

Modeling cancer evolution from genomic data

Niko Beerenwinkel

Cancer is an evolutionary process

Genetic progression

Clonal expansion

Intra-tumor heterogeneity

Some challenges

- 1. Mutation calling
- 2. Predicting the phenotypic effects of mutations
- 3. Reconstructing the evolutionary history of a tumor
- 4. Predicting cancer evolution and progression

Phylogenetic vs. oncogenetic models

Phylogenetic models

Oncogenetic models

SCITE: Tree inference for single-cell data

Katharina Jahn, Jack Kuipers (RECOMB 2016)

Intra-tumor phylogeny

Observation error

$$P(D_{ij} = 1 | E_{ij} = 0) = \alpha, \quad P(D_{ij} = 0 | E_{ij} = 0) = (1 - \alpha)$$
$$P(D_{ij} = 0 | E_{ij} = 1) = \beta, \quad P(D_{ij} = 1 | E_{ij} = 1) = (1 - \beta)$$

Likelihood

- n mutations, m samples
- Tree topology, T
- Attachment of samples, *σ*
- Error rates, $\boldsymbol{\theta} = (\alpha, \beta)$
- Likelihood:

Posterior:

$$P(T, \boldsymbol{\sigma}, \boldsymbol{\theta} | D) \propto P(D | T, \boldsymbol{\sigma}, \boldsymbol{\theta}) \underbrace{P(T, \boldsymbol{\sigma}, \boldsymbol{\theta})}_{P(\boldsymbol{\sigma} | T, \boldsymbol{\theta}) P(T, \boldsymbol{\theta})}$$

Attachment of samples

$$\frac{P(T, \boldsymbol{\theta}|D)}{P(T, \boldsymbol{\theta})} \propto \sum_{\boldsymbol{\sigma}} \prod_{j=1}^{m} \left[\prod_{i=1}^{n} P(D_{ij}|A(T)_{i\boldsymbol{\sigma}_{j}}) \right] P(\boldsymbol{\sigma}_{j}|T, \boldsymbol{\theta})$$
$$= \prod_{j=1}^{m} \sum_{\boldsymbol{\sigma}_{j}=1}^{n+1} \left[\prod_{i=1}^{n} P(D_{ij}|A(T)_{i\boldsymbol{\sigma}_{j}}) \right] P(\boldsymbol{\sigma}_{j}|T, \boldsymbol{\theta}) \qquad O(nm)$$

Inference

- For *n* mutations and *m* samples, the search space is $[(n + 1)^{(n-1)}] \times [(n + 1)^m] \times \mathbb{R}^2$
- and $[(n + 1)^{(n-1)}] \times \mathbb{IR}^2$ after marginalization

Single-cell sequencing of a myeloproliferative neoplasm (Hou et al., Cell 2012)

- WES of 58 cancer cells
- 18 selected mutations
- 45% missing data
- $\alpha = 6.04 \times 10^{-5}, \ \beta = 0.43$

ETHzürich

ETH zürich

Single-cell sequencing of an ER⁺ breast tumor (Wang et al., Nature 2014)

- nuc-seq of 47 cells
- 40 mutations
- 1.4% missing data
- $\alpha = 1.24 \times 10^{-6}$
- $\beta = 0.097$

ETH zürich

Hzürich

Genetic alterations

pathTiMEx: Mutually exclusive cancer pathways and their dependencies in tumor progression Simona Cristea, Jack Kuipers (RECOMB 2016)

Partial order among pathways

Partial order

Individual progression

Genotypes at diagnosis

Observed genotypes

Waiting time distribution

B. & Sullivant (2009), Gerstung et al (2012)

Hidden conjunctive Bayesian network (H-CBN)

Can we find pathways de novo?

For example, as groups of mutually exclusive genes:

Pathways and their dependencies

- A pathway is altered as soon as one of its genes is altered.
- Genes depend on upstream pathways.

Joint inference

Progression in colorectal cancer

Vogelstein et al., Science 2013

Progression in glioblastoma

Conclusions

SCITE, https://gitlab.com/jahnka/SCITE

- Single-cell sequencing data can be used to reconstruct the evolutionary history of individual tumors.
- Two intra-tumor phylogenies support an evolutionary model of successive clonal expansions in which subclones co-exist until one of them reaches fixation.

pathTiMEx, https://github.com/cbg-ethz/pathTiMEx

- Tumor evolution is constrained by (partial) orders of gene and pathway alterations.
- Mutually exclusive gene groups and their dependencies can be inferred jointly from observed mutation profiles.

Acknowledgements

The Swiss Initiative in Systems Biology

European Research Council Established by the European Commission

CBG

Mathias Cardner

Simona Cristea

Madeline Diekmann Christos Dimitrakopoulos Simon Dirmeier Monica Golumbeanu Ariane Hofmann Katharina Jahn Vinay Jethava

Jack Kuipers

Brian Lang Hesam Montazeri Susana Posada Cesped Hans-Joachim Ruscheweyh Fabian Schmich David Seifert Jochen Singer Ewa Szczurek Thomas Thurnherr

Funding

ETH Zurich, SNSF, SHCS, SystemsX.ch, ERASysAPP, Swiss Cancer League, Horizon 2020, ERC Synergy

Collaborators (oncology)

Gerhard Christofori (U Basel), Mike Hall (U Basel), Markus Heim (U Basel), Willy Krek (ETHZ), Markus Manz (USZ), Florian Markowetz (CRUK), Holger Moch (USZ), Jörg Rahnenführer (TU Dortmund), Alejandro A. Schäffer (NIH), Bert Vogelstein (Johns Hopkins), Peter Wild (USZ)

www.cbg.ethz.ch