Systematic Functional Annotation of Large-Scale Biological Networks

Anastasia Baryshnikova

Lewis-Sigler Fellow Princeton University

www.baryshnikova-lab.org

Networks as maps of biological systems

Martin Krzywinski, Genome Sciences Center, Vancouver, BC www.hiveplot.net Good biological interpretation for:

- individual interactions
- local structures/modules

Much worse understanding of:

• global organization

Genetic interaction similarity network (year 2010)

Saccharomyces cerevisiae

2,838 nodes 10,016 eges

Genetic interaction profile correlation > 0.2

Costanzo*, Baryshnikova*, et al., Science, 2010

Genetic interactions

Double mutants with unexpected phenotypes.

Genome-scale analysis:

- Construct & analyze all 36 000 000 combinations of double mutants in yeast
- Synthetic Genetic Array (SGA) by Charlie Boone & team (University of Toronto)

Similarity of genetic interaction profiles

Negative genetic interaction (e.g., synthetic lethality)
Positive genetic interaction (e.g., epistasis)

Genetic interaction similarity network (year 2010)

Saccharomyces cerevisiae

2,838 nodes 10,016 eges

Genetic interaction profile correlation > 0.2

Costanzo*, Baryshnikova*, et al., Science, 2010

Genetic interaction similarity network (year 2010)

Genetic interaction profile correlation > 0.2

Costanzo*, Baryshnikova*, et al., Science, 2010

The Yeast Genetic Interaction Similarity Network (Year 2016)

Non-essential network

2010 network 2,838 nodes, <u>10,016</u> edges Average degree = <u>7.1</u>

2016 network 3,996 nodes, 28,688 edges Average degree = <u>14.4</u>

Essential network

Many large networks = Need for an automated method for functional annotation.

Spatial Analysis of Functional Enrichment (SAFE)

- 1. Take a node **A** in the network
- 2. Find all other nodes **B** that can be reached from **A** by traveling no more than **d**
- 3. Determine whether or not nodes **B** are statistically enriched for a functional group (e.g., a GO term)
- 4. Associate **A** with the –log10 of the enrichment *p*-value (normalized to [0,1] range).

Different GO terms show different patterns of enrichment

GO:0006888 ER to Golgi vesicle-mediated transport

12% Region-specific

4% Multi-regional

84% Sparse/small

Related processes = similar patterns of enrichment

The <u>automated</u> functional map of the yeast genetic interaction similarity network

Every color = a group of GO terms enriched in that region

The <u>Automated</u> Functional Map of the Yeast Genetic Interaction Similarity Network

Every color = a group of GO terms enriched in that region

Every label = the top 5 most frequent words in the names of the GO terms

SAFE is sensitive & robust to biological signal

- It identifies all manually annotated regions + 3 more.
- It is robust to numerous sources of variation (independent layout runs, distance metrics, neighborhood radius, annotation errors).
- It is fast & automated → use multiple independent functional standards to annotate the same network.
 - E.g., yeast: 1000s of phenotypic screens, including chemical genomics.

The chemical genomic advantage

Drugs can mimic the phenotypes of their mutated targets.

Test case:

132 chemical-genomics screens for drugs with known modes-of-action Hoepfner *et al.*, *Microb. Res.*, 2014

Spatial Analysis of Functional Enrichment (SAFE)

Score = 0.4 + 0.2 + 0.02 - 0.1 - 0.3 - 0.7 - 0.8 - 1 = -2.28

Is this higher or lower than you would expect by random chance?

quantitative

phenotype

- 1. Take a node **A** in the network
- 2. Find all other nodes **B** that can be reached from **A** by traveling no more than **d**
- 3. Determine whether or not nodes **B** are statistically enriched for a functional group (e.g., a GO term)
- 4. Associate **A** with the –log10 of the enrichment *p*-value (normalized to [0,1] range).

SAFE recapitulates the known modes-ofaction of chemical compounds

Gene Ontology Annotation

Doxorubicin DNA intercalator, blocks replication

SAFE recapitulates the known modes-ofaction of chemical compounds

Verrucarin A Inhibits protein synthesis and mitochondrial function

Doxorubicin DNA intercalator, blocks replication

SAFE uncovers potentially novel mechanisms of drug activity

Bortezomib a.k.a. Velcade and Ps-341

- The only FDA-approved proteasome inhibitor.
- Used for treating multiple myeloma and mantle cell lymphoma.
- Promotes programmed cell death.
- Synergistic with HDAC inhibitors.

Could it be a side effect of bortezomib?

Mutating drug targets can recapitulate their chemical-genetic interactions.

Proteasome mutants recapitulate the effect of bortezomib treatment

Spatial Analysis of Functional Enrichment (SAFE)

- An automated & systematic method for annotating biological networks.
- Answers 3 fundamental questions:
 - 1. Are any regions of the network specifically associated with a given function or phenotype?
 - 2. Where in the network are these regions localized?
 - 3. How does their localization compare to that of other functions or phenotypes?
- Builds a functional map of the network and enables the investigation of interprocess relationships.
- Allows to integrate multiple functional annotations of the same network and gain insight into the molecular mechanisms of drug response.

The essential and non-essential networks are both similar and different.

Composite Network: with respect to GO biological process, similar to the 2010 network.

17 Biological Processes

Huh et al., 2003 — Cellular localization: processes appear to organize into larger modules associated with cellular compartments.

9 Cellular Compartments

Protein complexes: processes appear to subdivide into smaller modules associated with sets of protein complexes and/or pathways.

135 Pathways/Protein Complexes (29 examples shown)

SAFE starts revealing the functional structure of protein-protein interactions

5,699 nodes 78,406 edges

21 functional domains (GO biological process)

Acknowledgements

Princeton University

Dmitriy Gorenshteyn

<u>Undergrads</u> Brianna Richardson Rachel Xu

> <u>Treeview team</u> Chris Keil Lance Parsons Robert Leach

YeastPhenome team Kara Dolinski Sven Heinicke Rose Oughtred Christie Chang Jennifer Rust Mark Schroeder Fan Kang

University of Toronto

Michael Costanzo Charlie Boone

Brenda Andrews

Boone lab Andrews lab

University of Minnesota

Chad Myers

Benjamin VanderSluis Elizabeth Koch Carles Pons

Myers lab

SAFE manuscript on Biorxiv (& in press in Cell Systems): http://biorxiv.org/content/early/2015/11/03/030551

SAFE code (Matlab) + Mac OS X app on Bitbucket: https://bitbucket.org/abarysh/safe

SAFE app for Cytoscape: Jason Montojo (in progress)

www.baryshnikova-lab.org

www.yeastphenome.org