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Local chromatin architecture of 
regulatory elements
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Adapted from Shlyueva et al. (2014) Nature Reviews Genetics.
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Combinatorial chromatin states define 
broad classes of elements
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ATAC-seq: genome-wide chromatin 
accessibility from low input material

Paired-end sequencing

ATAC-seq peaks identify chromatin accessible regulatory elements



Buenrostro et al. (2013) Nature Methods.

ATAC-seq reveals chromatin architecture in 
genome-wide fragment length distributions



Chromatin architecture reflects 
chromatin state
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Position-aware 2D fragment length 
distributions (V-plots)

Peak summit +1000bp-1000bp

Aggregate plot for CTCF state 

Plot at single CTCF site – sparse and noisy 

50 bp

400 bp

Fr
ag

le
n

(Midpoint of fragment)

Accessible 
binding site

Positioned 
nucleosome

V-plots were first introduced by Henikoff et al. 2011, PNAS



Can we predict chromatin 
states/histone marks at ATAC-peaks?

Which of 8 
chromatin 

states?

Which 
histone mark 

is present?

2kb around ATAC-peak 

Image classification task!



Deep neural networks (DNNs) for 
image classification
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Lee et. al. (2009), ICML

Output label: 
Trump? Or Sanders?

…

…

…

…

Input: image pixel values



Deep neural networks (DNNs) for V-
plot classification
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Chromatin state/histone mark

Nucleosomes, 
Open chromatin

+1 / -1 nucleosome,
Segments of open 

chromatin

Nucleosome arrays,
Large regions of 
open chromatin

Output label: 
Chromatin state/histone mark

…

…

…

…

Input: V-plots



An artificial neuron

Sigmoid
ReLu

(Rectified 
Linear Unit)



Convolutional filters

Feature 
map

Input image

Conv. 
Filter



Convolutional filters

Feature 
map

Input image



Convolutional layer: multiple 
filters learn distinct features



Pooling layers: locally smooth 
signal



How does a deep conv. neural network 
transform the raw V-plot input at each layer
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After initial pooling (smoothing)

Pure CTCF

Promoter 
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Second set of convolutional maps

Pure CTCF
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Learning from multiple 1D functional 
data (e.g. DNase, MNase)
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Learning from raw DNA sequence

Higher layers learn 
motif combinations

Class Probabilities

Score sequence using filters Convolutional layers
learn motif (PWM) 
like filters



The Chromputer
Integrating multiple inputs (1D, 2D signals, sequence) 

to simulatenously predict multiple outputs 
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Chromatin architecture can predict 
chromatin state in held out chromosome 

(same cell type)
Model + Input data types 8-class chromatin 

state accuracy (%)

Majority class (baseline) 42%

Gene proximity 59%

Random Forest: ATAC-seq (150M reads) 61%

Chromputer: DNase (60M reads) 68.1%

Chromputer: Mnase (1.5B reads) 69.3%

Chromputer: ATAC-seq (150M reads) 75.9%

Chromputer: DNase + MNase 81.6%

Chromputer: ATAC-seq + sequence 83.5%

Chromputer: DNase + MNase + sequence 86.2%

Label accuracy across replicates (upper bound) 88% 



High cross cell-type chromatin state prediction

• Learn model on DNase and MNase only

• Learn on GM12878, predict on K562 (and vice versa)

• Requires local normalization to make signal comparable

8 class chromatin state accuracy

Train ↓ / Test → GM12878 K562

GM12878 0.816 0.818

K562 0.769 0.844



Predicting individual histone marks
from ATAC/DNase/MNase/Sequence

Area under Precision recall curve
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Chromputer trained on TF ChIP-seq predicts 
cross cell-type in-vivo TF binding with high 

accuracy 
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Chromputer
Area under Precision recall curve

c-MYC YY1 CTCF

Inputs: Seq + DNA 
shape + DNase profile
Positives: Reproducible 
ChIP-seq peaks
Negatives: All other 
DNase peaks + flanks + 
matched random sites

Test sets: Held out 
chromosomes in held 
out cell types



DeepLIFT: Scoring predictive power of 
features in Deep Neural Networks

• LIFT: Linear Importance Feature Tracker, or LIFTing the top off the 
black box.

• Provides a predictive ‘importance score’ for 
– any raw input feature (e.g. pixels in V-Plot images, each nucleotide in 

sequence)
– intermediate learned features (e.g. convolutional filters)

• Linear breakdown of contribution of each input to immediate 
outputs
– Recursively apply to get contribution of any input to any output
– Can be computed efficiently with a single backpropagation (unlike in-

silico mutagenesis)
– Less susceptible to buffering effects than in-silico mutagenesis

• Technical details:
– ReLU networks: equivalent to Taylor approximation of change in 

softmax/sigmoid logit if input eliminated.
– i.e. gradient (w.r.t logit) * input



What architecture properties of the ATAC-seq V-
plots predict different chromatin states?

what is the change in classification probability relative to an unbiased classifier if 
we ​*only*​ consider the contributions from each pixel

CTCF state: centered binding, 
symmetric phased nucleosomes

Promoter state: broad regions 
of accessible chromatin

Enhancer state: localized 
signal, heterogeneity



Architectural heterogeneity of accessible 
elements in different chromatin states
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Low dimensional t-SNE 
embedding (like PCA) 
of accessible sites 
(colored by chromatin 
state)

Distinct classes of enhancers



Top scoring MNase filters and activating 
input patterns for CTCF state
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Top scoring MNase filters Maximally activating input MNase profiles

Well phased arrays of nucleosomes



Top scoring MNase filters and activating 
input patterns for promoter state
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Top scoring MNase filters Maximally activating input MNase profiles

Asymmetric positioning with well positioned +1/-1 nucleosomes



G C A T T A C C G A T A A

What useful patterns can we extract from 
raw  DNA sequence models?

Gata1

G A T A A

Motif discovery!
What PWM like 

‘filters’ are 
predictive?

Which nucleotides in input sequence are contributing to binding!



Top sequence filters for CTCF state
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Canonical motif



High resolution point binding events and 
sequence grammars at CTCF peaks
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MNase-seq

DNase-seq

CTCF ChIP-seq

Nuc. level importance (height of letter) shows coordination of multiple point binding events



Context-specific reuse of regulatory sequence in 
chromatin accessibility changes during hematopoiesis

ATAC-seq

Ryan Corces-Zimmerman
Jason Buenrostro
Will Greenleaf
Howard Chang
Ravi Majeti



G C A T T A C C G A T A A

Deep learning sequence determinants of 
chromatin accessibility

HSC Erythroid

Output: Accessible (+1) vs. not accessible (0)

Input: Raw DNA sequence

Peyton Greenside

B-cells



Peyton Greenside

Position along sequence

Gata (Rc) Gata (Rc)Gata
SPI1

Context-specific re-use of regulatory 
sequence in HSC, B-cells and Erythroblasts



Peyton Greenside

Im
p

o
rt

an
ce

 in
 H

SC
’s

Position along sequence

SPI1

Context-specific re-use of regulatory 
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Position along sequence

Context-specific re-use of regulatory 
sequence in HSC, B-cells and Erythroblasts 

SPI1 ChIP-seq

GATA1 ChIP-seq

No peak

No peak

Not expressed

ATAC-seq
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Context-specific re-use of regulatory 
sequence in HSC, B-cells and Erythroblasts 

SPI1 ChIP-seq

GATA1 ChIP-seq

ATAC-seq



YY1 & GATA

GATA, SPI1, RUNX2

STAT1 & GATA

TEAD4 & GATA

AP1 in B-cells only

ETS & GATA

…and much, much more



Summary and ongoing work

• New predictive deep learning framework (Chromputer) for 
integrative genomics

• New interpretation engine for deep learning models. We can 
extract predictive features (motifs, grammars, footprints, 
architecture features) from the deep neural networks 

• Local chromatin architecture is predictive of chromatin state
and histone marks within and across cell types

• We can predict in-vivo binding profiles of TFs in new cell 
types from sequence + shape + DNase/ATAC-seq with high 
accuracy

• Context-specific reuse of sequence grammars in accessible 
sites 

• Extensions: From binary to continuous signal prediction
• Extensions: Functional variant (QTL, GWAS, rare variant) 

prediction from raw sequence models
41bioarXiv paper and code coming soon!
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Guess the element from the V-plot
AI vs. human

What is this regulatory element? 
Pure CTCF, Promoter, or Enhancer?



Its an enhancer!
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1st Fully Connected 
Layer

2nd Fully Connected 
Layer

Enhancer 
(correct)


