

Mutual exclusivity: drivers, pathways, and beyond

Teresa Przytycka NIH / NLM / NCBI

<u>Cancer drivers, passengers, supporting actors,</u> <u>witnesses</u>

- Driver mutations /alterations mutations contributing to cancer progression
- Passenger mutations neutral mutations accumulating during cancer progression
- Challenges in detecting driver mutations:
 - Heterogeneity phenotypically similar cancer cases might be caused by different sets of driver mutations
 - Rare drivers
- Best supporting actors (Igor's talk)
- Witnesses (this talk)

Cancer driving pathways examples of BRCA mutated genes in their pathway context RAS 1.5% or more PIK3CR1 PTEN PIK3CA CTCF AKT1 MAPK signaling FOXA1 MAP3K1 SWI/SNF MAP3K4 MAP2K4 **ARID1A**

NCOA3

CEBPA

EP300

co-activation

Mediator complex

MED23

mTOR

co -activator /co-repressor

NCOR1

Mutual exclusivity of cancer drivers

Thomas et al 2007 Ciriello, et al., 2012; Vandin, et al., 2012; Szczuret et.al , 2014, 2015 Leiserson, et al., Vadin et al. 2013,2014,2015; Kim et al. 2015 Constantinescu et al. 2015

patients

mutations in gene 1

Mutations in gene 2

Explanations

- Two drivers dysregulating the same pathway
- Each of the drivers corresponds to of a unique cancer type or subtype
- Negative genetic interactions between drivers

pathways

Mutual exclusivity relation with a gebe "outside" the pathway

Introducing a classification of mutual exclusivity

Motivation – distinguishing ME between drivers that:

- Result in a similar phenotype (wiтнiм_ме)
- Occur across multiple cancer types (ACROSS_ME)
- Between type specific drivers (ветween_ме)

Mutual exclusivity classes in PanCancer context

- Within tissue exclusivity
 WITHIN_ME
 - Traditional permutation test

Across tissues exclusivity ACROSS_ME

Type-restricted permutation test

Between tissues exclusivity
 BETWEEN_ME

Traditional, type-oblivious permutation test

WITHIN and ACRPSS ME is biased towards pathway edges

Finding cross-cancer dysregulated modules by combining interaction and ACROSS_ME

Within tissue exclusivity
 WITHIN_ME

Traditional permutation test

Across tissues exclusivity
 ACROSS_ME

Type-restricted permutation test

Α.

RB1

Between tissues exclusivity
 BETWEEN_ME

Type-oblivious permutation test

Finding PanCancer dysregulated pathway - ME Module Cover Approach

Optimization problem:

Find <u>smallest cost</u> set of modules so that each disease case is covered at least k times

Cost is a function of:

- distance in the network of genes in same module
- Mutual exclusivity
- Score of covering edge
- unit cost per module

Kim et al. PSB 2013, Bioinformatics 2015

Does putting together ACROSS ME and interaction data actually helps

MEMCover we find more cancer drivers

Compared to Module Cover

Compared to HotNet2

Robust mutual exclusivity within some modules

Hub-like ME within some modules

Splicing

No ME within some modules

Mutual Exclusivity Hubs

Beyond cancer drivers

BRCA (FDR 0.0125)UCEC (FDR 0.0025)(computed with our new method WeSME; width p-value; color shade FDR)

TTN – presumed passenger - no known role in cancer

BRCA (FDR 0.0125)UCEC (FDR 0.0025)(computed with our new method WeSME; width p-value; color shade FDR)

Presumed to be passenger mutations gene has a role in cancer

BRCA (FDR 0.0125)UCEC (FDR 0.0025)(computed with our new method WeSME; width p-value; color shade FDR)

FBXW7 – tumor suppressor but can harbor passenger mutations

BRCA (FDR 0.0125)UCEC (FDR 0.0025)(computed with our new method WeSME; width p-value; color shade FDR)

If TTN is a passenger that what is the train it is ridding on?

BRCA (FDR 0.0125)UCEC (FDR 0.0025)(computed with our new method WeSME; width p-value; color shade FDR)

TTN carries APOBEC signature in BRCA and Pol ϵ signature in UCEC

From Alexandrov et al, Nature 2013

C>A	C>G	C>T		T>A	Т	->C	T>G
Signature 2			*				
ս.ս. սիս		ասհուս					

Consistent with TTN spectrum in BRCA

APOBEC cytidine deaminase mutational spectrum

Consistent with TTN spectrum in UCEC

Pol II ϵ mutation mutational spectrum

TTN and TP53 have common neighbors in BRACE

BRCA (FDR 0.0125)UCEC (FDR 0.0025)(computed with our new method WeSME; width p-value; color shade FDR)

Co-occurrences - a causal relation or same underlying cause?

BRCA (FDR 0.0125) UCEC (FDR 0.0025) (computed with our new method WeSME; width p-value; color shade FDR)

Can APOBEC cause TP53 mutations? Burns et al.

TP53, TTN concurrence

(p-value < 0.0002, hypergeometric test).

Can APOBEC cause TP53 mutations? Burns *et al.*

TP53, TTN concurrence (p-value < 0.0002, hypergeometric test).

TP53, TTN concurrence after correcting for patients mutation frequency p-value > 0.29

Can APOBEC cause TP53 mutations? Burns *et al.*

TP53, TTN concurrence (p-value < 0.0002, hypergeometric test).

TP53, TTN concurrence after correcting for patients mutation frequency p-value > 0.29

True for all TP53 mutations in BRCA? NO Immune response **APOBEC TP53** TTN

Co-occurrences - a causal relation or same underlying cause?

BRCA (FDR 0.0125) UCEC (FDR 0.0025) (computed with our new method WeSME; width p-value; color shade FDR)

TTN and TP53 share exclusivity partners

Genes ME with TTN are predictors of better survival

Summary

- Introduction of mutual exclusivity classes and their relation to interaction network
- Combining ME with interaction network improves identification of PanCancer dysregulated modules

 Mutual exclusivity and co-occurrence of passenger mutations can provide important insights into mutagenesis of cancer

Phung Dao

Jan Hoinka

YooAh Kim

Damian Wojtowicz

Yijie Wang

DongYeon Cho (alumnae)

<mark>Sanna Madan</mark> Poolesville HS