

Dynamic enhancer-gene associations across diverse human cell types and tissues

Jianrong Wang

Anshul Kundaje

Assistant Professor Dept. of Genetics Dept. of Computer Science <u>http://anshul.kundaje.net</u> <u>akundaje@stanford.edu</u>

Epigenomes and transcriptomes of 127 human tissues/cell-types

- 6+ key histone marks (Histone ChIP-seq)
- Open chromatin (DNase-seq)
- DNA methylation
- Gene expression (RNA-seq)

http://roadmapepigenomics.org

Combinatorial chromatin states define regulatory elements

Identify hidden states using hidden Markov models

Joint learning of regulatory chromatin states

Joint training (virtual concatenation) across cell-types

Chromatin state dynamics across cell-types/tissues

Modular chromatin activity dynamics of 2 million enhancers

Which genes do these distal enhancers regulate in different cell types?

With Jianrong Wang, MIT

Chromatin contact mapping experiments

Crosslink DNA NCCELL NUCLEUS LIQUE NUCLEUS LIQUE Crosslink DNA Cut with restriction enzyme Cut with restriction enzyme Cut with restriction enzyme Cut with biotin Fill ends and mark with biotin Ligate Purify and shear DNA; Sequence using paired-ends Cut with biotin Crosslink DNA Crosslink DNA

Rao et al. 2015

- HiC: Course-grained interaction maps (~5-10Kb fragments with billions of reads)
- ChIA-PET: interactions involving specific proteins
- High cost and requires millions of cells
- Primarily highlight cell-type invariant, stable loops generally involving CTCF/cohesin
- Low signal-to-noise ratio for reliable detection of dynamic enhancer-promoter interactions
- Only available for a few cell types (mostly cell-lines)

Rao et al. 2015

Computational methods for linking distal elements to genes

Unsupervised learning

- Correlation of chromatin activity and/or expression at linked elements
- Marginal association testing
- Problem:
 - Significantly under-powered due to huge multiple testing burden
 - Expects global correlation between linked elements
 - Difficult to assign cell-type specificity of links

Ernst et al. 2011 Thurman et al 2012

Cell types

Computational methods for linking distal elements to genes

Supervised learning

- Training data: Use experimentally obtained links as training examples
- Features: chromatin activity, expression, sequence, TF binding sites
- Use a supervised classification/regression method
- Problems: Training data is usually very sparse (few 1000 positives) and features are often cell type specific

He et al. 2014 Whalen et al. 2015

What is the relationship between chromatin and expression co-dynamics at linked enhancerpromoter pairs across cell types

- Enhancer activity is sparse across cell types: non-linear effects on expression dynamics
- many-to-many map: multiple enhancers with multiple genes
- Links are not invariant across cell-types: cell-type specific links

Marstand et al. 2014

A novel prob. model for enhancers-gene linking using chromatin-expression dynamics

Enhancer activity (H3K4me1/H3K27me3)

Cell types

Joint learning of mixed-membership probabilistic model

Mixed membership gene modules (which genes active in which cell types) Mixed membership enhancer modules (which enhancers active in which cell types) Prob. non-linear linking of Gene module to enhancer module Cell-type specific enhancer to gene linking

With Jianrong Wang, Manolis Kellis MIT

Mixed membership model for enhancer/gene modules

Latent Dirichlet Allocation (LDA) like mixed-membership "topic" model allows each gene/enhancer to belong to multiple modules, to learn the module structures of genes/enhancers.

$$\vartheta_{t,k} = p(z = k|t)$$

 $\varphi_{k,n} = p(e_n|z=k)$

Fraction probability: the probability of observing the k_{th} module in the t_{th} cell type.

Profile probability: the probability of observing a signal unit from the n_{th} loci if the n_{th} loci belong to the k_{th} module.

$$p(e_n|t) = \sum_k p(e_n|z=k)p(z=k|t)$$

Non-linear linking of enhancer-gene modules

Associated enhancer/gene modules should show similar prob. for certain **critical tissues (not all tissues)**: the tissue which has the maximal prob. for each enhancer module.

Module fraction probability matrices

(Which cell types is a enhancer/gene module most active in?)

	t1	t ₂	t ₃	t ₄	t ₅
Enhancer module 1	$\vartheta_{1,1}$	$\vartheta_{2,1}$	$\vartheta_{3,1}$	$\vartheta_{4,1}$	$\vartheta_{5,1}$
Enhancer module 2	$\vartheta_{1,2}$	$\vartheta_{2,2}$	$\vartheta_{3,2}$	$artheta_{4,1}$	$\vartheta_{5,1}$
Enhancer module 3	$\vartheta_{1,3}$	$\vartheta_{2,3}$	$\vartheta_{3,3}$	$\vartheta_{4,1}$	$\vartheta_{5,1}$

	t ₁	t ₂	t ₃	t ₄	t ₅
Gene module 1	$\vartheta_{1,1}$	$\vartheta_{2,1}$	θ _{3,1}	$\vartheta_{4,1}$	$\vartheta_{5,1}$
Gene module 2	$\vartheta_{1,2}$	θ _{2,2}	ϑ _{3,2}	θ _{4,2}	$\vartheta_{5,2}$

$$A = (a_{ij})_{K_1 \times K_2}$$

 a_{ij} the posterior probability that the i_{th} enhancer module is associated with the j_{th} gene module

Non-linear linking of enhancer-gene modules

Associated enhancer/gene modules should show similar prob. for certain **critical tissues (not all tissues)**: the tissue which has the maximal prob. for each enhancer module.

 a_{ij} the posterior probability that the i_{th} enhancer module is associated with the j_{th} gene module

$$a_{ij} = P(E_i \sim G_j | \vartheta_{t,i}^1; \, \vartheta_{t,1}^2, \vartheta_{t,2}^2 \dots \vartheta_{t,j}^2 \dots \vartheta_{t,K_2}^2) = P(E_i \sim G_j | \vartheta_{t,i}^1; \, \overline{\vartheta_{t,i}^2})$$
$$= \frac{P(\vartheta_{t,i}^1; \, \overline{\vartheta_{t,i}^2} | E_i \sim G_j)}{\sum_{h=1}^{K_2} P(\vartheta_{t,i}^1; \, \overline{\vartheta_{t,i}^2} | E_i \sim G_h) + P(\vartheta_{t,i}^1; \, \overline{\vartheta_{t,i}^2} | E_i \sim \emptyset)}$$

We use a diffusion model to estimate the probabilities $P\left(\vartheta_{t,i}^{1}; \ \overline{\vartheta_{t,\cdot}^{2}} \middle| E_{i} \sim G_{j}\right) = (1 - |\vartheta_{t,i}^{1} - \vartheta_{t,j}^{2}|) \prod_{h=1}^{K_{2}} |\vartheta_{t,i}^{1} - \vartheta_{t,h}^{2}|$

Joint learning of modules and associations

Key parameters inferred for the model:

- 1. Module profile probabilities ($\varphi_{i,\cdot}$): indicate most informative enhancers/genes for each module;
- 2. Module fraction probabilities across celltypes $(\vartheta_{t,\cdot})$: how relevant a module is for each cell-type;
- 3. Association probabilities $(a_{i,j})$: relations between enhancer modules and gene modules

We use sparsity inducing regularization to deal with the small number of cell types to learn from.

Cell-type specific prob. enhancer-gene links

$$P(e_i \sim g_j | t) = \sum_{k=1}^{K_1} \varphi_{k,i}^1 \vartheta_{t,k}^1 (\sum_{h=1}^{K_2} a_{kh} \vartheta_{t,h}^2 \varphi_{h,j}^2)$$

Key parameters inferred for the model:

- 1. Module profile probabilities ($\varphi_{i,\cdot}$): indicate most informative enhancers/genes for each module;
- 2. Module fraction probabilities across cell-types ($\vartheta_{t,\cdot}$): how relevant a module is for each cell-type;
- 3. Association probabilities $(a_{i,j})$: relations between enhancer modules and gene modules;

Calling statistically significant links

- Focus on links that are within 1Mb of each other (or use TADs)
- Null distribution: Linking probabilities on shuffled data with distance-related prior distributions
- Generate P-values for enhancer-gene links on the real data
- The Benjamini-Hochberg method is used for multiple hypothesis correction.
- We use FDR 1% (stringent) and 5% (relaxed)

Learned enhancer-gene modules and their links

Cell types

61 enhancer modules and their tissue-specificity

Cell types

65 gene modules and their tissue-specificity

Cell types

300

Module linking probabilities

gene modules

At a false discovery rate (FDR) of 1%, we found 249k statistically significant enhancer-gene links across all cell types, linking 132,419 enhancers to 15,465 target genes

Predicted cell-type specific enhancer-gene are globally predictive of HiC, ChIA-PET data + eQTLs

Predicted cell-type specific enhancer-gene are globally predictive of HiC, ChIA-PET data + eQTLs

Comparison to other methods

Recall

False Positive Rate

Properties of long-rang enhancer-gene network

- The enhancer-gene network is highly connected
 - 88% of genes and 39% of enhancers are multiply linked
- Links are highly tissue-specific
 - 56% of links specific to one lineage
 - Only 26% found in three or more
- Half of predicted links < 50kb apart
- Only a third of enhancers are linked to a nearest gene

Enhancers often do NOT associate with their nearest promoters

Enhancers explain significant proportion of gene expression variance in each cell type

Random Forest Regression models to fit gene expression using promoter associated histone marks AND with linked enhancers vs. random distance matched enhancers Gene expression variance explained

0.35 0.40 0.45 0.50 0.55 0.60 56 cell/tissue-types CD4_Naive_Primary_Cells CD8_Naive_Primary_Cells enis_Foreskin_Keratinocyte_Primary_Cells_skin03 CD4_Memory_Primary_Cells Penis Foreskin Melanocyte Primary Cells skin03 Penis Foreskin Fibroblast Primary Cells skin01 nis Foreskin Keratinocyte Primary Cells skin02 HUES64 Cell Line Peripheral_Blood_Mononuclear_Primary_Cells Hela_S3_Cervical_Carcinoma Foreskin_Melanocyte_Primary_Cells_skin01 HMEC_Mammary_Epithelial K562_Eeukemia Mobilized_CD34_Primary_Cells_Female surosphere_Cultured_Cells_Cortex_Derived nis Foreskin Fibroblast Primary Cells skin02 A549_EtOH_002_pct_Lung_Carcinoma H1 Derived Neuronal Progenitor Cultured Cells H1 Cell Line HepG2 Hepatocellular Carcinoma Psoas Muscle Right Ventricle hESC_Derived_CD56_Ectoderm_Cultured_Cells NHEK_Epidermal_Keratinocytes H1_BMP4_Derived_Trophoblast_Cultured_Cells ESC 4star HUVEC_Umbillical_Vein_Endothelial_Cells Fetal Intestine Smal hESC_Derived_CD56_Mesoderm_Cultured_Cells GM12878_Lymphoblastoid Brain Germinal Matrix NHLF_Lung_Fibroblasts Fetal Brain Female Fetal Intestine Large HSMM_Skeletal_Muscle_Myoblasts H1_BMP4_Derived_Mesendoderm_Cultured_Cells Sigmoid Colon hESC Derived CD184 Endoderm Cultured Cells Ovary Esophagus H1 Derived Mesenchymal Stem Cells Adult Liver Right Atrium Small Intestine Pancreatic_Islets Brain Hippocampus Middle Aorta Random enhancer Linked enhancer proximal marks proximal marks

Enhancers explain significant proportion of gene expression variance in each cell type

Enhancers help explain cell-type specific gene expression

Linked enhancer-promoter pairs are enriched for cell-type specific TFs that are involved in protein-protein interactions

3263 motif pairs that are significantly enriched (*P*<0.05, Binomial test)

cell-type	promoter TF	enhancer TF	Z-score
CD4 T cell			5.90
Liver	GATA4	HNF4	2.75

Pathway enrichments based on target genes associated with enhancers overlapping non-coding GWAS variants

Case Study: Predict target genes of CRC variants using enhancer gene links

- 1. Take top CRC GWAS SNPs p-value < 10^-5
- 2. Expand list to all SNPs in LD with $r^2 > 0.8$
- 3. Find all enhancers active in CRC tissues that have an overlapping CRC SNP
- 4. Use enhancer-gene links to associate CRC SNPs to genes (76 genes)

ADNP	DEF6	NEU1	TBX2
ADRM1	DHX9	PGA3	TEAD3
ALDH2	DIP2B	PGA4	TMBIM1
ARPC2	DSP	PGA5	TMBIM6
ARPC5	F3	POU5F1	TMEM138
ATF1	FGR	PPARD	TMEM189
C11orf92	FKBP5	PSMA7	-UBE2V1
C11orf93	IER3	RAD21	WASF2
C20orf166	SIFI6	RCSD1	
CABLES2	KANK1	RNF114	
CCND2	LAMA5	RNF169	
CD247	LAMC1	SATB1	
CLPS	LAMC2	SFN	
CNN3	METTL7A	SH2B3	
CREG1	MPZL1	SMAD7	
CTNNB1	MYC	SRPK1	
DDB1	MYL2	TBC1D5	

Enrichment points to SMAD pathway, laminin complex

Pathways also point to SMAD, TGFβ, and integrin

Pathway Commons (20+ terms)							Global controls		
Table controls: Export \$ Shown top rows in this tab	le: 20	Set	Term annotation c	ount: Min: 1	Max: Inf Set	Visu	alize this table: 🦮	[select one]	¢
Term Name	Hyper Rank	Hyper Raw P-Value ▲	Hyper FDR Q-Val	Hyper Fold Enrichment	Hyper Foreground Region Hits	Hyper Total Regions	Hyper Region Set Coverage	Hyper Foreground Gene Hits	Total Genes Annotated
CREB phosphorylation	1	2.2665e-39	3.6423e-36	88.0602	24	283	14.81%	1	7
Alpha6 beta4 integrin-ligand interactions	2	1.0907e-38	8.7642e-36	71.7111	25	362	15.43%	3	11
TGF-beta receptor signaling	3	5.3801e-36	2.8819e-33	6.8673	63	9,526	38.89%	7	306
Regulation of nuclear SMAD2/3 signaling	3	5.3801e-36	2.8819e-33	6.8673	63	9,526	38.89%	7	306
Regulation of cytoplasmic and nuclear SMAD2/3 signaling	3	5.3801e-36	2.8819e-33	6.8673	63	9,526	38.89%	7	306
AP-1 transcription factor network	6	4.6025e-35	1.2327e-32	4.6483	80	17,871	49.38%	10	623
ALK1 signaling events	7	4.7661e-35	1.0942e-32	6.6105	63	9,896	38.89%	7	322
ALK1 pathway	8	6.9264e-35	1.3913e-32	6.5674	63	9,961	38.89%	7	325
Nuclear Events (kinase and transcription factor activation)	9	2.1999e-33	3.9281e-31	50.1429	24	497	14.81%	1	15
Integrin-linked kinase signaling	10	2.7267e-33	4.3818e-31	4.3860	80	18,940	49.38%	10	656
CDC42 signaling events	11	1.2242e-29	1.7884e-27	3.8250	81	21,989	50.00%	11	759
Regulation of CDC42 activity	12	4.7616e-29	6.3765e-27	3.7505	81	22,426	50.00%	11	772
MAPK targets/ Nuclear events mediated by MAP kinases	13	7.9386e-29	9.8134e-27	32.3650	24	770	14.81%	1	21
Type I hemidesmosome assembly	14	2.3894e-28	2.7427e-26	73.8766	18	253	11.11%	1	8
Signaling mediated by p38-alpha and p38-beta	15	8.0574e-27	8.6321e-25	20.0115	27	1,401	16.67%	2	50
MAP kinase activation in TLR cascade	16	1.7758e-26	1.7836e-24	25.7449	24	968	14.81%	1	30
BMP receptor signaling	17	8.2935e-25	7.8398e-23	6.5405	46	7,303	28.40%	7	227
Beta1 integrin cell surface interactions	18	1.3819e-24	1.2337e-22	2.6962	96	36,972	59.26%	18	1,352
Syndecan-1-mediated signaling events	19	3.0318e-24	2.5643e-22	2.7272	94	35,790	58.02%	17	1,300
Integrin family cell surface interactions	20	3.1753e-24	2.5513e-22	2.6675	96	37,370	59.26%	18	1,379

Case Study: Target genes of key HDL cholesterol GWAS SNP

- rs17119878 is significantly associated with HDL cholesterol (*P*=2.5×10⁻¹⁵)
 - Two nearest genes include BUD13 and ZNF259 are not predicted to be linked to the SNP.
- SNP to predicted to link to four distal genes APOC3, APOA1, APOA4 and APOA5 specifically in fetal intestine and liver which has primary roles in lipid metabolism.
- All of the linked genes are functionally associated with HDL levels

Case Study: Novel target gene of SNP associated with Ulcerative Colitis

- rs4380874: candidate causal SNP for Ulcerative Colitis (UC) (P=1.5×10⁻¹⁵, PICS probability=0.76)
- Located in fetal intestine specific active enhancers.
- The enhancers are significantly linked (p-value<7.2×10⁻¹⁰) to the gene SLC26A3 (35kb away) in fetal intestine tissues by our model
- SLC26A3 is an important membrane protein for intestinal cells and has been suggested to be associated with UC.
- Both SLC26A3 and the linked enhancers show highly specific active chromatin states in fetal intestines and duodenum mucosa

Summary

- Novel probabilistic model to learn multi-cell type enhancer-gene linking from chromatin and expression dynamics
- High resolution and cell-type specific predictions are validated by experimental data
- Enhancers are very important for explaining cell-type specific regulation
- Majority of genes are regulated by more than 1 enhancer and often different ones in different cell types
- Majority of enhancers do not loop to their nearest genes!
- Linked enhancers and promoters contain motifs of TFs that form PPIs
- Links are highly predictive of target genes and pathways affected by non-coding disease-associated variants

Acknowledgements

Jianrong Wang

Peyton Greenside

Manolis Kellis

