$ is the $2^{\ell} \times 2^{(n-1)\ell}$ matrix of entries of \underline{G} where the rows are indexed by $\alpha_t \in \{0,1\}^{\ell}$ and the columns are indexed by $\alpha_1 \cdots \alpha_{t-1}\alpha_{t+1} \cdots \alpha_n \in \{0,1\}^{(n-1)\ell}$.

We will also regard signatures as matrices:

Definition

For signature G of generator G, the t-th matrix form G(t) $(1 \le t \le n)$ is the $k \times k^{n-1}$ matrix of entries of G where the rows are indexed by $\alpha_t \in [k]$ and the columns are indexed by $\alpha_1 \cdots \alpha_{t-1} \alpha_{t+1} \cdots \alpha_n \in [k]^{n-1}$.

Note: we will denote row indices by superscripts and column indices by subscripts.

Definition

A generator G is *full rank* if there exists t for which $\operatorname{rank}(G(t)) = k$.

It turns out we may assume that rank(M) = k. But we know

$$\underline{G}(t) = MG(t)(M^T)^{\otimes (n-1)}.$$

So if G is of full rank,

 $\operatorname{rank}(\underline{G}(t)) = k.$

Key to understanding the ultimate capabilities of holographic algorithms for solving counting problems over a given domain size:

Question

Given k, what is the smallest ℓ for which any holographic algorithm over domain size k with a full-rank matchgate can be simulated by one with basis size ℓ ?

	domain size	basis size
Cai-Lu '08	2	1

Key to understanding the ultimate capabilities of holographic algorithms for solving counting problems over a given domain size:

Question

Given k, what is the smallest ℓ for which any holographic algorithm over domain size k with a full-rank matchgate can be simulated by one with basis size ℓ ?

	domain size	basis size
Cai-Lu '08	2	1
Cai-Fu '14	3	1
	4	2

Key to understanding the ultimate capabilities of holographic algorithms for solving counting problems over a given domain size:

Question

Given k, what is the smallest ℓ for which any holographic algorithm over domain size k with a full-rank matchgate can be simulated by one with basis size ℓ ?

	domain size	basis size
Cai-Lu '08	2	1
Cai-Fu '14	3	1
	4	2
C '15, Xia '15	k	$\lfloor \log_2 k \rfloor$

Introduction

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof

Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

 $k \neq 2^{K}$? Next Steps Acknowledgments

Definition

 $Z \subset \{0,1\}^n$ is a *cluster* if there exists $s \in \{0,1\}^n$ and positions $p_1, ..., p_m \in [n]$ such that each member of Z is of the form $s \oplus \left(\bigoplus_{j \in J} e_{p_j}\right)$ for some $J \subset \{p_1, ..., p_m\}$, where e_{p_j} is the bitstring consisting of zeroes everywhere except position p_j .

We write Z as $s + \{e_{p_1}, ..., e_{p_m}\}$ (s only unique up to the bits outside of positions $p_1, ..., p_m$).

e.g. $\{000, 001, 100, 101\}$ is a cluster denoted $000 + \{e_1, e_3\}$.

For now, assume $k = 2^K$. Steps of proof:

- 1. Cluster existence: Any standard signature of rank at least 2^{K} contains a cluster of 2^{K} linearly independent rows
- 2. Group property: Inverses of standard signatures are also standard signatures
- 3. Simulation: Use 1 and 2 to simulate with a basis of size K

For now, assume $k = 2^K$. Steps of proof:

- 1. Cluster existence: Any standard signature of rank at least 2^{K} contains a cluster of 2^{K} linearly independent rows (hardest part of the proof)
- 2. Group property: Inverses of standard signatures are also standard signatures
- 3. Simulation: Use 1 and 2 to simulate with a basis of size K

For now, assume $k = 2^K$. Steps of proof:

- 1. Cluster existence: Any standard signature of rank at least 2^{K} contains a cluster of 2^{K} linearly independent rows (hardest part of the proof)
- 2. Group property: Inverses of standard signatures are also standard signatures (*adapted from Li/Xia result in matchgate character theory*)
- 3. Simulation: Use 1 and 2 to simulate with a basis of size K

For now, assume $k = 2^K$. Steps of proof:

- 1. Cluster existence: Any standard signature of rank at least 2^{K} contains a cluster of 2^{K} linearly independent rows (hardest part of the proof)
- 2. Group property: Inverses of standard signatures are also standard signatures (*adapted from Li/Xia result in matchgate character theory*)
- 3. Simulation: Use 1 and 2 to simulate with a basis of size K (technique due to Cai/Fu)

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

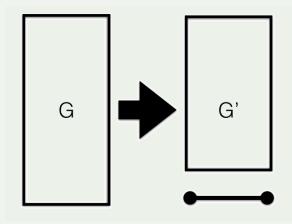
Rank Rigidity

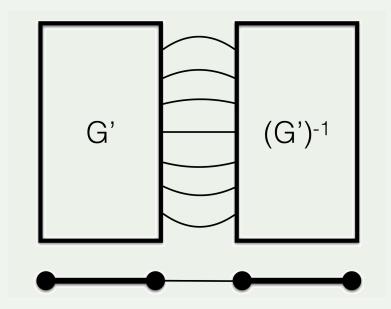
Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

Lemma (Group Property)

Full-rank $2^K \times 2^{(n-1)K}$ standard signatures $\underline{G}(t)$ have right inverses (under matrix multiplication) that are also standard signatures.





Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

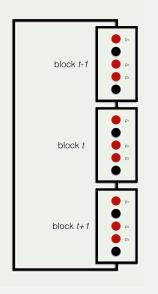
Matchgate Identities Implies Cluster Existence Base Case Inductive Step

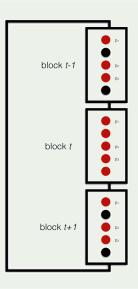
Epilogue

We use the approach introduced by Cai-Fu for simulation given cluster existence and group property have been proven. Take any holographic algorithm over domain size $k = 2^{K}$.

- 1. By cluster existence, can pick out a generator G with full-rank signature and find a cluster $Z = s + \{e_{p_1}, ..., e_{p_K}\}$ of 2^K linearly independent rows. Suppose WLOG $s = 0^{\ell}$.
- 2. Let M^Z denote the submatrix of M with rows indexed by Z. This will be the basis of size $\log k = K$ we use for the simulation.

$$\underline{G}^{*\leftarrow Z} = (M^Z)^{\otimes n} G \qquad \qquad \underline{G}^{t^c\leftarrow Z} = (M^Z)^{\otimes (t-1)} \otimes M \otimes (M^Z)^{\otimes (n-t)} G$$





• Modifying generators is easy:

$$\underline{G}_i^{*\leftarrow Z} = (M^Z)^{\otimes n_i} G_i$$

has signature G_i with respect to new basis M^Z

• Modifying recognizers is more subtle. Can write

$$R_j = \left(\underline{R_j}(M/M^Z)^{\otimes m_i}\right) (M^Z)^{\otimes m_j}.$$

Is $R_j(M/M^Z)^{\otimes m_i}$ a valid recognizer standard signature?

- 3. Define $T = M(M^Z)^{-1}$.
- 4. By construction,

$$\underline{G}^{t^c \leftarrow Z}(t) = T \underline{G}^{* \leftarrow Z}(t).$$

5. By group property, $\underline{G}^{*\leftarrow Z}(t)$ has a right-inverse, so right-multiply by this on both sides to conclude that T is a standard signature.

Over the new basis M^Z :

- 6. Replace each recognizer \underline{R}_i with $\underline{R}_i T^{\otimes m_i}$
- 7. Replace each generator \underline{G}_j with $\underline{G}_j^{*\leftarrow Z}$.
- 8. These new matchgates have the same signatures as the originals, but over a basis of size K, so we're done.

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

The key ingredient:

Theorem (Rank Rigidity)

The rank of any standard signature Γ (in matrix form) is always a power of two.

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities

Implies Cluster Existence Base Case Inductive Step

Epilogue

Our methods are primarily algebraic and rely on the characterization of the set of all standard signatures as the variety cut out by a certain collection of quadratic relations:

Theorem (Matchgate Identities)

A $2^{\ell} \times 2^{(n-1)\ell}$ matrix Γ is the t-th matrix form of the standard signature of some generator matchgate iff for all $\zeta, \eta \in \{0,1\}^{(n-1)\ell}$ and $\sigma, \tau \in \{0,1\}^{\ell}$, the following matchgate identity (MGI) holds. Let $\zeta \oplus \eta = e_{q_1} \oplus \cdots \oplus e_{q_{d'}}$ and $\sigma \oplus \tau = e_{p_1} \oplus \cdots \oplus e_{p_d}$, where $q_1 < \cdots < q_{d'}$ and $p_1 < \cdots < p_d$. Then if d is even,

$$\sum_{i=1}^{d} (-1)^{i+1} \Gamma_{\zeta}^{(\sigma \oplus e_{p_1} \oplus e_{p_i})} \Gamma_{\eta}^{(\tau \oplus e_{p_1} \oplus e_{p_i})} = \pm \sum_{j=1}^{d'} (-1)^{j+1} \Gamma_{(\zeta \oplus e_{q_j})}^{(\sigma \oplus e_{p_1})} \Gamma_{(\eta \oplus e_{q_j})}^{(\tau \oplus e_{p_1})}.$$

$$\sum_{i=1}^{d} (-1)^{i+1} \Gamma_{\zeta}^{(\sigma \oplus e_{p_1} \oplus e_{p_i})} \Gamma_{\eta}^{(\tau \oplus e_{p_1} \oplus e_{p_i})} = \pm \sum_{j=1}^{d'} (-1)^{j+1} \Gamma_{(\zeta \oplus e_{q_j})}^{(\sigma \oplus e_{p_1})} \Gamma_{(\eta \oplus e_{q_j})}^{(\tau \oplus e_{p_1})}.$$

Definition

A $2^{\ell} \times 2^{m}$ matrix M is a *pseudo-signature* if for all σ, τ for which wt($\sigma \oplus \tau$) is even, its entries satisfy the corresponding MGI up to a factor of ± 1 on the right-hand side.

E.g. (matrix-form) standard signatures, clusters of rows, and their transposes are all pseudo-signatures.

The matchgate identities allow us to deduce key linear algebraic relationships between the rows of any pseudo-signature Γ .

Example

Suppose that d = 2, $\sigma = 0000$, $\tau = 0011$, $\zeta = 1100$, $\eta = 1111$. Then the MGIs become

 $\Gamma_{1100}^{0000}\Gamma_{1111}^{0011} - \Gamma_{1100}^{0011}\Gamma_{1111}^{0000} = \pm \left(\Gamma_{1101}^{0001}\Gamma_{1110}^{0010} - \Gamma_{1110}^{0001}\Gamma_{1101}^{0010}\right).$

		1100	1101	1110	1111
	0000		0	0	
	0001	0			0
	0010	0			0
_	0011		0	0	

Example (Cont'd)

- Rows Γ^{1100} and Γ^{1111} are linearly dependent if Γ^{1101} and Γ^{1110} are linearly dependent.
- Similarly, rows Γ^{0000} and Γ^{1111} are linearly dependent if
 - Γ^{0001} and Γ^{1110}
 - Γ^{0010} and Γ^{1101}
 - Γ^{0100} and Γ^{1011}
 - Γ^{1000} and Γ^{0111}

are linearly dependent

Lemma

Let $\sigma, \tau \in \{0,1\}^{\ell}$ be such that $\sigma \oplus \tau = \bigoplus_{j=1}^{2d} e_{p_i}$. If row $\Gamma^{(\sigma \oplus e_{p_i})}$ is linearly dependent with row $\Gamma^{(\tau \oplus e_{p_i})}$ for all $1 \leq i \leq 2d$, then row Γ^{σ} is linearly dependent with row Γ^{τ} .

Coordinate-free interpretation: linear relations among wedges of rows of even parity yield linear relations among wedges of rows of odd parity.

Definition

For V a vector space with basis $\{e_j\}$, the second exterior power of V, denoted $\Lambda^2 V$, is the vector space given by quotienting $V \otimes V$ by the relation $v \otimes w \sim -w \otimes v$ for all $v, w \in V$. We denote the image of $v \otimes w$ under this quotient map by $v \wedge w$. $\Lambda^2 V$ has basis $\{e_i \wedge e_j\}_{i < j}$.

Explicitly, if
$$v = \sum v_i e_i$$
 and $w = \sum w_i e_i$, then

$$v \wedge w = \sum_{i < j} (v_i w_j - v_j w_i) e_i \wedge e_j = \sum_{i < j} \begin{vmatrix} v_i & v_j \\ w_i & w_j \end{vmatrix} e_i \wedge e_j.$$

In particular, v and w are linearly dependent iff $v \wedge w = 0$.

By the MGIs, linear relations among wedges of rows of even parity yield linear relations among wedges of rows of odd parity. Example

$$\Gamma^{0000} \wedge \Gamma^{1111} = 0$$

implies that

 $\Gamma^{0001} \wedge \Gamma^{1110} - \Gamma^{0010} \wedge \Gamma^{1101} + \Gamma^{0100} \wedge \Gamma^{1011} - \Gamma^{1000} \wedge \Gamma^{0111} = 0$

By the MGIs, linear relations among wedges of rows of even parity yield linear relations among wedges of rows of odd parity. Example

$$\mu \cdot (\Gamma^{0000} \wedge \Gamma^{1111}) + \nu \cdot (\Gamma^{0011} \wedge \Gamma^{1100}) = 0$$

implies that

$$\mu \cdot (\Gamma^{0001} \wedge \Gamma^{1110} - \Gamma^{0010} \wedge \Gamma^{1101} + \Gamma^{0100} \wedge \Gamma^{1011} - \Gamma^{1000} \wedge \Gamma^{0111}) \pm$$

$$\nu \cdot (\Gamma^{0010} \wedge \Gamma^{1101} - \Gamma^{0001} \wedge \Gamma^{1110} + \Gamma^{0111} \wedge \Gamma^{1000} - \Gamma^{1011} \wedge \Gamma^{0100}) = 0$$

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities

Implies Cluster Existence

Base Case Inductive Step

Epilogue

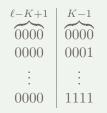
Claim

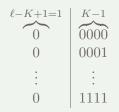
Rank rigidity implies cluster existence.

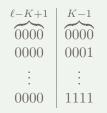
Proof.

Suppose Γ is a $2^{\ell} \times 2^m$ pseudo-signature of rank 2^K .

Can assume Γ has no proper clusters of rows with the same rank as Γ . Otherwise, if there were such a cluster $Z = \sigma + \{e_{q_1}, ..., e_{q_{\ell'}}\}$, replace Γ by Γ^Z and ℓ by ℓ' , and ignore bits in positions outside of $q_1, ..., q_{\ell'}$.







$\overbrace{0000}^{\ell-K+1}$	$\overbrace{0000}^{K-1}$ $\overbrace{00001}^{0}$
:	:
0000	1111
1110	0101

$\overbrace{0000}^{\ell-K+1}$ $\overbrace{0000}^{0000}$	$\overbrace{0000}^{K-1}_{0000}$
:	:
000 <mark>0</mark>	1111
111 <mark>0</mark>	0101

$\ell {-}K{+}1$	K-1
0000	0000
0000	0001
•	•
0000	1111
1111	0000
1111	0001
:	•
1111	1111

$\overbrace{0000}^{\ell-K+1}$	$\overbrace{0000}^{K-1}$
÷	:
0000	1111
1111	0000
1111	0001
•	:
1111	1111
1110	1010

$\overbrace{0000}^{\ell-K+1}$	$\overbrace{0000}^{K-1}$
:	:
1111 1111	0000 0001
: 1111 111 <mark>0</mark>	: 1111 1010

$\ell {-}K{+}1$	K-1
0000	0000
0000	0001
:	:
0000	1111
11 <mark>1</mark> 1	0000
11 <mark>1</mark> 1	0001
•	÷
11 <mark>1</mark> 1	1111
11 <mark>1</mark> 0	1010

$\overbrace{0000}^{\ell-K+1}$	$\overbrace{0000}^{K-1}$
:	:
1111 1111	0000 0001
: 1111	: 1111

All other rows must be zero. By the MGIs,

$$\Gamma^{0^z \circ 0^{K-1}} \wedge \Gamma^{1^z \circ 0^{K-1}} = 0,$$

a contradiction.

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

Theorem

If Γ is a $2^{K+1} \times 2^m$ pseudo-signature with rank at least $2^K + 1$, then rank $(\Gamma) = 2^{K+1}$.

Sketch.

Inductively, we know that Γ contains a cluster Z of 2^{K} linearly independent rows, say $0^{K+1} \oplus \{e_2, ..., e_{K+1}\}$. Because rank $(\Gamma) \geq 2^{K} + 1$, there exists a row outside the linear span of Z.

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Suppose Γ^{1001} lay in the span of the red rows, so

$$\Gamma^{1001} \wedge \Gamma^{0000} = \sum_{\sigma \text{ red, even}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0000} \right)$$

LHS: $\Gamma^{1000} \wedge \Gamma^{0001}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$

Odd columns
0001
0010
0100
0111
1000
1011
1101
1110

Suppose Γ^{1010} lay in the span of the red rows, so

$$\Gamma^{1010} \wedge \Gamma^{0000} = \sum_{\sigma \text{ red, even}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0000} \right)$$

LHS: $\Gamma^{1000} \wedge \Gamma^{0010}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$, $\Gamma^{1000} \wedge \Gamma^{0001}$

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Suppose Γ^{1100} lay in the span of the red rows, so

$$\Gamma^{1100} \wedge \Gamma^{0000} = \sum_{\sigma \text{ red, even}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0000} \right).$$

LHS: $\Gamma^{1000} \wedge \Gamma^{0100}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$, $\Gamma^{1000} \wedge \Gamma^{0001}$, $\Gamma^{1000} \wedge \Gamma^{0010}$

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Suppose Γ^{1011} lay in the span of the red rows, so

$$\Gamma^{1011} \wedge \Gamma^{0001} = \sum_{\sigma \text{ red, odd}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0001} \right)$$

LHS: $\Gamma^{1001} \wedge \Gamma^{0011}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$, $\Gamma^{0000} \wedge \Gamma^{1001}$

LHS: $\Gamma^{1001} \wedge \Gamma^{0101}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$, $\Gamma^{0000} \wedge \Gamma^{1001}$, $\Gamma^{1001} \wedge \Gamma^{0011}$

$$\Gamma^{1011} \wedge \Gamma^{0001} = \sum_{\sigma \text{ red, odd}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0001} \right)$$

Suppose Γ^{1101} lay in the span of the red rows, so

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Suppose Γ^{1110} lay in the span of the red rows, so

$$\Gamma^{1110} \wedge \Gamma^{0001} = \sum_{\sigma \text{ red, odd}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0001} \right).$$

LHS: $\Gamma^{1111} \wedge \Gamma^{0000}$, $\Gamma^{1100} \wedge \Gamma^{0011}$, $\Gamma^{1010} \wedge \Gamma^{0101}$, $\Gamma^{0110} \wedge \Gamma^{1001}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$, $\Gamma^{0000} \wedge \Gamma^{1001}$, $\Gamma^{1001} \wedge \Gamma^{0011}$, $\Gamma^{1001} \wedge \Gamma^{0101}$

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Suppose Γ^{1111} lay in the span of the red rows, so

$$\Gamma^{1111} \wedge \Gamma^{0000} = \sum_{\sigma \text{ red, even}} a_{\sigma} \cdot \left(\Gamma^{\sigma} \wedge \Gamma^{0000} \right).$$

LHS: $\Gamma^{1110} \wedge \Gamma^{0001}$, $\Gamma^{1101} \wedge \Gamma^{0010}$, $\Gamma^{1011} \wedge \Gamma^{0100}$, $\Gamma^{0111} \wedge \Gamma^{1000}$ RHS: $\Gamma^{0***} \wedge \Gamma^{0***}$, $\Gamma^{1000} \wedge \Gamma^{0001}$, $\Gamma^{1000} \wedge \Gamma^{0010}$, $\Gamma^{1000} \wedge \Gamma^{0100}$

Even columns:	Odd columns:
0000	0001
0011	0010
0101	0100
0110	0111
1001	1000
1010	1011
1100	1101
1111	1110

Introduction

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Inductive Step

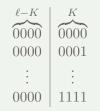
Epilogue

 $k \neq 2^{K}$? Next Steps Acknowledgments

Theorem

Suppose $\ell > K + 1$. If Γ is a $2^{\ell} \times 2^m$ pseudo-signature of rank $\geq 2^K + 1$, then there exists a cluster $Z \subsetneq \{0,1\}^{\ell}$ for which Γ^Z is also of rank $\geq 2^K + 1$.

Suppose to the contrary. Inductively we know Γ has a cluster Z of 2^{K} linearly independent rows, say $0^{\ell} + \{e_{p_{1}}, ..., e_{p_{K}}\}$.



$\overbrace{0000}^{\ell-K}$	$\overbrace{0000}^{K} 0001$
•	:
0000	1111
1110	0101

$\overbrace{0000}^{\ell-K}$	$\overbrace{0000}^{K} 0001$
•	•
000 <mark>0</mark>	1111
111 <mark>0</mark>	0101

$\overbrace{0000}^{\ell-K}$	$\overbrace{0000}^{K} 0001$
:	:
0000	1111
1111	0000

$\overbrace{0000}^{\ell-K}$	
0000	0001
:	:
0000	1111
1111	0000

To show $\Gamma^{0^{\ell}}$ and $\Gamma^{1^{\ell-K} \circ 0^{\ell}}$ are linearly dependent, by MGIs it's enough to show:

Lemma $\Gamma^{0^{\ell} \oplus e_j} = 0 \text{ for all } j \neq p_1, ..., p_K.$

Proof.

For $i \in \{p_1, ..., p_K\}$ and $j \notin \{p_1, ..., p_K\}$, define:

- T_i : all rows u for which $u_i = 0$
- T_i^j : all rows u for which $u_i = u_j = 0$
- $Z_i: Z \cap T_i$

Note that

$$Z_i \subset T_i^j \subset T_i.$$

So inductively, proper cluster T_i^j has rank a power of two, either 2^{K-1} or 2^K .

Proof (Cont'd).

• If rank $(T_i^j) = 2^{K-1}$, then span $(T_i^j) = \text{span}(Z_i)$. This is true for all $i \in \{p_1, ..., p_K\}$, so

$$\Gamma^{0^{\ell} \oplus e_j} \in \bigcap_{i=1}^K \operatorname{span}(Z_i) = \operatorname{span}(\{\Gamma^{0^{\ell}}\}).$$

• If rank $(T_i^j) = 2^K$, then span $(T_i) = \text{span}(T_i^j) \subset \text{span}(Z)$, a contradiction.

Introduction

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

 $k \neq 2^K?$

Next Steps Acknowledgments

Theorem (Fu/Yang '13)

Suppose a basis collapse theorem holds on domain size 2. Then if a holographic algorithm uses a $2^{\ell} \times k$ basis of rank 2, then the same collapse theorem holds for this holographic algorithm.

Theorem

Suppose a basis collapse theorem holds on domain size r. Then if a holographic algorithm uses a $2^{\ell} \times k$ basis of rank r, then the same collapse theorem holds for this holographic algorithm. By rank rigidity, $\underline{G}(t)$ must have rank a power of two. If G is a full-rank signature, by

$$\underline{G}(t) = MG(t)(M^T)^{\otimes (n-1)},$$

we know M must have rank a power of two. So if $k \neq 2^K$, we're done inductively by the collapse theorem for domain size 2^K , where $K = \lfloor \log_2 k \rfloor$.

Introduction

Matchgates/Holographic Algorithms: A Crash Course Basis Size and Domain Size Collapse Theorems

Setup

Overview of Proof Group Property Simulation

Rank Rigidity

Matchgate Identities Implies Cluster Existence Base Case Inductive Step

Epilogue

 $k \neq 2^{K}$? Next Steps Acknowledgments

- Work out the case where no full-rank matchgate exists
- Use the collapse theorem to initiate a study of holographic algorithms over higher domains

Thank you to:

- Professor Leslie Valiant (Harvard University)
- Professor Jin-Yi Cai (University of Wisconsin)
- Harvard Herchel-Smith Research Fellowship
- Simons Institute for Computing