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Input: Partial knowledge (genes) on a 
process/disease of interest 

Goal: score genes for relation to the 
process/disease in the context of a network 

 
Common methods:  
 #interactions 
 Average distance 
 Hypergeometric p-value 

Guilt by association 
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Two desirable properties/terms: 
1. Smoothness over the network 
2. Accounts for Prior knowledge 

The propagation score function 
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Propagation in network biology 
 Nabieva et al.’07, Cao et al.’13 – function 

prediction 
 Kohler et al.’08, Vanunu et al.’10, 

Shrestha et al.’14 – gene-disease 
association 

 Vandin et al.’11; Leiserson et al.’15 – 
pathway-disease association 

 Hofree et al.’13 – disease stratification 
 



Outline 
 Finding driver genes (Rufallo, Koyuturk, 

S.; PLoS Comp. Biol. ‘15) 
 Finding disease modules (Mazza, 

Klockmeier, Wanker, S.; ISMB ’16) 
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Motivation 







The effect of propagation (BRCA) 



The effect of propagation (GBM) 



The computational workflow 

- frequency 
- mean 
- variance 
- correlation 
- min/max 



Performance evaluation 

BRCA 

GBM 



Mutations vs. expression 

Top performing feature: min(mutation propagation, expression propagation) 



Robustness to alpha 



Association with patient outcome 

BRCA 

GBM 



Summary (part I) 
 Propagation is a tool for “extending” 

limited prior information to scoring the 
entire network. 

 Integration helps: mutations and 
expression both inform the prediction 



Outline 
 Finding driver genes (Rufallo, Koyuturk, 

S.; PLoS Comp. Biol. ‘15) 
 Finding disease modules (Mazza, 

Klockmeier, Wanker, S.; ISMB ’16) 
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Associating diseases with complexes 

 Many studies link diseases to dysfunctions 
of protein assemblies working in concert. 
 Leigh syndrome – caused by disruption of 

mitochondrial complexes 
 Previous methods: 

 PRINCE (Vanunu et al.’10) 
 HotNet2 (Leiserson et al.’15) 



PPI network + disease causing 
proteins 

Network propagation and 
thresholding 

Input network for clustering Detection of  high scoring clusters 

The general workflow 

Statistical 
scoring 

Integer 
program 



Statistical scoring 

  Propagation scores depend on prior size 
  We normalize them by computing empirical p-values 

w.r.t. random priors of the same size 



Finding dense clusters 

 Clusters are scored via a likelihood ratio 
 Protein complex model: edges occur indep. with 

high probability p. 
 Random model: degree preserving. Probability of an 

edge depends on the degrees of its vertices 
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 Linearity of scoring (under log) allows recasting the 
problem as an integer program 



Data sets 

 Disease associated genes were retrieved from 
3 databases: OMIM, OrphaData and DISEASES 
(115 diseases, 8K associations) 

 PPI data were taken from HIPPIE (150K 
interactions) 



Performance evaluation:  
overlap with known complexes 

• % predicted clusters that significantly overlap 
one of 2276 GO/CORUM complexes 



Performance evaluation:  
external validation 

 Test enrichment of predictions per disease, using 
external validation sets from DISEASES: 
Our ILP algorithm significantly captured 34 diseases 

(FDR corrected hypergoem. p<0.05) 
PRINCE – 33 
HotNet2 – 2 (of 23 diseases with significant modules) 
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Performance evaluation: 
using information from similar diseases 

 Given disease D and prediction gi, compute the 
max phenotypic similarity between D and any 
disease associated with gi. 

 Define score(D) = average over 
all gi, the higher the better. 

 Comparing score distributions, our 
algorithm’s scores were 
significantly higher than HotNet2 
(Wilcoxon rank sum p < 3e-3)   



Case analysis – epilepsy syndrome 

 97 prior genes (diamonds). 
 Top cluster yields two predictions: 

KCNQ5 and calmodulin proteins, 
both supported by the literature. 

 Mice lacking functional KCNQ5 
channels displayed increased 
excitability of neurons. 

 Epilepsy-causing mutations led to 
alterations in calmodulin binding; 
calmodulin overexpression restored 
normal channel function. 



Summary (part II) 
 Propagation can be used to zoom in on 

disease regions in the network. 
 The resulting module inference problem 

can be solved to optimality via ILP 
 Global approaches that simultaneously 

consider all diseases can harness 
disease similarity measures to improve 
predictions (Silbeberg et al., submitted) 



 Matthew Rufallo & Mehmet Koyuturk (Case Western) 
 Konrad Klockmeier & Erich Wanker (MDC Berlin) 
 Cytoscape plugin – Propagate 
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