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Cancer is an evolutionary process 

First mutant 

●  Normal cells 

Carcinoma 
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Clonal expansion 

Yates et al 2012 



4 

Intra-tumor heterogeneity 

Marusyk et al 2012 



Some challenges 

1. Mutation calling 
 

2. Predicting the phenotypic effects of mutations 
 

3. Reconstructing the evolutionary history of a tumor 
 

4. Predicting cancer evolution and progression 
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Phylogenetic vs. oncogenetic models 
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Phylogenetic models Oncogenetic models 



SCITE: Tree inference for single-cell data 

Katharina Jahn, Jack Kuipers (RECOMB 2016) 
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Intra-tumor phylogeny 

infinite sites 
assumption 



Observation error 

α = false positive rate 
β = false negative rate  
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 n mutations, m samples 
 Tree topology, T 
 Attachment of samples, σ 
 Error rates, θ = (α, β) 
 Likelihood: 

 
 

 Posterior: 
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Likelihood 
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Attachment of samples 

O(nm) 



 For n mutations and m samples, the search space is 
 [(n + 1)(n ‒ 1)] × [(n + 1)m] × IR2 
 

 and  [(n + 1)(n ‒ 1)] × IR2  after marginalization 
 

 MCMC: 

12 

Inference 



 WES of 58 cancer cells 
 18 selected mutations 
 45% missing data 
 α = 6.04 × 10‒5,  β = 0.43 
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Single-cell sequencing of a myeloproliferative 
neoplasm (Hou et al., Cell 2012) 
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 nuc-seq of 47 cells 
 40 mutations  
 1.4% missing data 
 α = 1.24 × 10‒6 
 β = 0.097 
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Single-cell sequencing of an ER+ breast tumor 
(Wang et al., Nature 2014) 
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past 
clonal 
expansions 

current, 
co-existing 
subclones 



pathTiMEx: Mutually exclusive cancer pathways 
and their dependencies in tumor progression 
Simona Cristea, Jack Kuipers (RECOMB 2016) 

19 



Partial order among pathways 
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Individual progression 
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Genotypes at diagnosis 
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Observed genotypes 
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Waiting time distribution 
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TA » Exp(¸A)

TB » Exp(¸B)

TC » TA+Exp(¸C)

TD » max(TA; TB) + Exp(¸D)

TS » Exp(¸S)

B. & Sullivant (2009), Gerstung et al (2012) 
 



Hidden conjunctive Bayesian network (H-CBN) 
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Time to 
occurrence 

of mutations 
Time to diagnosis 

Genotype 

Observed 
genotype 

censoring 

noise 



 For example, as groups of mutually exclusive genes: 

Can we find pathways de novo? 

tu
m

or
s 

genes 

Constantinescu, Szczurek, et al. 2015 



27 

Pathways and their dependencies 

Tg = waiting time of gene g 

Up = waiting time of pathway p 

true hidden genotype, X 

observed genotype, Y 

 A pathway is altered as soon as one of its genes is altered. 
 Genes depend on upstream pathways. 
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Joint inference 
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Progression in colorectal cancer 

Vogelstein et al., Science 2013 
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Progression in glioblastoma 



 SCITE, https://gitlab.com/jahnka/SCITE 
 Single-cell sequencing data can be used to reconstruct the 

evolutionary history of individual tumors. 
 Two intra-tumor phylogenies support an evolutionary model of 

successive clonal expansions in which subclones co-exist until one 
of them reaches fixation. 

 pathTiMEx, https://github.com/cbg-ethz/pathTiMEx 
 Tumor evolution is constrained by (partial) orders of gene and 

pathway alterations. 
 Mutually exclusive gene groups and their dependencies can be 

inferred jointly from observed mutation profiles. 
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Conclusions 
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