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Convergence diagnostics

» MCMC used in Bayesian inference, computational physics and chemistry,
image processing, phylogeny ...

» Eventually the chain will converge to the desired target distribution.

» May or may not have bounds on the mixing time. Bounds may not be
practical.

> How to tell whether the chain is close to converged?

> In practice many visual, statistical tests are used - convergence diagnostics.



Definitions

Probability measures 1 and v on finite Q. The total variation distance
between u and v is

e = vl = max |u(A) - =5 LS (x) - v(x)

xEN

Markov chain M on Q with transition matrix P and stationary distribution 7.
d(t) = max|[P*(x,:) = P*(y, ")l
X, yE€Q

The e-mixing time is
7(e) = inf{t: d(t) <e}
The e-mixing time started at x is

7x(e) = inf{t : [|P*(x,-) — 7l < €}
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Statistical tests

Name

D

of the Test

Gelman-Rubin

Uses parallel chains with dispersed initial values o test whether they all converge to the same target
distribution. Failure could indicate the presence of a multi-mode postsrior distribution (different chains convergs
to different local modes) or the need to run a longer chain {bum-in is et to be completed).

One-sided test based on a variance ratio test
statistic. Large R. values indicate rejection

Geweke

Tests whether the mean estimates have converged by comparing means from the early and latter part of the
Markev chain.

Two-sided test based on a z-score statistic
Large absolute 7 values indicate rejection.

Heidelberger-Welch
(stationarity test)

Tests whether the Markov chain is a covariance (or weakly) stationary process. Failure could indicate that a
longer Markov chain is needed.

One-sided test based on a Cramer—von Mises
statistic. Small pvalues indicate rejection.

Heidelberger-Welch

Reports whether the sample size is adequate to meet the required accuracy for the mean estimate. Failure

If a relative half-width statistic is greater than

reach the desired accuracy of the percentiles. Failure could indicate that a longer Markov chain is needed

{half-width test) could indicate that a longer Markov chain is needed. 2 predetermined accuracy measure, this
indicates rejection.
Raftery-Lewis Evaluates the accuracy of the estimated (desired) percentiles by reporting the number of samples needed to |1 the total samples needed are fewer than the

Markov chain sample, this indicates rejection

autocorrelation

Measures dependency ameng Markov chain samples.

High correlations between long lags indicate
poor mixing

effective sample size

Relates to autecorrelation; measures mixing of the Markov chain.

Large discrepancy between the effective
sample size and the simulation sample size
indicates poor mixing
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[Cowles-Carlin '96] Review of 13 diagnostics and scenarios where each can fail.




Complexity theoretic framework for diagnostic algorithm

MC is a “rule” for determining next state.
Circuit C : {0,1}" x {0,1}™ — {0,1}" specifies P if

P(C(x,r) =y) = P(x,y)

Diagnostic algorithm D decides if at time t:
» Chain within 1/4 tv-distance of 7: 7(1/4) < t.
» Chain at least 1/4 tv-distance from m: 7(1/4) > t.

Exact distance at time t.
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Complexity theoretic framework for diagnostic algorithm

MC is a “rule” for determining next state.
Circuit C : {0,1}" x {0,1}™ — {0,1}" specifies P if

P(C(x,r) =y) = P(x,y)

Diagnostic algorithm D decides:

> mixed: At time t, chain within 1/8 in tv-distance of 7: 7(1/8) < t.

> not mixed: At time ct,c > 1, chain at least 1/2 in tv-distance from m:
7(1/2) > ct.

Allow a gap in approximation to tv-distance as well as time.



Diagnostic algorithm formulations

TESTCON,s

PoLYTESTCON, 5

PoLYTESTCONINIT, 5

Input:
Promise:
YES:
NO:

Input:
Promise:
YES:
NO:

Input:
Promise:
YES:

NO:

C specifies P on Q C {0,1}", x € Q, t € N.

P is ergodic.
7(1/4—0) < t.
7x(1/4 + 0) > ct.

(C,1f,1tm),

P is ergodic and 7(1/4) < tmax.
T(1/4-96) <t

7(1/4 4+ 0) > ct.

(C,x,1f, 1),

P is ergodic and 7(1/4) < tmax.
(1/4-08) < t.

Tx(1/4 4 8) > ct.



Testing convergence in a general case

TESTCON, s Input:  C specifies P on Q C {0,1}", x € Q, t € N.
Promise: P is ergodic.
YES:  7x(1/4—-6) < t.
NO:  7x(1/4 4 0) > ct.

(PSPACE: set of all decision problems that can be solved by a Turing machine
using space polynomial in the input.)

Theorem 1 (B-Bogdanov-Mossel '11). Let 1 < ¢ < exp (n0(1))_ Then,

> For exp (fno(l)) < § < 1/4, TESTCON,s is in PSPACE.

» For 0 < 6 < 1/4, TESTCON,,5 is PSPACE-hard.



TESTCON, 5 is PSPACE-hard

Reduction from a PSPACE complete problem A to TESTCON s.

Computation graph G of Turing machine Ty (reversible) MC on vertices of G

bR

In the YES case, s and a are in the same component.



TESTCON, 5 is PSPACE-hard
Reduction from a PSPACE complete problem A to TESTCONc 5.

Computation graph G of Turing machine Ty (reversible) MC on vertices of G

%W

In the NO case, s and a are not in the same component.

Note: W must be chosen so that the reduction is polynomial in the input to A.



TESTCON, 5 is PSPACE-hard

Computation graph G of Turing machine Ty (reversible) MC on vertices of G

§

YES case: Each state of MC has const. degree < D.

D wy

~x 1 w 1
m(x) = X > o> =
E : D2n D2rW D2n
We
eckE




TESTCON, 5 is PSPACE-hard

State diagram of Turing machine My (reversible) MC on states of Mg

. %

- @

1T

NO case: MCs X; started at s, Y; started at a.

d(t) > P(VE < t, Xy ¢ cmp(a)) — P(3t' < t s.t.Ye € cmp(s)) > 1 — 27;
So,
w
7(1/446) > 7(1/2) > R
Set W = 1000c0%2%" , _ 10D32%" X =5

1-45 1—45



Testing convergence with polynomial mixing bound

PoLYTESTCON, s Input:  (C, 1%, 1%m).
Promise: P is ergodic and 7(1/4) < tmax-
YES: 7(1/4—9) <t
NO:  7(1/4+ ) > ct.

Theorem 2 (B-Bogdanov-Mossel '11).
> For 0 <6 < 1/4, ¢ < 42 /tpa/t2n%, POLYTESTCON. 5 is coNP-hard.

» For 0 < 6 <1/4, POLYTESTCON, s is in coAM.



co-NP hardness of POLYTESTCON_ s

By reduction from UNSAT. Input is W a CNF formula on n variables.

PoLYTESTCON, 5 instance (C, 1%, 1t ):

g

L)

@ "

7(1/4 — &) < C(d)nlog(n) 7(1/4+6) > %nd71(3/475) > cC(8)nlog(n)

By a lower bound on conductance, tmax < 32p%9+1,

Set t = C(d0)nlog(n).



Testing convergence given polynomial mixing and initial state

PorLyTESTCONINIT, 5 Input:  (C,x, 17, 1%mx),
Promise: P is ergodic and 7(1/4) < tmax.
YES: 7x(1/4—0) <t.
NO:  7x(1/446) > ct.

Theorem 3 (B-Bogdanov-Mossel '11).
» For 0.11602 < 6 < 1/4 and ¢ > 1, POLYTESTCONINIT, 5 € SZK.

» For0<d§ <1/4and c < 1ertmax/t PTCS,,s is SZK-hard.

» For0 <0 <1/4, PTCS. s € AMNcoAM.

(SZK : Statistical Zero Knowledge)



Proof Systems

Proof system for a language L C {0,1}" and a verification algorithm V with

» Completeness: If x € L, there is a proof 7 so V(x,7) = accept.
> Soundness: If x ¢ L, for all 7%, V(x,7") = reject.

» Efficiency: V/(x,7) runs in time polynomial in |x|.

NP is defined this way.

How much knowledge does one gain from verifying a proof?



Zero knowledge proofs

[Goldwasser-Micali-Rackoff "89] Prover P convinces verifier V' of an assertion.
V' learns nothing but the truth of the assertion.

Interaction (P, V)(x) between P and V with polynomial messages exchanged,
and private coin tosses.

> Completeness: If x € L, V accepts in (P, V)(x) w. p. > 2/3.
> Soundness: If x ¢ L, for “any” P*, V accepts in (P*, V)(x) w.p. <1/3.

» Efficiency: V runs in time polynomial in |x|.

Zero knowledge: The verifier could have simulated the entire interaction.



Statistical zero knowledge

“SZK": Class of languages for which there is an interaction statistically
indistinguishable from the simulator with ZK.

Canonical hard problem:

STATDIFFsc  Input:  Circuits C, C' : {0,1}" — {0,1}" of dist. u1,u2 on {0,1}".
YES:  [|pa — 2o > c
NO:  [[pa — paflew <'s.

[Sahai-Vadhan '97] Let 0 < ¢,s < 1.
» For ¢ > s, STATDIFFs ¢ is in SZK.
> STATDIFFs is SZK-hard.

SZK contains problems believed to be hard (e.g. GRAPHNONISO) , but cannot
contain NP-complete problems.



SZK-hardness for POLYTESTCONINIT_ 5

By reduction from STATDIFFs .

STATDIFFs ¢ Input:  Circuits C, C": {0,1}" — {0,1}" with 1, u on {0,1}".
YES:  lpn — el 2 €.
NO: |1 — peflew <Ss.

(C, C"): instance of STATDIFFs with c =1,s =1/4 —§.
Construct an instance of POLYTESTCONINIT 5.

MC (Ys, Z:) on [M] x {0,1}".
» Choose Zii1:

> If Yy =1, choose Z;11 ~ p1.
> If Y: =2, choose Z;y1 ~ po.
> Otherwise, set Zyy1 = Z;.

» Choose Yii1 uniformly from [M].
p1 + p2

TFIU[M]XT



SZK-hardness for POLYTESTCONINIT_ 5

Let x = (1,0")

: 1/m-2\""
P (Xv')_WHtv:E “m leer — pallev

YES case: For t > 1, M >3

1 1
[P (x,-) — 7lla < 55<779
NO case: If ct < M1n (H%a),
1 /M—2\"" 1
HPt(X7)_7T||tV2§(T) C>Z+(S

In both cases 7(1/4) < M.

Set tyax = M, t = 1.



Conclusions

» Efficient algorithms are not believed to exist for PSPACE-complete,
coNP-complete or SZK-complete problems.

> Diagnostic algorithms do not exist for large classes of MCMC algorithms,
unless there are efficient algorithms for PSPACE or coNP or SZK.

» (Woodard) Hardness for diagnosing convergence from a given state when
7 is known upto a global constant?

» Hardness for Gibbs samplers (conditional distribution of each variable can
be sampled)?



