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Challenge of  Large-Scale Genomics

NIH Sequencing Read Archive (SRA) contains 
> 3 petabases of short read sequencing of: 

• genomes 
• DNA sequences from environmental samples 
• expressed genes from thousands of conditions 
• …
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Goal: develop computational 
techniques that enable fast 
discovery using this scale of data



Problem: Fast gene expression estimation from RNA-seq

Goal: estimate the abundance of each kind of transcript given short 
reads sampled from the expressed transcripts.

Challenges: 
• hundreds of millions of short reads per experiment 
• finding locations of reads (mapping) is traditionally slow 
• alternative splicing creates ambiguity about where reads came from 
• sampling of reads is not uniform
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Why is simple counting not sufficient?

• Can’t correct for positional biases / insert length distributions 
since they don’t model which transcript reads come from 

• Intersection may throw away many reads

Union: treat a gene as the union of its exons 
Intersection: treat a gene as the intersection of its exons

Bad approaches:

Trapnell et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." 
Nature Biotechnology 31 (2013): 46-53.

→ Many more sophisticated approaches: Cufflinks (Trapnell, 2010), 
RSEM (Li, 2010), TIGAR (Nariai, 2014), eXpress (Roberts, 2013), 
Sailfish (Patro, 2014), Kallisto (Bray, 2015), …



Sailfish: Ultrafast Gene Expression Quantification

Patro, Mount, Kingsford, Nature Biotech, 2014

• Fast expectation maximization 
algorithm 

• Extremely parallelized 

• Uses small data atoms rather 
than long sequences 

• More tolerant of genetic 
variation between individuals
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Salmon: fast & accurate method for RNA-seq-based 
quantification

http://biorxiv.org/content/early/2015/10/03/021592



Inference Problem

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

These values η = [0.3, 0.6, 0.1] are the nucleotide fractions; 
they are the quantities we want to infer

Experimental 
mixture:



Maximum Likelihood Model

observed 
fragments 

(reads)

true read 
origins

nucleotide 
fractions

assumes 
independence 
of fragments

Prob. of selecting 
ti given η

Prob. of generating 
fragment fj given ti

Depends on 
abundance 

estimate

Independent of 
abundance 

estimate



“Bias” Model

a fragment 
of the given length

a fragment 
starting at given position

a fragment 
of given orientation

generating the given 
alignment

• Salmon estimates an auxiliary model from the data for each term  
(e.g. fragment length, fragment start position, etc.) 

• Accounts for sample-specific parameters and biases.



Why does this matter?
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“Bias” model can provide strong information about origin of a fragment. 
For example:



Salmon’s two phase inference procedure

online inference 
[SCVB0]

offline inference 
[EM or VBEM]

abundance 
estimates

fragments

initial abundances & 
equivalence classes

Optimizes the full model using a 
streaming algorithm & trains the “bias” 
model parameters

Refines the abundance estimates using 
a reduced representation.



Phase 1: Online Inference

η0 η1 η2 η3 η4 η5

Compute local η’ using ηt-1 & current “bias” model to allocate fragments 

Update global nucleotide fractions: ηt = ηt-1 + at ηʹ

Process fragments in batches:

Based on: Foulds et al. Stochastic collapsed variational Bayesian inference for latent 
Dirichlet allocation. ACM SIGKDD, 2013.

Update “bias” model
Weighting factor that 

decays over time

Often converges very quickly. 
Compare-And-Swap (CAS) for synchronizing updates of different batches



Equivalence Classes & Affinities

Two fragments are put into 
the same equivalence class if 
they can map to the same set 
of transcripts.
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{f1,f2,f3,f4} =

“Affinity” of class j to transcript i 
according to the “bias” model.

Equivalence classes & affinities are computed during the online 
inference phase.

Affinities encode 
aggregated for all fragments 
in a class.



Benefit of  Equivalence Classes

The # of equivalence classes grows with the complexity of the 
transcriptome — independent of the # of sequence fragments.

Typically, many fewer equivalence classes than sequenced 
fragments.

The time for the offline inference algorithm scales in # of 
equivalence classes.



Phase 2: Offline Inference

Repeatedly reallocate fragments according to current 
abundance estimates & “bias” model until convergence:

# of reads 
assigned to 
transcript i

size of 
equivalence 

class j

reads are allocated ∝ 
current estimate 

weighted by affinity



Lightweight alignment

• Salmon replaces the time-consuming read alignment step with a 
new approach that quickly finds chains of “maximal exact 
matches”:

read

transcript

MEM

There must be  
mismatches at these 

these positions

A maximal exact match is an exact match between the read and a 
transcript that can’t be extended in either direction.



SMEMs

A super maximal exact match (Li, 2013) is a MEM that is not contained 
in any other MEM in either the query or the reference:

read

transcript

MEM 1 MEM 2

MEM 1 is not an SMEM, while MEM 2 is.



Lightweight alignment

Supplementary Figure 2: Illustration of a chained SMEM alignment.

q1 q2g1 g2

t1 t2g'1 g'2transcript  

read
�1 �2

Supplementary Figure 2: A �-consistent chain of matches to a transcript that covers a read. Here,
the coverage (score) of the chain is s = `1+`2

`1+g1+`2+g2
, and � = |(t2 � t1)� (q2 � q1)| = |g01 � g1|.

3

� = |g01 � g1|

�

Lightweight alignment looks for   -consistent chains of SMEMs.

A chain of SMEMs is   -consistent if the total difference in gap sizes 
between the SMEMs is ≤ 

�

�

Salmon requires the SMEMs to cover at least 65% of the read.



Revising the Challenges

• finding locations of reads 
(mapping) is traditionally slow 

• alternative splicing creates 
ambiguity about where reads came 
from 

• sampling of reads is not uniform

→ Use lightweight alignment

→ Use 2-phase EM inference 
algorithm

→ Use bias model learned 
from data



Other Salmon Features

• Variational Bayes 
inference procedure as 
an option 

• Can provide your own 
alignments if you want 
(SalmonAln) 

• Several “fast” alignment 
modes (not just the one 
based on SMEMs)



Salmon is Accurate

better

Human reads simulated with RSEM-sim:

*

*

* *



H. sapiens Salmon SalmonAln eXpress Kallisto

Proportionality 
corr.

0.79 0.76 0.75 0.76

Spearman corr. 0.73 0.7 0.63 0.79

MARD 0.14 0.19 0.25 0.2

Proportionality Correlation

Salmon is Accurate

MARD 

Z. mays Salmon SalmonAln eXpress Kallisto

Proportionality 
corr.

0.92 0.91 0.89 0.91

Spearman corr. 0.91 0.90 0.85 0.89

MARD 0.17 0.19 0.34 0.20

Reads simulated with FluxSim (Griebel et al., 2012):

Lovell et al. argue this is 
good for relative quantities



Salmon is accurate when there are many isoforms



GC “Bias” model → more accurate differential expression

Salmon RSEM Kallisto Cufflinks

All genes 1,325 2,829 2,826 2,510

2-isoform 
genes 225 577 548 562

30 samples from Lappalainen et al. (2013): 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center 

All same population (TSI) and cell type (lymphoblastoid)

DE of data between centers (FDR < 1%) (TPM > 0.1)

Courtesy Michael Love.
http://biorxiv.org/content/early/2015/08/28/025767



Salmon is Fast

Sailfish Salmon SalmonAlneXpress
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Both datasets take ~5 min using 16 threads on a 2.6GHz Xeon; including 
lightweight alignment. 

75M (76bp x2) paired-end reads
time assuming 

you already have 
an alignment file



Conclusion

• Salmon is a fast, accurate, flexible way to quantify expression from 
RNA-seq data. 

• Expressive model means new types of bias can be learned and 
accounted for. 

• Open source:  

Code: https://github.com/COMBINE-lab/salmon 

News: http://combine-lab.github.io/salmon/ 

User group: https://groups.google.com/forum/#!forum/sailfish-users 

https://github.com/COMBINE-lab/salmon
http://combine-lab.github.io/salmon/
https://groups.google.com/forum/#!forum/sailfish-users
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