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Differentially methylated  
enhancers in cancer Bell et al. Genome Res 16 

• Analyzed methylation patterns of 6200 tumors 
& normals from 25 cancer types  
– Enhancers show the most differential methylation 

patterns 

– Enhancer methylation patterns distinguish primary 
tumor types 

– Found enhancers whose methylation in metastatic 
melanoma correlated with patient mortality 
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http://www.tau.ac.il/


transcription and RNA regulators 

• Gene expression regulation by transcription factors 

binding to DNA 

 

 
 

• Post-transcriptional regulation by RNA binding 

proteins  

(Sutherland et al., Asian Journal of Andrology. 2015) 



Measuring TF binding 
 

      

 

 

 

 

 

• Both technologies require designing a set of 
double stranded sequences that together 
cover all possible k-mers. 
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Protein binding 

Microarrays (Berger et al. 06) 

 

Synthetic  

enhancers (Smith et al. 12) 



Measuring protein-RNA binding 

• RNAcompete covers each 9-mer at least 16 times in 

unstructured RNA probes. 

 

 

 

 

 

 (Ray et al., Nature Biotechnology 2009) 

Require coverage of all RNA k-mers. 



de Bruijn sequences 

• Def: de Bruijn (dB) seq. of order k over Σ: EaĐh 
k-mer appears exactly once. 

– Most compact. length = |Σ|k. 

de Bruijn graphs of order k-1 

(Compeau et al. Nature Biotechnology 2011) 

Linear feedback shift registers 

http://comp.ist.utl.pt/pdis-srm/ 



Using de Bruijn seqs is too naïve   

• Redundancy in double-stranded DNA: by 

covering  a k-mer, its reverse complement is 

covered too. 

 

 

• Structured RNA probes: most random 

sequences are structured. 

 

(Chen and Greider , PNAS 2005) 



Challenge #1: cover all DNA k-mers     

in double-stranded probes 

• Def:  

S is a reverse complmentary dB (RCdB) sequence 

if  k-mer W it includes W or RC(W). 

 

• Goal: 

 Generate a minimum length RCdB sequence 
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(Orenstein and Shamir, Bioinformatics 2013) 



The RC Euler tour algorithm 

• Form two reverse-complementary cycles in a 

de Bruijn graph. 

 

• When traversing an edge – mark both the 

edge and its RC edge. 

 

 

• RuŶŶiŶg tiŵe: O(|∑|k) 
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ACG CGT GTT TTA 

CGT ACG AAC TAA 



The problem with even k 

• The alg works on graphs that satisfy: 

1. The graph is strongly connected. 

2. Each vertex is balanced. 

3.  a pairing of the edges in RC pairs. 

 

• Alg fails for even k due to palindromes! 
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ACG CGT 
ACGT 



The solution: adding cycles 

 pair of palindrome edges that are cyclic shifts of 

each other, add edges for all their cyclic shifts. 

 
                                 added edges. 

                                 RC matched pairs. 
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The augmented de Bruijn graph 
• The addition of cycles preserves 

connectivity and vertex balance. 

• Is the pairing preserved? 

– The added palindromes                                    

match the original                                         

palindromes in the graph. 

– The non-palindromic                                      

edges match each other. 

• Alg: Augment the graph, form RC Euler tour 

• Linear time,  suboptimal seq length  

• Developed netflow alg for opt seq length 12 



Computational results 

14 12 10 8 6 4 2 K 

268,435,456 16,777,216 16,777,216 65,536 4,096 256 16 Original 

134,225,920 8,390,656 524,800 32,896 2,080 136 10 Lower 

bound 

134,275,060 8,400,808 526,840 33,262 2,140 142 10 Linear 

algorithm 

134,274,844 8,400,772 526,816 33,262 2,140 142 10 Optimal 

algorithm 

1.999 1.997 1.99 1.97 1.91 1.8 1.6 Saving 

factor 
13 

Lengths (for even k) 

Lemma: length of RCdb 

seq of order k:  



Challenge #2: cover all k-mers in 

unstructured RNA probes 

• Input: 

– k – k-mers to cover. 

– l  – length of probe. 

– p – multiplicity of k-mers. 

 

• p-multi k-mer coverage: each k-mer appears p times. 

 

• Goal: minimum p-multi k-mer coverage by a 

restricted set of l-long sequences. 

(Orenstein and Berger, JCB 2015) 



K-mer coverage is NP-hard 

• Easy when: all l-long sequences are allowed or l=k. 
 

• Reduction from minimum m-set cover: find smallest 

suďset S’ of ŵ-sets S that covers all elements in E. 

 

E e1 

e3 

e2 

e5 e4 

e7 

e6 

e8 

e9 e10 

S1 

S4 

S2 

S3 

S5 

Minimum 3-set cover example: 

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} 

S = {S1, S2, S3, S4, S5} 

 

Analogously: 

• Each k-mer is an element. 

• Each sequence is a set. 

 

ACGU…  CGU[ACGU] 



Reduction overview 

1. Map elements to k-long {A,U}-representations. 

    e10   f01(e10) = 0001010  fAU(e10) = AAUAUA 

 

2. Convert each set to an l-long sequence (l=3km). 

– Pad each element w by Gk-w-Ck. 

            {e1,…, em}        Gk fAU(e1) Ck … Gk fAU(em) Ck  

 

3. Find k-mer coverage over {A,C,G,U}. 

 

Reduction time: O( (|E|2+|S|)  m  log|E| ) 

k = |�|ଶ�݋݈  



Approximation algorithm 

(H
l-k+1-½)-approximation to k-mer coverage. 

 

 

Algorithm 1: 

1. Find all l-long unstructured RNA sequences. 

2. Apply the greedy set cover algorithm: 

Elements = all k-mers           Sets = unstructured sequences 

 

Running time: Ω(4l  l)     impractical. 

�� = 1 � ��=ଵ ൑ ln ݊ + 1 (Levin, SIAM J. Discrete Math 2008) 



Heuristic algorithm 

Key points: 

1. Random walks in de Bruijn graph to cover all edges. 

2. Backtracking in case no unstructured oligo is found. 



Heuristic algorithm 

Algorithm 2 (k, l, p) 

1. de Bruijn graph, order k-1, p copies of each edge. 

2. L = l, V = arbitrary vertex. 

3. While (edges exist): 

a. Find unstructured L-long path. Output it, L = l. 

b. If did not find after 100 attempts, L = L-1. 

c. If (L = k-1), output a random edge from V, L = l. 

d. If closed an unstructured cycle, output it,  

  L = l, set V to a visited vertex. 

 Run time: O(#probes  f(l)  l)    
 

#probes = Θ(4k / (l-k+1)),       f(l)=O(l2)  



Extension algorithm 

• Not all sequences are of length l (cycles, structured). 

• Extend them to unstructured l-long sequences. 

 

Algorithm 3 (S, k, l): 

1. Try at most 100 random extensions to unstructured. 

2. If succeeded, output complete sequence. 

3. If failed, divide to two overlapping halves: s1, s2. 

4. If |si|=k, output si. 

5. Continue recursively on si. 

 

Si 

random position 

random nucleotides 



Implementation details 

1. Limit number of random attempts (parameter). 

2. Extend by doubling probe length. 

3. Preform RNA secondary structure predictions based 

on previous predictions (not implemented). 

(Eddy, Nature Biotechnology 2014) 



Results comparison 

1. Theoretical lower bound 

– Derived from k-mer counts 

 

 

 

2. Naïve algorithm: 

– Generate random oligos. 

– Add those which are unstructured and cover 
uncovered k-mers. 

݊ ݇, ݈ ൒ 4� ∙ ݈݌ − ݇ + 1  



Results for different (k,l) 

Self-structured k-mers – form structure with themselves. 



Comparison to RNAcompete design 

Parameters: k=9, l=35, p=16. 

 

 

 

 

• Ours: all oligos 35-long. 

• RNAcompete: varying lengths 35-38. 

 

Design 
Lower 

bound 
#oligos Ratio #structured 

Ours 
155,346 

166,649 1.07 841 

RNAcompete 214,498 1.38 2,858 



Future extensions 

1. Generalize to any property of RNA/DNA probes. 

 

2. Remove specific k-mers 

 (by removing their edges). 

 

3. Assign different k-mer multiplicities 

 (by multiplying each edge different times). 

ACG 

CGU 

ACG 

CGU 

CGA 



Summary 

• Utilized de Bruijn graph to generate DNA/RNA 

libraries that cover all k-mers. 

 

• De Bruijn graphs more flexible than LFSRs. 

# de Bruijn sequences =                             

# primitive polynomials =  

 

• General and flexible scheme for library design 

covering k-mers in specific sequences. 
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