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Introduction
Matchgates/Holographic Algorithms: A Crash Course



Holographic algorithms reduce counting problems into the
problem of counting perfect matchings in a graph G = (V, E).
e Perfect matching: M C E for which every v € V' belongs to
exactly one edge e € M
e [Valiant '79]: Counting perfect matchings in arbitrary
graphs is #P-complete.

e [Fisher-Temperley 1961, Kasteleyn 1961]: Counting perfect
matchings in planar graphs is in P.




More generally, if every edge e of G has some weight w(e),
define

PerfMatch(G) = Z (H ur(n)) .
perfect matchings M \ecM
Theorem (FKT algorithm)

If G is a planar weighted graph, PerfMatch(G) can be computed
i polynomial time.

Idea.
For an arbitrary graph G with adjacency matrix A, the Pfaffian

Pf(A) = Z sgn(M) (H w(e))
perfect matchings M ecM

satisfies Pf(A)? = det(A). For planar graphs, can flip the signs
of some entries of A to make Pf and PerfMatch agree. O
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Imagine: each vertex v on the left propagates signals along its
outgoing edges indicating whether v is assigned 1 (green) or 0

(black).
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Each satisfying assignment corresponds to a collection of signals
satisfying two constraints:

Satisfaction: If Cj is a vertex
on the right, at least one of the
three signals it receives must be

Consistency: If x; is a vertex
on the left, the two signals x;
generates must be the same.

1.
000 | O
001 | 1
00 |1 010 | 1
010 011 | 1
10| 0 100 | 1
111 101 | 1
110 | 1
111 |1




Goal: encode these bit vectors using the matching properties of
graphs

Definition

A matchgate is a weighted graph G with designated subsets of
its vertices called external nodes X. We say that it is of arity
| X].

Definition

The standard signature G of matchgate G of arity n is a vector
of dimension 2" with entries indexed by bitstrings of length n.
For Z C X corresponding to bitstring a, I'* = PerfMatch(I'\ Z).
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We want planar matchgates G and R whose standard
signatures respectively match the vectors encoding the
consistency and satisfaction constraints:

Satisfaction: If Cj is a vertex
on the right, at least one of the
three signals it receives must be
1.

Consistency: If z; is a vertex
on the left, the two signals x;
generates must be the same.

000 | O
001 | 1
00 |1 010 | 1
0110 011 | 1
1010 100 | 1
11 |1 101 | 1
110 | 1
111 | 1
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Unfortunately, no recognizer has standard signature
(0,1,1,1,1,1,1,1):

Observation (Parity Condition)

Because a graph with an odd number of vertices has no perfect
matchings, given any matchgate G, the indices of the nonzero
entries in its standard signature must have the same parity.



e The saving grace: rewrite number of perfect matchings of
matchgrid € as an inner product and apply a change of
basis.

e Suppose there are w wires in (2, generators G1,...G4, and
Ry, ..., R, recognizers, then

PerfMatch(Q) = Z HG 4 H R;%i (G,R),
2€{0,1}%,
Z=X10-+-0Xy0
Y10:+:0Yg
where G = ®;G; and R = ®;R; with the order of tensoring
specified by the wires.

e Regard G as an element in X = C2” and R as an element
in X*: PerfMatch(Q) is the result of applying dual vector
R to G, which is independent of the choice of basis for X.



Definition

Given a 2 x 2 basis matriz M, the signature with respect to M
of a generator G of arity n is the vector G satisfying

G = M®"G.

The signature with respect to M of a recognizer R of arity n is
the vector R satisfying

R = RM®".



e Suffices to find a basis M of matchgates G and R whose
signatures with respect to M match the vectors encoding
the consistency and satisfaction constraints.

e Over C and 9, this still cannot be done.
e [Valiant '06, Cai-Lu '07]: Over Fr, take M = <(15 g),
G = (3,0,0,5), and R = (0,3,3,0,3,0,0,5).
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Introduction

Basis Size and Domain Size



e The number of different values that objects in a counting
problem can take on is called the domain size.

e Domain size 2:

Boolean satisfying assignments
Vertex covers

Perfect matchings

Ice problems

vy vy VvYYy

e Domain size k

» k-colorings



Over domain size k:
e Arity-n signatures are now vectors of dimension k".

e M now has width k£ because

G=M®"G R=RM®".
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e Domain size 2: encode TRUE/FALSE by presence/absence
of one external node

e Domain size k: encode colors {1, ..., k} by removal of some
subset of a group of ¢ external nodes

» Arities are now multiples of ¢

» External nodes grouped into blocks of ¢, with wires
connecting matchgates blockwise.

» If I has n blocks, [ has 2¢" entries.

» M has height 2¢ because

G=M®"G R=RM®".

» We call ¢ the basis size.



Introduction

Collapse Theorems



We will regard standard signatures as matrices:

Definition

For standard signature G of generator G, the t-th matrixz form
G(t) (1 <t < n)is the 2¢ x 2=D¢ matrix of entries of G where
the rows are indexed by a; € {0,1}¢ and the columns are
indexed by a7 - - ay_10441 - - - o € {0,131,



We will also regard signatures as matrices:
Definition

For signature G of generator G, the t-th matriz form G(t)

(1 <t < n)is the k x k"~! matrix of entries of G where the
rows are indexed by a; € [k] and the columns are indexed by
Q1 Q1@ - O € [K]7TL

Note: we will denote row indices by superscripts and column
indices by subscripts.



It turns out we may assume that rank(M) = k. But we know

G(t) = MG(t)(MT)="~ 1),
So if G is of full rank,

rank(G(t)) = k.



Key to understanding the ultimate capabilities of holographic
algorithms for solving counting problems over a given domain
size:

Question

Given k, what is the smallest £ for which any holographic
algorithm over domain size k with a full-rank matchgate can be
simulated by one with basis size £2

domain size | basis size
Cai-Lu 08 2 1




Key to understanding the ultimate capabilities of holographic
algorithms for solving counting problems over a given domain
size:

Question

Given k, what is the smallest £ for which any holographic
algorithm over domain size k with a full-rank matchgate can be
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Key to understanding the ultimate capabilities of holographic
algorithms for solving counting problems over a given domain
size:

Question

Given k, what is the smallest £ for which any holographic
algorithm over domain size k with a full-rank matchgate can be
simulated by one with basis size £2

domain size | basis size
Cai-Lu ’08 2 1
Cai-Fu 14 B 1
4 2
C ’15, Xia ’15 k |log, k|




Setup
Overview of Proof



Definition

Z C {0,1}" is a cluster if there exists s € {0,1}" and positions
D1, -y Pm € [n] such that each member of Z is of the form

s® <@j€J epj) for some J C {p1,...,pm}, where e, is the
bitstring consisting of zeroes everywhere except position p;.

We write Z as s + {ep,, ..., €p,, } (s only unique up to the bits
outside of positions pi, ..., pm)-

e.g. {000,001, 100,101} is a cluster denoted 000 + {e1, e3}.



For now, assume k = 2X. Steps of proof:

1. Cluster existence: Any standard signature of rank at
least 2% contains a cluster of 2% linearly independent rows

2. Group property: Inverses of standard signatures are also
standard signatures

3. Simulation: Use 1 and 2 to simulate with a basis of size
K
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For now, assume k = 2X. Steps of proof:

1. Cluster existence: Any standard signature of rank at
least 2% contains a cluster of 2% linearly independent rows
(hardest part of the proof)

2. Group property: Inverses of standard signatures are also
standard signatures (adapted from Li/Xia result in
matchgate character theory)

3. Simulation: Use 1 and 2 to simulate with a basis of size
K (technique due to Cai/Fu)



Setup

Group Property



Lemma (Group Property)

Full-rank 25 x 2=DK standard signatures G(t) have right
inverses (under matriz multiplication) that are also standard
signatures.







Setup

Simulation



We use the approach introduced by Cai-Fu for simulation given
cluster existence and group property have been proven. Take
any holographic algorithm over domain size k = 2.

1. By cluster existence, can pick out a generator G with
full-rank signature and find a cluster Z = s+ {e,,, ..., €py }
of 2K linearly independent rows. Suppose WLOG s = 0°.

2. Let M? denote the submatrix of M with rows indexed by
Z. This will be the basis of size log k = K we use for the
simulation.
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e Modifying generators is easy:
Q;((_Z _ (MZ)®m- Gz

has signature G; with respect to new basis M#

e Modifying recognizers is more subtle. Can write
Ry = (By(M/M?)®™) (M7)%ms.

Is R;(M/M#)®™mi a valid recognizer standard signature?



. Define T = M(M?%)~L.

4. By construction,

th<—Z (t) _ TQ*(—Z (t)

. By group property, G**4(t) has a right-inverse, so
right-multiply by this on both sides to conclude that 7" is a
standard signature.



Over the new basis MZ:

6.
7.
8.

Replace each recognizer R; with R,/ T®™:
Replace each generator G; with Q;TEZ .

These new matchgates have the same signatures as the
originals, but over a basis of size K, so we're done.



Rank Rigidity



The key ingredient:




Rank Rigidity
Matchgate Identities



Our methods are primarily algebraic and rely on the
characterization of the set of all standard signatures as the
variety cut out by a certain collection of quadratic relations:

Theorem (Matchgate Identities)

A 28 % 2=V matriz T is the t-th matriz form of the standard
stgnature of some generator matchgate iff for all

¢,n € {0,130V and 0,7 € {0,1}¢, the following matchgate
identity (MGI) holds. Let (& n=eq © - Dey, and
ocDT=¢€p O - Dep,, where g1 <--- < qg andp; < --- < pqg.
Then if d is even,

d d’

i+1 (c@ep @em) (T@ep @epi)_ +1 (0®ep, )~ (T®ep, )
Z(_DZ FC ' Iy ' _iz(_l)] F(C@@Zj)r(n@e:)'
=1 j=1



d d

il (T@em; Bep, ) (@ e @y, +1 (0®ep, ) (T®ep; )
D (FyFHn T e et S iz Licaen) L ndeny)”

i=1

Definition

A 2% x 2™ matrix M is a pseudo-signature if for all o, 7 for
which wt(o @ 7) is even, its entries satisfy the corresponding
MGI up to a factor of £1 on the right-hand side.

E.g. (matrix-form) standard signatures, clusters of rows, and
their transposes are all pseudo-signatures.



The matchgate identities allow us to deduce key linear algebraic
relationships between the rows of any pseudo-signature I.

Example
Suppose that d = 2, ¢ = 0000, 7 = 0011, ¢ = 1100, n = 1111.
Then the MGIs become

1100+ 1111 — + 1100+ 1111 —

1101

1110 1110+ 1101

lw()(l()()r()(lll lw(]()lllw(}()()(l = L (FOO()lFOOlO _ FOOOIFOOIO)




Example (Cont’d)

e Rows I''90 and T are linearly dependent if IO and

110 are linearly dependent.

FOOOO Fllll

e Similarly, rows and are linearly dependent if

1"0001 and 1'\1110
FOOlO and F1101
1“0100 and FlOll
FlOOO and F0111

v

v vy

are linearly dependent



Lemma

Let o,7 € {0,1}* be such that o ® T = @Jz-dzl ep;- If row T(@®ep;)
is linearly dependent with row T'T®¢:) for all 1 < i < 2d, then

row I'? is linearly dependent with row I'".

Coordinate-free interpretation: linear relations among wedges of
rows of even parity yield linear relations among wedges of rows
of odd parity.



Definition

For V' a vector space with basis {e;}, the second exterior power
of V, denoted A%V, is the vector space given by quotienting

V ® V by the relation v @ w ~ —w ® v for all v,w € V.. We
denote the image of v ® w under this quotient map by v A w.
A2V has basis {e; A 2 e i

Explicitly, if v = ) v;e; and w = > w;e;, then

VAW = E (Uﬂuj = 1,'.]-'11)1-)(;:1' Nej = E

1<j 1<J

Vi Vj

Wi Wy

In particular, v and w are linearly dependent iff v A w = 0.



By the MGIs, linear relations among wedges of rows of even
parity yield linear relations among wedges of rows of odd parity.

Example

[0000 A LI _

implies that

FOOOI A 1—\1110 o FOOlO A FllOl + FOlOO A F1011 - I-\l[)OO A F()lll -0



By the MGIs, linear relations among wedges of rows of even
parity yield linear relations among wedges of rows of odd parity.

Example
o - (D0000 A P111LY 4y, (pO0LL \ 1100y _ g
implies that
ji - (T0001 A 1110 _ 0010 o 1101 4 120100 4 PIOLL 1000 5 [OLLLY .y

v (FOOIO/\FHOI 7F0001 /\F1110+F0111/\F1000*F1011 /\FOIOO) =0



Rank Rigidity

Implies Cluster Existence



Claim

Rank rigidity implies cluster existence.

Proof.

Suppose I is a 2¢ x 2™ pseudo-signature of rank 2%

Can assume I" has no proper clusters of rows with the same
rank as I'. Otherwise, if there were such a cluster

Z =0+ {eq, - €q, }, replace I' by I'? and ¢ by ¢, and ignore
bits in positions outside of q1, ..., g .



(K41 | K-1
P ~ =
0000 | 0000

0000 | 0001

0000 | 1111



K—-1
~ N
0000
0001

1111



(K41 | K-1
P ~ =
0000 | 0000

0000 | 0001

0000 | 1111



(—K+1 | K-1
AN |
0000 | 0000
0000 | 0001

0000 | 1111
1110 | 0101




(—K+1 | K-1
AN |
0000 | 0000
0000 | 0001

0000 | 1111
1110 | 0101




{—K+1 K-1
N |
0000 | 0000

0000 | 0001
0000 | 1111
1111 | 0000
1111 | 0001

1111 | 1111




{—K+1 K-1
AN |
0000 | 0000
0000 | 0001
0000 | 1111
1111 | 0000
1111 | 0001
1111 | 1111
1110 | 1010




{—K+1 K-1
AN |
0000 | 0000
0000 | 0001
0000 | 1111
1111 | 0000
1111 | 0001
1111 | 1111
1110 | 1010




{—K+1 K-1
AN |
0000 | 0000
0000 | 0001
0000 | 1111
1111 | 0000
1111 | 0001
1111 | 1111
1110 | 1010




{—K+1 K-1
N |
0000 | 0000
0000 | 0001
0000 | 1111
1111 | 0000
1111 | 0001
1111 | 1111

All other rows must be zero. By the MGls,

zo0K—1 20K —1
A

a contradiction.



Rank Rigidity

Base Case



Theorem

IfT is a 2K+ x 2™ pseudo-signature with rank at least 25 + 1,
then rank(T") = 25+,

Sketch.

Inductively, we know that T’ contains a cluster Z of 2X linearly
independent rows, say 051 @ {ea,...,ex+1}. Because

rank(T") > 2K + 1, there exists a row outside the linear span of
Z.



Even columns:

0000
0011
0101
0110
1010
1100
1111

Odd columns:
0001
0010
0100
0111
1000
1011
1101
1110



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1000
1010 1011
1100 1101
1111 1110

Suppose I''%1 Jay in the span of the red rows, so

FlOOl A FOOOO _ Z ay - (1‘10’ A FOOOO) .

o red, even

LHS: FlOOO A FOOOl
RHS: FO*** A FO***



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1011
1100 1101
1111 1110

Suppose I''10 Jay in the span of the red rows, so

I-\IOIO A FOOOO _ Z o - (Fa A FOOOO) )

o red, even

LHS: FlOOO A I‘\OOIO
RHS: FO*** A 1-\0*** FIOOO A FOOOl



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010 1011
1101
1111 1110

Suppose ' Jay in the span of the red rows, so

I-\IIOO A FOOOO _ Z o - (Fa A FOOOO) )

o red, even

LHS: FlOOO A I‘\OlOO
RHS: FO*** /\FO*** FIOOO /\FOOOI 1‘\1000 /\FOOIO



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010
1100 1101
1111 1110

Suppose ' Jay in the span of the red rows, so

FlOll A FOOOI _ Z ay - (FU A FOOOI) )
o red, odd

LHS: FlOOl A I‘\O()ll
RHS: FO*** A FO*** FOOOO A FlOOl



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010 1011
1100
1111 1110

Suppose I''01 Jay in the span of the red rows, so

FlOll A FOOOI _ Z ay - (FU A FOOOI) )
o red, odd

LHS: FlOOl A FOlOl
RHS: FO*** /\FO*** FOOOO /\FIOOI 1‘\1001 /\FOOII



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010 1011
1100 1101

1111

Suppose I''10 Jay in the span of the red rows, so

FlllO A FOUOl _ Z Ay - (Fa A FOUOl) )
o red, odd

LHS: Fllll A 1‘\0000’ FIIOO A FOOll7 FIOIO A FOlOl’ FOllO A 1‘\1001
RHS: FO*** A 1'\0***, FOOOO A FlOOl7 FlOOl A FOOH’ FlOOl A FOlOl



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010 1011
1100 1101

1110

Suppose "' 1ay in the span of the red rows, so

I-\llll A FOOOO _ Z ay - (I‘\O' A FOOOO) )

o red, even

LHS: F1110 A 1‘\0001’ FllOl A FOOIO7 F1011 A FOIOO’ FOlll A 1‘\1000
RHS: FO*** A 1'\0***, FlOOO A FOOOl7 FlOOO A FOOlO’ FlOOU A FOlOO



Even columns: Odd columns:

0000 0001
0011 0010
0101 0100
0110 0111
1001 1000
1010 1011
1100 1101

1111 1110



Rank Rigidity

Inductive Step



Theorem

Suppose £ > K + 1. If T is a 2¢ x 2™ pseudo-signature of rank
> 2K 11, then there exists a cluster Z C {0,1}¢ for which T'Z is
also of rank > 2K + 1.

Suppose to the contrary. Inductively we know I' has a cluster Z
of 2K linearly independent rows, say 0° + {ep, , -, €py }-



-K | K
A~ = ~ =
0000 | 0000

0000 | 0001

0000 | 1111



|
0000 | 0000
0000 | 0001

0000 | 1111
1110 | 0101




|
0000 | 0000
0000 | 0001

0000 | 1111
1110 | 0101




|
0000 | 0000
0000 | 0001

0000 | 1111
1111 | 0000




|
0000 | 0000
0000 | 0001

0000 | 1111
1111 | 0000




¢ 14— K ¢ . o9
To show I'” and ' " °9" are linearly dependent, by MGIs it’s
enough to show:

Lemma
FOZEBej = 0 fO’I" (L”] # P1,--,PK-

Proof.
For i € {p1,...,px} and j & {p1, ..., pK }, define:
e T;: all rows u for which u; =0
° Tij: all rows u for which u; = u; =0
o Zi: ZNT;
Note that '
Z;CT! CT,.

So inductively, proper cluster Tij has rank a power of two, either
2K=1 or 2K, O



Proof (Cont’d).

o If rank(Tij) = 251 then span(TZ-j) = span(Z;). This is true
for all i € {p1, ..., pr }, SO

T0°®e; ¢ NK  span(Z;) = span({FOe}).

o If rank(Tij) = 2% then span(T}) = Span(Tij) C span(Z2), a
contradiction.

Ol



Epilogue
k # 2K7



Theorem (Fu/Yang ’13)

Suppose a basis collapse theorem holds on domain size 2. Then
if a holographic algorithm uses a 2 x k basis of rank 2, then the
same collapse theorem holds for this holographic algorithm.



Theorem

Suppose a basis collapse theorem holds on domain size r. Then
if a holographic algorithm uses a 2¢ x k basis of rank r, then the
same collapse theorem holds for this holographic algorithm.



By rank rigidity, G(¢) must have rank a power of two. If G is a
full-rank signature, by

G(t) = MG(t)(MT)®"~Y,

we know M must have rank a power of two. So if k # 2%, we're
done inductively by the collapse theorem for domain size 25X
where K = [log, k.



Epilogue

Next Steps



e Work out the case where no full-rank matchgate exists

e Use the collapse theorem to initiate a study of holographic
algorithms over higher domains
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