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i Guilt by association

Input: Partial knowledge (genes) on a
process/disease of interest

Goal: score genes for relation to the
process/disease In the context of a network

Common methods:

= #interactions

= Average distance

= Hypergeometric p-value )




Network propagation




i The propagation score function

F(v)=a > Fu)w(u, v) +(1-a)Y (V)

| (u,v)eE

Two desirable properties/terms:
1. Smoothness over the network
2. Accounts for Prior knowledge




i Propagation in network biology

s Nabieva et al.’07, Cao et al.’13 — function
prediction

s Kohler et al.’08, Vanunu et al.’10,
Shrestha et al.’14 — gene-disease
association

= Vandin et al.’11; Leiserson et al.’15 —
pathway-disease association

s Hofree et al.’13 — disease stratification
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i Outline

= Finding driver genes (Rufallo, Koyuturk,
S.; PLoS Comp. Biol. ‘15)

= Finding disease modules (Mazza,
Klockmeiler, Wanker, S.; ISMB '16)




i Outline

= FInding driver genes (Rufallo, Koyuturk,
S.; PLoS Comp. Biol. ‘15)

= Finding disease modules (Mazza,
Klockmeler, Wanker, S.; ISMB ‘16)
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Mutations Network propagation Propagated Mutations
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Differential Expression Network propagation Propagated Differential Expression
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iThe effect of propagation (BRCA)
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iThe effect of propagation (GBM)
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i The computational workflow
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Performance evaluation

BRCA

GBM
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i Mutations vs. expression
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Top performing feature: min(mutation propagation, expression propagation)




‘L Robustness to alpha
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t outcome

= Mutation

= Differential Expression
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i Summary (part I

= Propagation is a tool for “extending”
limited prior information to scoring the
entire network.

= Integration helps: mutations and
expression both inform the prediction




i Outline

= Finding driver genes (Rufallo, Koyuturk,
S.; PLoS Comp. Biol. ‘15)

= Finding disease modules (Mazza,
Klockmeier, Wanker, S.; ISMB '16)
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iAssociating diseases with complexes

= Many studies link diseases to dysfunctions
of protein assemblies working In concert.

= Leigh syndrome — caused by disruption of
mitochondrial complexes

= Previous methods:
= PRINCE (Vanunu et al.’10)
= HotNet2 (Leiserson et al.’15)



* The general workflow

PPl network + disease causing
proteins

Network propagation and
thresholding

Input network for clustering

Detection of high scoring clusters
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Statistical scoring

Prior size = 100 Prior size =25 Prior size = 10

1000

Propagation scores depend on prior size

We normalize them by computing empirical p-values
w.r.t. random priors of the same size



i Finding dense clusters

= Clusters are scored via a likelihood ratio

= Protein complex model: edges occur indep. with

nigh probabllity p.

= Random model: degree preserving. Probability of an
edge depends on the degrees of Its vertices

C=(V'EY)

(u,v)eE’ p(U,V) (u,v)gE" 1- p(U , V)

= Linearity of scoring (under log) allows recasting the
problem as an integer program




i Data sets

= Disease associated genes were retrieved from
3 databases: OMIM, OrphaData and DISEASES
(115 diseases, 8K associations)

= PPl data were taken from HIPPIE (150K
Interactions)



Performance evaluation:
i overlap with known complexes
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ILP algorithm PRINCE Hotnet2

% predicted clusters that significantly overlap
one of 2276 GO/CORUM complexes



Performance evaluation:
i external validation

= Test enrichment of predictions per disease, using
external validation sets from DISEASES:

m Our ILP algorithm significantly captured 34 diseases
(FDR corrected hypergoem. p<0.05)

HmPRINCE - 33
B HotNet2 — 2 (of 23 diseases with significant modules)




Performance evaluation:
iusing iInformation from similar diseases

= Given disease D and prediction g;, compute the
max phenotypic similarity between D and any

disease associated with g;. o —
. 9 =
Define score(D) = average over
all g;, the higher the better. g,
Comparing score distributions, our
93

algorithm’s scores were
significantly higher than HotNet2
(Wilcoxon rank sum p < 3e-3)



i Case analysis — epilepsy syndrome

97 prior genes (diamonds).

Top cluster yields two predictions:
KCNQ5 and calmodulin proteins,
both supported by the literature.

Mice lacking functional KCNQ5
channels displayed increased
excitability of neurons.

Epilepsy-causing mutations led to
alterations in calmodulin binding;
calmodulin overexpression restored
normal channel function.




i Summary (part 1)

= Propagation can be used to zoom in on
disease regions in the network.

= The resulting module inference problem
can be solved to optimality via ILP

= Global approaches that simultaneously
consider all diseases can harness
disease similarity measures to improve
predictions (Silbeberg et al., submitted)



= Matthew Rufallo & Mehmet Koyuturk (Case Western)
= Konrad Klockmeler & Erich Wanker (MDC Berlin)
= Cytoscape plugin — Propagate
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