Approximating 2-State Spin Systems

Heng Guo
Queen Mary, University of London

Based on joint work with Pinyan Lu, and with Leslie Ann Goldberg

Simons Institute
Mar 282016

Ising Model

Edge interaction | | 0 | 1 | |
| :--- | :--- | :--- | :--- |
| | 0 | β | 1 |
| | 1 | 1 | β |

Configuration $\sigma: V \rightarrow\{0,1\}$

$$
\begin{gathered}
w(\sigma)=\beta^{\text {mono(} \sigma)} \\
\pi(\sigma) \sim w(\sigma)
\end{gathered}
$$

Ising Model

Edge interaction | | 0 | 1 | |
| :--- | :--- | :--- | :--- |
| | 0 | β | 1 |
| | 1 | 1 | β |

Configuration $\sigma: V \rightarrow\{0,1\}$

$$
\begin{gathered}
w(\sigma)=\beta^{8} \\
\pi(\sigma) \sim w(\sigma)
\end{gathered}
$$

Ising Model

		0	1
	Edge interaction	β	1
	1	1	β

Configuration $\sigma: V \rightarrow\{0,1\}$

$$
\begin{gathered}
w(\sigma)=\beta^{0}=1 \\
\pi(\sigma) \sim w(\sigma)
\end{gathered}
$$

Ising Model

> | | | 0 | 1 |
| :--- | :--- | :--- | :--- |
| | | | |
| Edge interaction | | | 1 |
| | 1 | 1 | β |

Partition function (normalizing factor):

$$
Z_{G}(\beta)=\sum_{\sigma: V \rightarrow\{0,1\}} w(\sigma)
$$

where $w(\sigma)=\beta^{\operatorname{mono}(\sigma)}$, mono (σ) is the number of monochromatic edges under σ.

2-State Spin System

2-State Spin System

Edge: $\left[\begin{array}{ll}\beta & 1 \\ 1 & \beta\end{array}\right] \quad$ Vertex: $\left[\begin{array}{l}1 \\ 1\end{array}\right]$

More generally, three parameters β, γ, and λ.
$w(\sigma)=\beta^{m_{0}(\sigma)} \gamma^{m_{1}(\sigma)} \lambda^{\prime}$
$m_{0}(\sigma)$: \# of $(0,0)$ edges;
$m_{1}(\sigma)$: \# of $(1,1)$ edges;
$n_{0}(\sigma)$: \# of 0 vertices.

2-State Spin System

Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$
More generally, three parameters β, γ, and λ.

2-State Spin System

Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$
More generally, three parameters β, γ, and λ.

$$
\begin{gathered}
w(\sigma)=\beta^{m_{0}(\sigma)} \gamma^{m_{1}(\sigma)} \lambda^{n_{0}(\sigma)} \\
m_{0}(\sigma): \# \text { of }(0,0) \text { edges; } \\
m_{1}(\sigma): \# \text { of }(1,1) \text { edges; } \\
n_{0}(\sigma): \# \text { of } 0 \text { vertices. }
\end{gathered}
$$

2-State Spin System

Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$
More generally, three parameters β, γ, and λ.

$$
\begin{gathered}
w(\sigma)=\beta^{m_{0}(\sigma)} \gamma^{m_{1}(\sigma)} \lambda^{n_{0}(\sigma)} \\
m_{0}(\sigma): \# \text { of }(0,0) \text { edges; } \\
m_{1}(\sigma): \# \text { of }(1,1) \text { edges; } \\
n_{0}(\sigma): \# \text { of } 0 \text { vertices. } \\
Z_{G}(\beta, \gamma, \lambda)=\sum_{\sigma: V \rightarrow\{0,1\}} w(\sigma)
\end{gathered}
$$

Examples

- Ising model: $\left[\begin{array}{ll}\beta & 1 \\ 1 & \beta\end{array}\right]$ (no field)

$$
Z_{G}(\beta)=\sum_{\sigma: V \rightarrow\{0,1\}} \beta^{\text {mono }(\sigma)}
$$

- Hardcore gas model: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$ (Weighted independent set)

Examples

- Ising model: $\left[\begin{array}{ll}\beta & 1 \\ 1 & \beta\end{array}\right]$ (no field)

$$
Z_{G}(\beta)=\sum_{\sigma: V \rightarrow\{0,1\}} \beta^{\text {mono }(\sigma)}
$$

- Hardcore gas model: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$ (Weighted independent set)

$$
Z_{G}(\beta)=\sum_{\text {Independent set } I} \lambda^{|/|}
$$

Approximate Counting

- Exact evaluating Z is \#P-hard unless $\beta \gamma=1$ or $\beta=\gamma=0$ or $\lambda=0$.
- Approximate the partition function Z.
- Fully Polynomial-time Randomized Approximation Scheme (FPRAS)
and FPTAS:
polynomial time in n and $\frac{1}{\varepsilon}$ (multiplicative error ε).
- Approximating Z is equivalent to approximate marginal probabilities p_{V} due to self-reducibility [Jerrum, Valiant, V/azirani 86].

Approximate Counting

- Exact evaluating Z is \#P-hard unless $\beta \gamma=1$ or $\beta=\gamma=0$ or $\lambda=0$.
- Approximate the partition function Z.
- Fully Polynomial-time Randomized Approximation Scheme (FPRAS) and FPTAS: polynomial time in n and $\frac{1}{\varepsilon}$ (multiplicative error ε).
- Approximating Z is equivalent to approximate marginal probabilities p_{V} due to self-reducibility [Jerrum, V/aliant, V/azirani 86]

Approximate Counting

- Exact evaluating Z is \#P-hard unless $\beta \gamma=1$ or $\beta=\gamma=0$ or $\lambda=0$.
- Approximate the partition function Z.
- Fully Polynomial-time Randomized Approximation Scheme (FPRAS) and FPTAS: polynomial time in n and $\frac{1}{\varepsilon}$ (multiplicative error ε).
- Approximating Z is equivalent to approximate marginal probabilities p_{V} due to self-reducibility [Jerrum, Valiant, Vazirani 86] .

Ferromagnetic and Anti-ferromagnetic

Edge Interaction

- If $\beta \gamma=1$, then the 2 -spin system is trivial.
- Ferromagnetic

Neighbours tend to have the same spin.

- Anti-ferromagnetic

Neighbours tend to have different spins.

Ferromagnetic and Anti-ferromagnetic

Edge Interaction

$$
\left[\begin{array}{ll}
\beta & 1 \\
1 & \gamma
\end{array}\right]
$$

- If $\beta \gamma=1$, then the 2 -spin system is trivial.
- Ferromagnetic

Neighbours tend to have the same spin.

- Anti-ferromagnetic

Neighbours tend to have different spins.

Ferromagnetic and Anti-ferromagnetic

Edge Interaction

$$
\left[\begin{array}{ll}
\beta & 1 \\
1 & \gamma
\end{array}\right]
$$

- If $\beta \gamma=1$, then the 2 -spin system is trivial.
- Ferromagnetic Ising: $\beta=\gamma>1$. $\beta \gamma>1$.

Neighbours tend to have the same spin.

- Anti-ferromagnetic Ising: $\beta=\gamma<1$.

Neighbours tend to have different spins.

Ferromagnetic and Anti-ferromagnetic

Edge Interaction

$$
\left[\begin{array}{ll}
\beta & 1 \\
1 & \gamma
\end{array}\right]
$$

- If $\beta \gamma=1$, then the 2 -spin system is trivial.
- Ferromagnetic Ising: $\beta \gamma>1$.

Neighbours tend to have the same spin.

- Anti-ferromagnetic Ising: $\beta \gamma<1$.

Neighbours tend to have different spins.

Outline

(1) Anti-ferromagnetic 2-Spin Systems
(2) Ferromagnetic 2-Spin Systems
(3) Complex weighted Ising models (approximation of $|Z|$)

Anti-ferromagnetic Systems

Anti-ferromagnetic Systems

For antiferro systems,

FPTAS for $Z \quad \Leftrightarrow \quad$ Correlation decays

Computational Transition

Approximate counting weighted independent sets (Hardcore model)
Edge: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$

Computational Transition

Approximate counting weighted independent sets (Hardcore model)
Edge: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$

For G with a bounded degree Δ :
$\xrightarrow[\text { FPTAS }]{\text { NP-hard }} \xrightarrow{\text { Activity } \lambda}$

Computational Transition

Approximate counting weighted independent sets (Hardcore model)
Edge: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$

For G with a bounded degree Δ :

> FPTAS NP-hard

$$
\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}
$$

Activity λ

Computational Transition

Approximate counting weighted independent sets (Hardcore model)
Edge: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
Vertex: $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$

For G with a bounded degree Δ :
$\xrightarrow{\text { FPTAS }} \stackrel{\text { NP-hard }}{ } \xrightarrow{\text { Activity } \lambda}$

- Algorithm: [Weitz 06]

Computational Transition

Approximate counting weighted independent sets (Hardcore model)
Edge: $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right] \quad$ Vertex: $\left[\begin{array}{c}\lambda \\ 1\end{array}\right]$

For G with a bounded degree Δ :
$\xrightarrow{\text { FPTAS }} \stackrel{\text { NP-hard }}{ } \xrightarrow{\text { Activity } \lambda}$

- Algorithm: [Weitz 06]
- Hardness: [Sly 10] [Galanis, Štefankovič, Vigoda 12] [Sly Sun 14]

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

1

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Does $\left|p^{+}-p^{-}\right|$go to 0 or not?

Uniqueness Transition

- $\lambda_{c}(\Delta)$: uniqueness threshold of Gibbs measures in \mathbb{T}_{Δ}.
- Two extremal cases: all leaves are 0 or 1 .

Uniqueness Transition (cont.)

Uniqueness Transition (cont.)

Uniqueness Transition (cont.)

Weak and Strong Spatial Mixing

- WSM: Let σ_{Λ} and τ_{Λ} be two partial configurations on Λ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, \wedge)))
$$

Weak and Strong Spatial Mixing

- WSM: Let σ_{Λ} and τ_{Λ} be two partial configurations on Λ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, \wedge)))
$$

- SSM: Let S be the set where σ_{Λ} and τ_{Λ} differ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, S)))
$$

Weak and Strong Spatial Mixing

- WSM: Let σ_{Λ} and τ_{Λ} be two partial configurations on Λ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, \wedge)))
$$

- SSM: Let S be the set where σ_{Λ} and τ_{Λ} differ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, S)))
$$

- $\mathrm{SSM} \Rightarrow \mathrm{WSM} \Leftrightarrow$ Uniqueness

Weak and Strong Spatial Mixing

- WSM: Let σ_{Λ} and τ_{Λ} be two partial configurations on Λ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, \wedge)))
$$

- SSM: Let S be the set where σ_{Λ} and τ_{Λ} differ,

$$
\left|p_{v}^{\sigma} \wedge-p_{v}^{\tau} \wedge\right| \leqslant \exp (-\Omega(\operatorname{dist}(v, S)))
$$

- $\mathrm{SSM} \Rightarrow \mathrm{WSM} \Leftrightarrow$ Uniqueness
- SSM in $\mathbb{T}_{\Delta} \Rightarrow$ FPTAS in graphs of degree $\leqslant \Delta$ [Weitz 06]

Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

$$
R_{v}=\frac{\operatorname{Pr}(v=0)}{\operatorname{Pr}(v=1)}
$$

Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

$$
R_{v}=\frac{\operatorname{Pr}(v=0)}{\operatorname{Pr}(v=1)}=\frac{\operatorname{Pr}\left(v_{1}=0, \ldots, v_{d}=0\right)}{\operatorname{Pr}\left(v_{1}=1, \ldots, v_{d}=1\right)}
$$

Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

$$
\begin{aligned}
R_{v} & =\frac{\operatorname{Pr}(v=0)}{\operatorname{Pr}(v=1)}=\frac{\operatorname{Pr}\left(v_{1}=0, \ldots, v_{d}=0\right)}{\operatorname{Pr}\left(v_{1}=1, \ldots, v_{d}=1\right)} \\
& =\frac{\operatorname{Pr}(0000)}{\operatorname{Pr}(0001)} \cdot \frac{\operatorname{Pr}(0001)}{\operatorname{Pr}(0011)} \cdot \frac{\operatorname{Pr}(0011)}{\operatorname{Pr}(0111)} \cdot \frac{\operatorname{Pr}(0111)}{\operatorname{Pr}(1111)}
\end{aligned}
$$

Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

$$
\begin{aligned}
R_{v} & =\frac{\operatorname{Pr}(v=0)}{\operatorname{Pr}(v=1)}=\frac{\operatorname{Pr}\left(v_{1}=0, \ldots, v_{d}=0\right)}{\operatorname{Pr}\left(v_{1}=1, \ldots, v_{d}=1\right)} \\
& =\frac{\operatorname{Pr}(0000)}{\operatorname{Pr}(0001)} \cdot \frac{\operatorname{Pr}(0001)}{\operatorname{Pr}(0011)} \cdot \frac{\operatorname{Pr}(0011)}{\operatorname{Pr}(0111)} \cdot \frac{\operatorname{Pr}(0111)}{\operatorname{Pr}(1111)}
\end{aligned}
$$

Each term $\frac{\operatorname{Pr}(0011)}{\operatorname{Pr}(0111)}$ can be viewed as the marginal ratio of v_{i} conditioned on a certain configuration of other v_{j} 's.

Self-Avoiding Walk (SAW) Tree

- SAW tree is essentially the tree of self-avoiding walks originating at v except that the vertices closing a cycle are also included in the tree.
- Cycle-closing vertices are fixed according to the rule in the last slide.
- Do the tree recursion to calculate p_{v}.

Weitz's Algorithm

- However, SAW tree is of exponential size in general.
- Truncate the recursion within logarithmic depth.
- SSM bounds the error.

Non-uniqueness leads to constant error.

Classification of Antiferro 2-Spin Systems

The implication

$$
\text { Uniqueness } \Rightarrow \text { SSM. }
$$

is established for all anti-ferromagnetic 2-spin systems ($\beta \gamma<1$).
[Sinclair, Srivastava, Thurley 12] , [Li, Lu, Yin 12,13]

Hence, for any anti-ferromagnetic 2-spin system,

Uniqueness \Leftrightarrow SSM \Leftrightarrow FPTAS.
(For general graphs, we require uniqueness to hold for all integer degrees.)

Classification of Antiferro 2-Spin Systems

The implication

$$
\text { Uniqueness } \Rightarrow \text { SSM. }
$$

is established for all anti-ferromagnetic 2-spin systems ($\beta \gamma<1$).
[Sinclair, Srivastava, Thurley 12] , [Li, Lu, Yin 12,13]

Hence, for any anti-ferromagnetic 2-spin system,

$$
\text { Uniqueness } \Leftrightarrow \mathrm{SSM} \Leftrightarrow \text { FPTAS. }
$$

(For general graphs, we require uniqueness to hold for all integer degrees.)

Ferromagnetic 2-Spin Systems

Ferromagnetic Ising

Ferro $(\beta>1)$ Ising without field:

$$
\text { Edge: }\left[\begin{array}{ll}
\beta & 1 \\
1 & \beta
\end{array}\right] \quad \text { Vertex: }\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

FPRAS [Jerrum, Sinclair 93]

(General graphs)

Ferromagnetic Ising

Ferro ($\beta>1$) Ising without field:

$$
\text { Edge: }\left[\begin{array}{ll}
\beta & 1 \\
1 & \beta
\end{array}\right]
$$

Vertex: $\left[\begin{array}{l}1 \\ 1\end{array}\right]$

For fixed Δ :

$$
\text { Uniqueness in } \mathbb{T}_{\Delta} \quad \text { Non-uniqueness }
$$

1

$$
\beta_{c}(\Delta)=\frac{\Delta}{\Delta-2}
$$

β

FPRAS [Jerrum, Sinclair 93]

(General graphs)

Ferromagnetic Ising

Ferro $(\beta>1)$ Ising without field:

$$
\text { Edge: }\left[\begin{array}{ll}
\beta & 1 \\
1 & \beta
\end{array}\right]
$$

Vertex: $\left[\begin{array}{l}1 \\ 1\end{array}\right]$

For fixed Δ :

FPRAS [Jerrum, Sinclair 93]
(General graphs)
β

Jerrum-Sinclair chain

Markov chain in the "subgraphs" world:

fast mixing for any $\beta=\gamma>1$ and $\lambda_{v} \geqslant 1$ (or $\leqslant 1$) for all $v \in V$. (even if uniqueness or SSM fails) [Jerrum, Sinclair 93]

- Extended to $\lambda_{v} \leqslant \frac{\gamma}{\beta}$ (if $\beta \leqslant \gamma$)
[Goldberg, Jerrum, Paterson 03], [Liu, Lu, Zhang 14]

Jerrum-Sinclair chain

Markov chain in the "subgraphs" world:
fast mixing for any $\beta=\gamma>1$ and $\lambda_{v} \geqslant 1$ (or $\leqslant 1$) for all $v \in V$. (even if uniqueness or SSM fails) [Jerrum, Sinclair 93]

- Extended to $\lambda_{v} \leqslant \frac{\gamma}{\beta}$ (if $\beta \leqslant \gamma$)
[Goldberg, Jerrum, Paterson 03], [Liu, Lu, Zhang 14] .

Ferro 2-Spin

Ferro 2-spin systems: Edge: $\left[\begin{array}{ll}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{c}\lambda_{\nu} \\ 1\end{array}\right]$

Ferro 2-Spin

Ferro 2-spin systems: Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{c}\lambda_{\nu} \\ 1\end{array}\right]$
For general graph G, assuming $\beta \leqslant \gamma$:

FPRAS [LLZ14]
$\frac{\gamma}{\beta}$

Ferro 2-Spin

Ferro 2-spin systems: Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{c}\lambda_{\nu} \\ 1\end{array}\right]$
For general graph G, assuming $\beta \leqslant \gamma$:

FPRAS [LLZ14] \#BIS-hard [LLZ14]

$$
\lambda_{c}^{\text {int }}=\left(\frac{\gamma}{\beta}\right)^{\left(\left\lfloor\Delta_{c}\right\rfloor+1\right) / 2}, \text { where } \Delta_{c}=\frac{2 \sqrt{\beta \gamma}}{\sqrt{\beta \gamma}-1} .
$$

Ferro 2-Spin

Ferro 2-spin systems: Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{c}\lambda_{\nu} \\ 1\end{array}\right]$
For general graph G, assuming $\beta \leqslant \gamma$:

$$
\lambda_{c}^{\text {int }}=\left(\frac{\gamma}{\beta}\right)^{\left(\left\lfloor\Delta_{c}\right\rfloor+1\right) / 2}, \text { where } \Delta_{c}=\frac{2 \sqrt{\beta \gamma}}{\sqrt{\beta \gamma}-1} \cdot \quad \lambda_{c}=\left(\frac{\gamma}{\beta}\right)^{\Delta_{c} / 2}
$$

Ferro 2-Spin

Ferro 2-spin systems: Edge: $\left[\begin{array}{cc}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad$ Vertex: $\left[\begin{array}{c}\lambda_{\nu} \\ 1\end{array}\right]$
For general graph G, assuming $\beta \leqslant \gamma$:

FPRAS [LLZ14] \#BIS-hard [LLZ14]

| $\frac{\gamma}{\beta}$ | CSM
 $[\mathrm{G} .\mathrm{Lu} \mathrm{15]}$ | $\lambda_{c} \lambda_{c}^{\text {int }}$ |
| :--- | :--- | :--- |λ

FPTAS

$$
\begin{aligned}
& \text { (assume } \beta \leqslant 1 \leqslant \gamma \text {) } \\
& \lambda_{c}^{\text {int }}=\left(\frac{\gamma}{\beta}\right)^{\left(\left\lfloor\Delta_{c}\right\rfloor+1\right) / 2}, \text { where } \Delta_{c}=\frac{2 \sqrt{\beta \gamma}}{\sqrt{\beta \gamma}-1} . \quad \lambda_{c}=\left(\frac{\gamma}{\beta}\right)^{\Delta_{c} / 2}
\end{aligned}
$$

Conditional Spatial Mixing

If $\lambda_{v}<\lambda_{c}$ for all v, conditional spatial mixing holds in arbitrary trees:
Instead of worst case configurations in SSM, we only allow partial configurations that are dominated by the product measure of isolated vertices ($p_{v} \leqslant \frac{\lambda}{1+\lambda}$).
(All vertices are leaning towards the good spin.)

Conditional Spatial Mixing

If $\lambda_{v}<\lambda_{c}$ for all v, conditional spatial mixing holds in arbitrary trees:
Instead of worst case configurations in SSM, we only allow partial configurations that are dominated by the product measure of isolated vertices ($p_{v} \leqslant \frac{\lambda}{1+\lambda}$).
(All vertices are leaning towards the good spin.)

SSM:

V.S.

Conditional Spatial Mixing

If $\lambda_{v}<\lambda_{c}$ for all v, conditional spatial mixing holds in arbitrary trees:
Instead of worst case configurations in SSM, we only allow partial configurations that are dominated by the product measure of isolated vertices ($p_{v} \leqslant \frac{\lambda}{1+\lambda}$).
(All vertices are leaning towards the good spin.)

Conditional spatial mixing:

V.S.

Pruning

If $\beta \leqslant 1<\gamma$, in the SAW tree, we may first remove "bad" pinnings, the effective field is smaller (better).

Pruning

If $\beta \leqslant 1<\gamma$, in the SAW tree, we may first remove "bad" pinnings, the effective field is smaller (better).

CSM \Rightarrow SSM

What about $\beta>1$?

If $\beta>1$, then pruning fails.
In fact, there is no λ such that SSM holds for general trees.

What about $\beta>1$?

If $\beta>1$, then pruning fails.
In fact, there is no λ such that SSM holds for general trees.

However, if $\lambda_{v} \leqslant \lambda_{c}$, then $p_{v} \leqslant \frac{\lambda}{1+\lambda}$ for any graph G.
FPTAS without SSM?

The Exact Threshold?

Our result is tight up to an integrality gap. However, neither λ_{c} nor $\lambda_{c}^{i n t}$ is the right bound.

- There exists a small interval beyond λ_{c} where FPTAS still exists. - Since degrees have to be integers.

The Exact Threshold?

Our result is tight up to an integrality gap.
However, neither λ_{c} nor $\lambda_{c}^{i n t}$ is the right bound.

- There exists a small interval beyond λ_{c} where FPTAS still exists.
- Since degrees have to be integers.
- There is a $\lambda<\lambda_{c}^{i n t}$ such that SSM fails (in an irregular tree).

$$
\text { Uniqueness }\left(\text { in }^{\prime} \mathbb{T}_{\Delta}\right) \nRightarrow \mathrm{SSM}
$$

$$
\text { (even if } \beta \leqslant 1<\gamma \text {) }
$$

The Exact Threshold?

Our result is tight up to an integrality gap.
However, neither λ_{c} nor $\lambda_{c}^{i n t}$ is the right bound.

- There exists a small interval beyond λ_{c} where FPTAS still exists.
- Since degrees have to be integers.
- There is a $\lambda<\lambda_{c}^{i n t}$ such that SSM fails (in an irregular tree).

Uniqueness (in \mathbb{T}_{Δ}) $\nRightarrow \mathrm{SSM}$

$$
\text { (even if } \beta \leqslant 1<\gamma \text {) }
$$

Complex Ising Model

Complex Ising Model

$$
\begin{aligned}
& \text { Complex-weighted Ising model: }\left[\begin{array}{ll}
\beta & 1 \\
1 & \beta
\end{array}\right] \text { (no field) with } \beta \in \mathbb{C} \\
& \qquad Z_{G}(\beta)=\sum_{\sigma: V \rightarrow\{0,1\}} \beta^{\text {mono(} \sigma \text {) }}
\end{aligned}
$$

Exact evaluation of $Z_{G}(\beta)$:
 - \#P-hard unless $\beta=0, \pm 1, \pm i$. [Jaeger, Vertigan, Welsh 90]

Lemma (Fuiji, Morimae 13)
Given an IQP circuit C and an output x, there is a graph G such that the marginal probability of x equals to $\left|Z_{G}\left(e^{\pi i} / 4\right)\right|$ up to an easy to compute factor.

Complex Ising Model

Complex-weighted Ising model: $\left[\begin{array}{ll}\beta & 1 \\ 1 & \beta\end{array}\right]$ (no field) with $\beta \in \mathbb{C}$

$$
Z_{G}(\beta)=\sum_{\sigma: V \rightarrow\{0,1\}} \beta^{\text {mono }(\sigma)}
$$

Exact evaluation of $Z_{G}(\beta)$:

- \#P-hard unless $\beta=0, \pm 1, \pm$ i. [Jaeger, Vertigan, Welsh 90]

Lemma (Fuiji, Morimae 13)

Given an IQP circuit C and an output \mathbf{x}, there is a graph G such that the marginal probability of x equals to $\left|Z_{G}\left(e^{\pi i} / 4\right)\right|$ up to an easy to compute

Complex Ising Model

Complex-weighted Ising model: $\left[\begin{array}{ll}\beta & 1 \\ 1 & \beta\end{array}\right]$ (no field) with $\beta \in \mathbb{C}$

$$
Z_{G}(\beta)=\sum_{\sigma: V \rightarrow\{0,1\}} \beta^{\text {mono }(\sigma)}
$$

Exact evaluation of $Z_{G}(\beta)$:

- \#P-hard unless $\beta=0, \pm 1, \pm i$. [Jaeger, Vertigan, Welsh 90]

Lemma (Fuiji, Morimae 13)

Given an IQP circuit C and an output \mathbf{x}, there is a graph G such that the marginal probability of \mathbf{x} equals to $\left|Z_{G}\left(e^{\pi \mathrm{i} / 4}\right)\right|$ up to an easy to compute factor.

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]
- $\beta \in(-\infty,-1)$, \#PM. [GJ08]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]
- $\beta \in(-\infty,-1)$, \#PM. [GJ08]
- $\beta \notin \mathbb{R} \cup\{i,-i\}$, NP-hard.
[Goldberg, G. 14]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]
- $\beta \in(-\infty,-1)$, \#PM. [GJ08]
- $\beta \notin \mathbb{R} \cup\{i,-i\}$, NP-hard. [GG14]
- $\beta \in(-1,0)$, \#P-hard. [GG14]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]
- $\beta \in(-\infty,-1)$, \#PM. [GJ08]
- $\beta \notin \mathbb{R} \cup\{i,-i\}$, NP-hard. [GG14]
- $\beta \in(-1,0)$, \#P-hard. [GG14]
- $|\beta|=1, \beta \notin\{ \pm 1, \pm i\}$, \#P-hard. [GG14]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]
- $\beta \in(-\infty,-1)$, \#PM. [GJ08]
- $\beta \notin \mathbb{R} \cup\{i,-i\}$, NP-hard. [GG14]
- $\beta \in(-1,0)$, \#P-hard. [GG14]
- $|\beta|=1, \beta \notin\{ \pm 1, \pm i\}$, \#P-hard. [GG14]
- $\operatorname{Re}(\beta)=0, \beta \notin\{0, \pm i\}$, \#P-hard. [GG14]

Approximating $\left|Z_{G}(\beta)\right|$

Approximation complexity of $\left|Z_{G}(\beta)\right|$ for $\beta \in \mathbb{C}$.

- $\beta \in\{0, \pm 1, \pm i\}$, tractable. [JVW90]
- $\beta \in(1, \infty)$, FPRAS. [JS93]
- $\beta \in(0,1)$, NP-hard. [JS93]
- $\beta \in(-1,0)$, NP-hard. [GJ08]
- $\beta \in(-\infty,-1)$, \#PM. [GJ08]
- $\beta \notin \mathbb{R} \cup\{\mathbf{i},-\mathbf{i}\}$, NP-hard. [GG14]
- $\beta \in(-1,0)$, \#P-hard. [GG14]
- $|\beta|=1, \beta \notin\{ \pm 1, \pm i\}$, \#P-hard. [GG14]
- $\operatorname{Re}(\beta)=0, \beta \notin\{0, \pm i\}$, \#P-hard. [GG14]

- If $\beta=r e^{i \theta}$ where $\theta=\frac{p \pi}{2 q}, p$ and q are two co-prime positive integers and p is odd, \#P-hard. [GG14]

\#P-hardness

If $Z_{G}(\beta)=0$, even the approximation requires the exact answer. We relax our problem so that if $Z_{G}(\beta)=0$, we accept any return. Our hardness results hold for these relaxed versions.

We reduce \#Minimum Cardinality (s, t)-Cut [Provan, Ball 83] to
anproximating $\left|Z_{G}(\beta)\right|$ for any $\beta \in(-1,0)$.

The key part of the \#P-hardness proof is a bisection argument.
This idea has been used to show hardness of determining signs of Tutte polynomials (at real points). [Goldberg, Jerrum 12]

\#P-hardness

If $Z_{G}(\beta)=0$, even the approximation requires the exact answer. We relax our problem so that if $Z_{G}(\beta)=0$, we accept any return. Our hardness results hold for these relaxed versions.

We reduce \#Minimum Cardinality (s, t)-Cut [Provan, Ball 83] to approximating $\left|Z_{G}(\beta)\right|$ for any $\beta \in(-1,0)$.

The key part of the \#P-hardness proof is a bisection argument.
This idea has been used to show hardness of determining signs of Tutte polynomials (at real points). [Goldberg, Jerrum 12]

\#P-hardness

If $Z_{G}(\beta)=0$, even the approximation requires the exact answer. We relax our problem so that if $Z_{G}(\beta)=0$, we accept any return.

Our hardness results hold for these relaxed versions.

We reduce \#Minimum Cardinality (s, t)-Cut [Provan, Ball 83] to approximating $\left|Z_{G}(\beta)\right|$ for any $\beta \in(-1,0)$.

The key part of the \#P-hardness proof is a bisection argument.
This idea has been used to show hardness of determining signs of Tutte polynomials (at real points). [Goldberg, Jerrum 12]

The Reduction

- Given a graph G, suppose $C=\# \operatorname{Min}-(s, t)$-Cut. We may assume (s, t) is not in G. Introduce a new edge $e=(s, t)$.
- We want to put a weight x on e and a fixed weight γ on every other edge.
- Using edge weight β, we build gadgets to implement γ.

We can also approximate any $x \in(-1,0)$ exponentially accurately.

- Call the graph G_{x}. Let $f(x)=Z_{G_{x}}(\gamma)$. Notice that $f(x)$ is a linear function in x. Let x_{0} be the root of $f(x)$.
- Our choice of γ guarantees that $f(0)>0, f(-1)<0$. Moreover if we can approximate x_{0} accurately enough, C can be computed exactly.

The Reduction

- Given a graph G, suppose $C=\# \operatorname{Min}-(s, t)$-Cut. We may assume (s, t) is not in G. Introduce a new edge $e=(s, t)$.
- We want to put a weight x on e and a fixed weight γ on every other edge.
- Using edge weight β, we build gadgets to implement γ. We can also approximate any $x \in(-1,0)$ exponentially accurately.
- Call the graph G_{x}. Let $f(x)=Z_{G_{x}}(\gamma)$.

Notice that $f(x)$ is a linear function in x.
Let x_{0} be the root of $f(x)$

- Our choice of γ guarantees that $f(0)>0, f(-1)<0$.

Moreover if we can approximate x_{0} accurately enough, C can be computed exactly.

The Reduction

- Given a graph G, suppose $C=\# \operatorname{Min}-(s, t)$-Cut. We may assume (s, t) is not in G. Introduce a new edge $e=(s, t)$.
- We want to put a weight x on e and a fixed weight γ on every other edge.
- Using edge weight β, we build gadgets to implement γ. We can also approximate any $x \in(-1,0)$ exponentially accurately.
- Call the graph G_{x}. Let $f(x)=Z_{G_{x}}(\gamma)$. Notice that $f(x)$ is a linear function in x. Let x_{0} be the root of $f(x)$.
- Our choice of γ guarantees that $f(0)>0, f(-1)<0$. Moreover if we can approximate x_{0} accurately enough, C can be computed exactly.

The Reduction

- Given a graph G, suppose $C=\# \operatorname{Min}-(s, t)$-Cut. We may assume (s, t) is not in G. Introduce a new edge $e=(s, t)$.
- We want to put a weight x on e and a fixed weight γ on every other edge.
- Using edge weight β, we build gadgets to implement γ. We can also approximate any $x \in(-1,0)$ exponentially accurately.
- Call the graph G_{x}. Let $f(x)=Z_{G_{x}}(\gamma)$. Notice that $f(x)$ is a linear function in x. Let x_{0} be the root of $f(x)$.
- Our choice of γ guarantees that $f(0)>0, f(-1)<0$.

Moreover if we can approximate x_{0} accurately enough, C can be computed exactly.

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$
- Otherwise the order may be wrong
but it happens at most once.
- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$
- Otherwise the order may be wrong
but it happens at most once.

- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and
- Otherwise the order may be wrong
but it happens at most once.

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$
- Otherwise the order may be wrong,
but it happens at most once.
- At least one of the cases is true,
so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$.
- Otherwise the order may be wrong but it happens at most once.
- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$.
- Otherwise the order may be wrong, but it happens at most once.
- At least one of the cases is true,
so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$.
- Otherwise the order may be wrong, but it happens at most once.
- If $g\left(e_{0}\right)>g\left(e_{1}\right)>g\left(e_{2}\right)$, then $e_{1}<x_{0}$.
- At least one of the cases is true,
so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$.
- Otherwise the order may be wrong, but it happens at most once.
- If $g\left(e_{0}\right)>g\left(e_{1}\right)>g\left(e_{2}\right)$, then $e_{1}<x_{0}$. If $g\left(e_{1}\right)<g\left(e_{2}\right)<g\left(e_{3}\right)$, then $e_{2}>x_{0}$.
- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$.
- Otherwise the order may be wrong, but it happens at most once.
- If $g\left(e_{0}\right)>g\left(e_{1}\right)>g\left(e_{2}\right)$, then $e_{1}<x_{0}$. If $g\left(e_{1}\right)<g\left(e_{2}\right)<g\left(e_{3}\right)$, then $e_{2}>x_{0}$.
- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$.

Bisection with an Oracle of Approximating Norms

The oracle returns $|f(x)|$ up to some constant K. Call the approximation $g(x)$. We recursively shrink the interval containing x_{0}.

- We begin with the interval $(-1,0)$.
- Divide the current interval into 3 subintervals.
- Evaluate $|f(x)|$ approximately at the 4 endpoints.
- If two points x_{1}, x_{2} are on the same side of x_{0}, then the accuracy K guarantees that the ordering of $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ is the same as that of $\left|f\left(x_{1}\right)\right|$ and $\left|f\left(x_{2}\right)\right|$.
- Otherwise the order may be wrong, but it happens at most once.
- If $g\left(e_{0}\right)>g\left(e_{1}\right)>g\left(e_{2}\right)$, then $e_{1}<x_{0}$. If $g\left(e_{1}\right)<g\left(e_{2}\right)<g\left(e_{3}\right)$, then $e_{2}>x_{0}$.
- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$.

Divide the interval into more subintervals so that we don't need an exact evaluation of $|f(x)|$ at x_{0}.

Complex Ising with Fields

Edge weight β, external field λ :

$$
Z_{G}(\beta ; \lambda)=\sum_{\sigma: V \rightarrow\{0,1\}} w(\sigma)
$$

where $w(\sigma)=\beta^{m(\sigma)} \lambda^{c_{1}(\sigma)}, m(\sigma)$ is the number of monochromatic edges under σ, and $c_{1}(\sigma)$ is the number of "blue" vertices.

Theorem

Let β and λ be two roots of unity. Then the following holds:

- If $\beta= \pm 1$, or $\beta= \pm i$ and $\lambda \in\{1,-1, i,-i\}, Z_{G}(\beta ; \lambda)$ can be computed exactly in polynomial time.
- Otherwise $\left|Z_{G}(\beta ; \lambda)\right|$ is \# \mathbf{P}-hard to approximate.

Approximate $\arg \left(Z_{G}\right)$

Hardness results of approximating $\arg \left(Z_{G}\right)$:

- Given an oracle computing the sign of Tutte polynomial at $\left(-e^{2 \pi i / 5},-e^{8 \pi i / 5}\right)$ over planar graphs, all problems in BQP can be solved classically in polynomial time.
[Bordewich, Freedman, Lovász, Welsh 05]
- To determine this sign is \#P-hard over general graphs.
[Goldberg, G. 14]

Open Questions

Antiferro 2-spin systems:

- Approximation complexity at the threshold.

Open Questions

Antiferro 2-spin systems:

- Approximation complexity at the threshold.

Ferro 2-spin systems:

- FPTAS for $1<\beta \leqslant \gamma, \lambda_{v}<\lambda_{c}$?
- Conditional spatial mixing for graphs instead of trees.
- Avoiding the gadget gap in the hardness proof.

Open Questions

Antiferro 2-spin systems:

- Approximation complexity at the threshold.

Ferro 2-spin systems:

- FPTAS for $1<\beta \leqslant \gamma, \lambda_{v}<\lambda_{c}$?
- Conditional spatial mixing for graphs instead of trees.
- Avoiding the gadget gap in the hardness proof.

Thank You!

