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Local chromatin architecture of
regulatory elements

histone marks

nucleosomes

sequence motifs

Adapted from Shlyueva et al. (2014) Nature Reviews Genetics.



Combinatorial chromatin states define
broad classes of elements
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ChromHMM: automating chromatin-state discovery
and characterization

Jason Ernst & Manolis Kellis



ATAC-seq: genome-wide chromatin
accessibility from low input material
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ATAC-seq reveals chromatin architecture in
genome-wide fragment length distributions

Nucleosome-free
fragments

8x10° )

E ( iragments orgs doted

O fragments

©

qy]

Q

i

0 w v v
0 200 400 600 800 1000
Fragment Length (bp)

Buenrostro et al. (2013) Nature Methods.



Chromatin architecture reflects
chromatin state
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Position-aware 2D fragment length

distributions (V-plots)
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V-plots were first introduced by Henikoff et al. 2011,

PNAS



Can we predict chromatin
states/histone marks at ATAC-peaks?
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Deep neural networks (DNNs) for
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Deep neural networks (DNNs) for V-
plot classification

Output label:

) i Chromatin state/histone mark
Chromatin state/histone mark

Nucleosome arrays,
Large regions of
open chromatin

L)

+1 / -1 nucleosome,
Segments of open

ch r?tin

Nucleosomes,
Open chromatin
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An artificial neuron

b: We can have an “always on”

h ( x) - f (WT X + b) «——— feature, which gives a class prior,
L or separate it out, as a bias term
1
f(2)=

l+e*

% : J
X2 -6 -'4 -2 ‘Af ? 4 6 R L
=—"h,4(x) . . RelLu
i Sigmoid .
X 8 (Rectified
+1 w, b are the parameters of this neuron Linear Unit)

i.e., this logistic regression model




Convolutional filters

Conv.
Filter




Convolutional filters




Convolutional layer: multiple
filters learn distinct features

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

Ranze



Pooling layers: locally smooth
signal

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.




How does a deep conv. neural network
transform the raw V-plot input at each layer
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After initial pooling (smoothing)
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Second set of convolutional maps
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Learning from multiple 1D functional

data (e.g. DNase, MNase)

Chromatin State
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Learning from raw DNA sequence
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THE CHROMPUTER

Integrating multiple inputs (1D, 2D signals, sequence)
to simulatenously predict multiple outputs
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Chromatin architecture can predict
chromatin state in held out chromosome
(same cell type)

Model + Input data types 8-class chromatin
state accuracy (%)

Majority class (baseline) 42%
Gene proximity 59%
Random Forest: ATAC-seq (150M reads) 61%
Chromputer: DNase (60M reads) 68.1%
Chromputer: Mnase (1.5B reads) 69.3%
Chromputer: ATAC-seq (150M reads) 75.9%
Chromputer: DNase + MNase 81.6%
Chromputer: ATAC-seq + sequence 83.5%
Chromputer: DNase + MNase + sequence 86.2%

Label accuracy across replicates (upper bound) 88%



High cross cell-type chromatin state prediction

* Learn model on DNase and MNase only
* Learn on GM12878, predict on K562 (and vice versa)
* Requires local normalization to make signal comparable

8 class chromatin state accuracy

Train {, / Test > | GM12878 K562

GM12878 0.816 0.818

K562 0.769 0.844



Predicting individual histone marks
from ATAC/DNase/MNase/Sequence

Area under Precision recall curve lm
dnase

sequence
dnase-mnase
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Chromputer trained on TF ChIP-seq predicts
cross cell-type in-vivo TF binding with high

dCCUracy B CecpBind

1 o B DecpSEA
Area under Precision recall curve W Chromputer

0.75 Inputs: Seq + DNA

shape + DNase profile
Positives: Reproducible
ChIP-seq peaks
Negatives: All other
DNase peaks + flanks +
matched random sites

0.5

0.25

Test sets: Held out
chromosomes in held
out cell types

c-MYC YY1 CTCF
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DeepLIFT: Scoring predictive power of
features in Deep Neural Networks

e LIFT: Linear Importance Feature Tracker, or LIFTing the top off the
black box.
* Provides a predictive ‘importance score’ for

— any raw input feature (e.g. pixels in V-Plot images, each nucleotide in
seguence)

— intermediate learned features (e.g. convolutional filters)
* Linear breakdown of contribution of each input to immediate
outputs
— Recursively apply to get contribution of any input to any output

— Can be computed efficiently with a single backpropagation (unlike in-
silico mutagenesis)

— Less susceptible to buffering effects than in-silico mutagenesis

e Technical details:

— RelLU networks: equivalent to Taylor approximation of change in
softmax/sigmoid logit if input eliminated.

— i.e. gradient (w.r.t logit) * input




What architecture properties of the ATAC-seq V-
plots predict different chromatin states?

CTCF state: centered binding,
symmetric phased nucleosomes

Enhancer state: localized
signal, heterogeneity

Promoter state: broad regions
of accessible chromatin

what is the change in classification probability relative to an unbiased classifier if
we *only* consider the contributions from each pixel



Architectural heterogeneity of accessible
elements in different chromatin states

1 Tss

2 Tx
Low dimensional t-SNE

B embedding (like PCA)
4_cTCcF | of accessible sites

5 Het (colored by chromatin
state)

6_Biv

7_ReprPC

8 Quies

Distinct classes of enhancers
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Top scoring MNase filters and activatin
atterns for CTCF state
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Top scoring MNase filters and activating
input patterns for promoter state
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What useful patterns can we extract from
raw DNA sequence models?

Motif discovery!

Gatal What PWM like
‘filters’ are
predictive?

GATAA

GCATTACCGATATA

Which nucleotides in input sequence are contributing to binding!




Top sequence filters for CTCF state
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High resolution point binding events and
sequence grammars at CTCF peaks
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il il |

Nuc. level importance (height of letter) shows coordination ot multiple point binding events
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Context-specific reuse of regulatory sequence in
chromatin accessibility changes during hematopoiesis

Ryan Corces-Zimmerman
Jason Buenrostro
Will Greenleaf
Howard Chang
Ravi Majeti

Differentiation



Deep learning sequence determinants of

chromatin accessibility

Output: Accessible (+1) vs. not accessible (0)

Input: Raw DNA sequence



Context-specific re-use of regulatory
sequence in HSC, B-cells and Erythroblasts
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HSC’s

Importance in

Context-specific re-use of regulatory
sequence in HSC, B-cells and Erythroblasts
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Context-specific re-use of regulatory
sequence in HSC, B-cells and Erythroblasts

ATAC-seq No peak
SPI1 ChIP-seq No peak
GATA1 ChiP-seq Not expressed

Importance in B-cells
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Context-specific re-use of regulatory
sequence in HSC, B-cells and Erythroblasts

ATAC-seq

Importance in Erythroid
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...and much, much more

YY1 & GATA

GATA, SPI1, RUNX2
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Summary and ongoing work

New predictive deep learning framework (Chromputer) for
integrative genomics

New interpretation engine for deep learning models. We can
extract predictive features (motifs, grammars, footprints,
architecture features) from the deep neural networks

Local chromatin architecture is predictive of chromatin state
and histone marks within and across cell types

We can predict in-vivo binding profiles of TFs in new cell
types from sequence + shape + DNase/ATAC-seq with high
accuracy

Context-specific reuse of sequence grammars in accessible
sites

Extensions: From binary to continuous signal prediction

Extensions: Functional variant (QTL, GWAS, rare variant)
prediction from raw sequence models
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Guess the element from the V-plot
Al vs. human

What is this regulatory element?
Pure CTCF, Promoter, or Enhancer?



1st Fully Connected
Layer

:r; 2nd Fully Connected :r;
Layer

Its an enhancer!

Enhancer
(correct)
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