Glauber Dynamics of Lattice Triangulations on Thin Rectangles

Fabio Martinelli

in collaboration with P. Caputo, A. Sinclair, and A. Stauffer

Universita’ Roma Tre
Lattice triangulations: basic facts

Definition
A triangulation of a \(m \times n \) rectangle in \(\mathbb{Z}^2 \) is a maximal set of non-crossing edges, each of which connects exactly two points of the rectangle and passes through no other point.
Lattice triangulations: basic facts

Definition
A triangulation of a $m \times n$ rectangle in \mathbb{Z}^2 is a maximal set of non-crossing edges, each of which connects exactly two points of the rectangle and passes through no other point.

\begin{center}
\begin{tikzpicture}
\draw (0,0) grid (5,4);
\draw (0,0) -- (4,4);
\draw (0,1) -- (4,3);
\draw (0,2) -- (4,2);
\end{tikzpicture}
\end{center}
Lattice triangulations: basic facts

Definition
A triangulation of a $m \times n$ rectangle in \mathbb{Z}^2 is a maximal set of non-crossing edges, each of which connects exactly two points of the rectangle and passes through no other point.
Lattice triangulations: basic facts

Definition

A triangulation of a $m \times n$ rectangle in \mathbb{Z}^2 is a maximal set of non-crossing edges, each of which connects exactly two points of the rectangle and passes through no other point.
• $\Omega(m, n)$ the set of all triangulations of $R_{m,n}$
- $\Omega(m, n)$ the set of all triangulations of $R_{m,n}$

- $m = 1$:
 $\#\Omega(1, n) = \binom{2n}{n}$. Equivalence with lattice paths

(a) A one dimensional lattice triangulation

(b) The associated lattice path
An important difference w.r.t. spin systems

- The middle point of each (random) edge is a given (deterministic) point in the half-integer lattice;

- Assigning an edge $\sigma_x \iff$ assigning a “spin s_x”.

- For a spin system on a graph interaction is **local**: the law of s_x is determined given the neighbors.

- An edge σ_x has 4 neighboring edges whose midpoints can be, however, **very far** from x.

- Lack of locality/geometry.
Sampling lattice triangulations

Flip moves: an edge is \textit{flippable} if it is the diagonal of a parallelogram.
Sampling lattice triangulations

Flip moves: an edge is **flippable** if it is the diagonal of a parallelogram. In this case:

![Diagram](image)

Flip graph on $\Omega(m, n)$ is **connected**.
Sampling lattice triangulations

Flip moves: an edge is \textbf{flippable} if it is the diagonal of a parallelogram. In this case:

Flip graph on $\Omega(m, n)$ is \textbf{connected}.

\textbf{Markov chain reversible w.r.t. uniform distribution:}
- pick a midpoint x \textbf{u.a.r.}
- flip σ_x with $\text{Prob} = 1/2$ if flippable.
Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on $\Omega(m, n)$

$$
\mu(\sigma) = \frac{\lambda |\sigma|}{Z}, \quad |\sigma| = \sum_{x \in \Lambda_{m,n}} |\sigma_x|
$$

where $|\sigma_x| = \|\sigma_x\|_1$.
Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on $\Omega(m, n)$

$$\mu(\sigma) = \frac{\lambda |\sigma|}{Z}, \quad |\sigma| = \sum_{x \in \Lambda_{m,n}} |\sigma_x|$$

where $|\sigma_x| = \|\sigma_x\|_1$.

Glauber chain: pick u.a.r. a midpoint $x \in \Lambda_{m,n}$. If the edge σ_x is flippable to edge σ'_x then flip it with probability

$$\frac{\mu(\sigma')}{\mu(\sigma')} + \mu(\sigma) = \frac{\lambda |\sigma'_x|}{\lambda |\sigma'_x| + \lambda |\sigma_x|}.$$

Reversible w.r.t. μ.

Lattice Triangulations 6 / 26
Simulations suggest a phase transition (here $n = m = 50$):

- $\lambda = 1$: $T_{\text{mix}} = \Theta(mn(n+m))$
- $\lambda = 1.1$: $T_{\text{mix}} = \exp(\Omega(mn(n+m)))$
- $\lambda = 0.9$: $T_{\text{mix}} = \text{poly}(m,n)$
Weighted triangulations and Glauber dynamics

Simulations suggest a phase transition (here $n = m = 50$):

- $\lambda = 1.0$: $T_{\text{mix}} = \Omega(mn(n + m))$
- $\lambda = 1.1$: $T_{\text{mix}} = \exp(\Omega(mn(n + m)))$
- $\lambda = 0.9$: $T_{\text{mix}} = \text{poly}(m, n)$

Conjecture
Main results for any m, n

Theorem (Rapid mixing for small λ)

There exists $\lambda_0 > 0$ such that, for all $\lambda < \lambda_0$ and any possible set of constraint edges, $T_{\text{mix}} = O(mn(m + n))$.
Main results for any m, n

Theorem (Rapid mixing for small λ)

There exists $\lambda_0 > 0$ such that, for all $\lambda < \lambda_0$ and any possible set of constraint edges, $T_{\text{mix}} = O(mn(m+n))$.

Theorem (Slow mixing for $\lambda > 1$)

For all $\lambda > 1$ and without constraint edges

\[T_{\text{mix}} \geq \exp(c(m+n)). \]
Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric [inspired by S. Greenberg, A. Pascoe, D. Randall ’09].

Exponential metric: Fix $\alpha > 1$, and for σ, τ differing only at x set

$$\Delta(\sigma, \tau) = \begin{cases}
\alpha^2 - 1 & \text{if } |\sigma_x| = |\tau_x| = 2 \text{ (unit diagonals)} \\
|\alpha^{\sigma_x} - \alpha^{\tau_x}| & \text{otherwise}.
\end{cases}$$
Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric [inspired by S. Greenberg, A. Pascoe, D. Randall ’09].

Exponential metric: Fix $\alpha > 1$, and for σ, τ differing only at x set

$$
\Delta(\sigma, \tau) = \begin{cases}
\alpha^2 - 1 & \text{if } |\sigma_x| = |\tau_x| = 2 \text{ (unit diagonals)} \\
|\alpha^{\lvert \sigma_x \rvert} - \alpha^{\lvert \tau_x \rvert}| & \text{otherwise}.
\end{cases}
$$

Lemma

For $\lambda < \lambda_0 = 1/8$, $\alpha = 8$, there is a coupling such that

$$
\mathbb{E}_{\sigma, \tau} [\Delta(\sigma', \tau')] \leq \Delta(\sigma, \tau) \left(1 - \frac{1}{2|\Lambda_{n,m}|}\right).
$$
Torpid mixing for $\lambda > 1$

Definition (Exponential Bottleneck)

A set $A \subset \Omega(m, n)$ such that $\mu(A) \leq 1/2$ and

$$\frac{\mu(\partial A)}{\mu(A)} \leq e^{-c(m+n)}.$$

Here $\partial A = \{(\sigma, \sigma') : \sigma \in A, \sigma' \notin A, \sigma \leftrightarrow \sigma'\}$.

Lemma

Exponential bottleneck \Rightarrow

$$T_{\text{mix}} = \Omega(\exp[c(n + m)]), \quad c > 0.$$
The Herringbone bottleneck

- A is the set of all Herringbone triangulations.
- Orientation in 1D layers oscillates $+/-$.

- $\sigma \in \partial A$ iff an internal edge is vertical.
- For $\lambda > 1$, $\sigma \in \partial A$ is exponentially unlikely (in $\max(n, m)$) given A.
Optimal bounds on T_{mix} for $m = 1$

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$ (*path coupling + exponential metric*)
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2))$ (*1 layer bottleneck*)
- $\lambda = 1$: $T_{\text{mix}} \sim n^3 \log n$ (*e.g. coupling, D.B. Wilson ’01*)
Optimal bounds for thin rectangles ($m = \text{const}, \; n \gg 1$)

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$
Optimal bounds for thin rectangles \((m = \text{const, } n \gg 1)\)

Theorem

- \(\lambda < 1:\; T_{\text{mix}} = \Theta(n^2)\)
- \(\lambda > 1:\; T_{\text{mix}} = \exp(\Omega(n^2/m))\)

A poly(n) bound on \(T_{\text{mix}}\) **for** \(\lambda = 1\) **is still missing**
Optimal bounds for thin rectangles \((m = \text{const}, \ n \gg 1)\)

Theorem

- \(\lambda < 1\): \(T_{\text{mix}} = \Theta(n^2)\)
- \(\lambda > 1\): \(T_{\text{mix}} = \exp(\Omega(n^2/m))\)

A poly\((n)\) bound on \(T_{\text{mix}}\) for \(\lambda = 1\) is still missing

- **Lower bound** for \(\lambda > 1\): (slightly) improved version of the Herringbone Bottleneck.
Optimal bounds for thin rectangles \((m = \text{const}, \ n \gg 1)\)

Theorem

- \(\lambda < 1\): \(T_{\text{mix}} = \Theta(n^2)\)
- \(\lambda > 1\): \(T_{\text{mix}} = \exp(\Omega(n^2/m))\)

A \(\text{poly}(n)\) bound on \(T_{\text{mix}}\) for \(\lambda = 1\) is still missing

- **Lower bound** for \(\lambda > 1\): (slightly) improved version of the Herringbone Bottleneck.

- **Upper bound** for \(\lambda < 1\):
 - In time \(O(n^2)\) the chain enters the set \(\tilde{\Omega}\) of “short” \((O(\log n))\) triangulations. Main tool: Lyapunov function (A. Stauffer ’15).
 - Mixing time bounds \(O(n^{(1+o(1))})\) of restricted chain in \(\tilde{\Omega}\) via Log-Sobolev bounds + improved canonical paths arguments.
Exponential tails of edge length (m fixed).

Lemma (No constraint edges)

Fix $\lambda < 1$. There exist c_1, c_2 such that, for any $t \geq c_1 n^2$ and any $\ell \geq 1$,

$$\sup_{\sigma} \sup_{x \in \Lambda_{n,m}} \mathbb{P}_\sigma(|\sigma_x(t)| \geq \ell) \leq c_1 \exp(-c_2 \ell)$$

Lemma (Constraint edges τ)

Fix $\lambda < 1$. Let $\bar{\sigma}_x$ the ground state of σ_x in the presence of constraint edges τ. There exist c_1, c_2 such that, for any $t \geq c_1 n^2$, any $\ell \geq 1$ and any x,

$$\sup_{\sigma} \mathbb{P}(\bigcup_y \{\sigma_y(t) \cap \bar{\sigma}_x \neq \emptyset\} \cap \{|\sigma_y(t)| \geq |\bar{\sigma}_x| + \ell\}) \leq c_1 \exp(-c_2 \ell)$$
Coupling in presence of constraint edges

- Let R be a $k \times m$ rectangle inside $R_{n,m}$.
- Let τ, τ' be constraint edges not intersecting R.

Lemma

Fix $\lambda < 1$ and m. There exists c and k_0 together with a coupling of $\mu^\tau, \mu^{\tau'}$ such that, if $k \geq k_0$, with probability at least $1 - \exp[-ck]$ there exist ϵk common vertical crossings of unit edges in R.
Back to thin rectangles: $T_{\text{mix}} = O(n^2)$ for any $\lambda < 1$

Step 1: Burn-in phase.

For some $T = c(\lambda)n^2$, uniformly in the initial condition and w.h.p.

$$\sigma(t) \in \tilde{\Omega}, \quad t \in [T, T + n^{10}].$$

$\tilde{\Omega}$ is the set of triangulations with at most $O(\log n)$ edges.

- The restricted chain to $\tilde{\Omega}$ is irreducible with reversible measure $\tilde{\mu} := \mu(\cdot \mid \tilde{\Omega})$.

- Because of structural properties $\tilde{\mu}, \mu$ well coupled.

- Sufficient to prove $\tilde{T}_{\text{mix}} = o(n^2)$.
Step 2: spatial mixing in $\tilde{\Omega}$

Lemma (Spatial mixing)

The relative density of the marginals on the left block (light gray) of $\tilde{\mu}$ conditioned on two arbitrary (short) triangulations in the right block (dark gray) is exponentially (in $|J_c|$) close to one if $|J_c| = \Omega(\text{polylog}(n))$.

Lattice Triangulations 17 / 26
Step 3: Log-Sobolev constant in $\tilde{\Omega}$

Figure: The rectangle Λ decomposed into two almost-halves Λ_1, Λ_2 with $\Lambda_1 \cap \Lambda_2 \equiv \Omega(\log n) \times m$ rectangle.

Spatial mixing implies **quasi-factorization** of the entropy:
Step 3: Log-Sobolev constant in $\tilde{\Omega}$

Figure: The rectangle Λ decomposed into two almost-halves Λ_1, Λ_2 with $\Lambda_1 \cap \Lambda_2 \equiv \Omega(\log n) \times m$ rectangle.

Spatial mixing implies quasi-factorization of the entropy:

$$\text{Ent}_\Lambda(f^2) \leq (1 + n^{-\varepsilon})\tilde{\mu} \left[\text{Ent}_{\Lambda_1}(f^2|\Lambda \setminus \Lambda_1) + \text{Ent}_{\Lambda_2}(f^2|\Lambda \setminus \Lambda_2) \right].$$

Multiscale analysis of the Log-Sobolev constant.
Notation

- Dirichlet form:

\[\mathcal{E}(f, f) = \frac{1}{2n} \sum_{\sigma, \sigma' \in \tilde{\Omega}} \tilde{\mu}(\sigma) \rho(\sigma, \sigma')(f(\sigma) - f(\sigma'))^2. \]
Notation

- Dirichlet form:
 \[\mathcal{E}(f, f) = \frac{1}{2n} \sum_{\sigma, \sigma' \in \tilde{\Omega}} \tilde{\mu}(\sigma) \rho(\sigma, \sigma')(f(\sigma) - f(\sigma'))^2. \]

- Entropy:
 \[\text{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])]. \]
Notation

• Dirichlet form:

\[E(f, f) = \frac{1}{2n} \sum_{\sigma, \sigma' \in \tilde{\Omega}} \tilde{\mu}(\sigma)p(\sigma, \sigma')(f(\sigma) - f(\sigma'))^2. \]

• Entropy:

\[\text{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])]. \]

• Logarithmic Sobolev constant

\[c_S(n) := \sup_f \frac{\text{Ent}(f^2)}{E(f, f)}, \]

• \(\tilde{T}_{\text{mix}} \leq C \log n \times c_S(n). \)
Notation

- Dirichlet form:
 \[\mathcal{E}(f, f) = \frac{1}{2n} \sum_{\sigma, \sigma' \in \tilde{\Omega}} \tilde{\mu}(\sigma) \rho(\sigma, \sigma')(f(\sigma) - f(\sigma'))^2. \]

- Entropy:
 \[\text{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])]. \]

- Logarithmic Sobolev constant
 \[c_S(n) := \sup_f \frac{\text{Ent}(f^2)}{\mathcal{E}(f, f)}, \]

- \(\tilde{T}_{\text{mix}} \leq C \log n \times c_S(n). \)

Theorem

\[c_S(n) \leq n^{1+o(1)} \Rightarrow \tilde{T}_{\text{mix}} = O(n^{1+o(1)}). \]
High level overview

- Quasi-factorization of the entropy $c_S(2^n) \leq (1 + n - \epsilon) \times 2 \times c_S(n/2)$
- The factor 2 comes from double counting the flips in the overlapping region.
- A random averaging of the location of the overlap block reduces it to $(1 + 1/\log_2 n)$.
- Sloppy notation: boundary edges are there $\Rightarrow c_S(n) \leq \text{const} \times c_S(\text{polylog}(n))$.

Lattice Triangulations 20 / 26
Quasi-factorization of the entropy ⇒

\[c_S(2n) \leq (1 + n^{-\epsilon}) \times 2 \times c_S(n/2) \]
High level overview

- Quasi-factorization of the entropy ⇒
 \[c_S(2n) \leq (1 + n^{-\epsilon}) \times 2 \times c_S(n/2) \]

- The factor 2 comes from double counting the flips in the overlapping region.

- A random averaging of the location of the overlap block reduces it to \((1 + 1/\log^2 n)\).

- Sloppy notation: boundary edges are there!
Quasi-factorization of the entropy \Rightarrow

$$c_S(2n) \leq (1 + n^{-\epsilon}) \times 2 \times c_S(n/2)$$

The factor 2 comes from double counting the flips in the overlapping region.

A random averaging of the location of the overlap block reduces it to $(1 + 1/\log^2 n)$.

Sloppy notation: boundary edges are there!

$$\Rightarrow c_S(n) \leq \text{const} \times c_S(\text{polylog}(n)).$$
Bounds on c_S on scale $L_n = \text{polylog}(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
Bounds on c_S on scale $L_n = \text{polylog}(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- **Important feature**: on each scale $L_j = 2^{-j} n$ the Log-Sobolev problem involves *constraint edges inherited* from the conditioning on scale L_{j-1}, \ldots, L_0.
Bounds on c_S on scale $L_n = \text{polylog}(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- **Important feature**: on each scale $L_j = 2^{-j} n$ the Log-Sobolev problem involves *constraint edges inherited* from the conditioning on scale L_{j-1}, \ldots, L_0.
- Straightforward "bootstrapping" i.e.

\[
 c_S(n) \leq O(c_S(L_n)) = O(\exp(cL_n)) \\
 \Downarrow \\
 c_S(L_n) = O(\exp(O(\text{polylog}(L_n))))
\]

not feasible.
Bounds on c_S on scale $L_n = \text{polylog}(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- **Important feature:** on each scale $L_j = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges inherited* from the conditioning on scale L_{j-1}, \ldots, L_0.
- Straightforward “bootstrapping” i.e.
 \[
 c_S(n) \leq O(c_S(L_n)) = O(\exp(cL_n))
 \]
 \[
 \downarrow
 \]
 \[
 c_S(L_n) = O(\exp(O(\text{polylog}(L_n))))
 \]
 not feasible.
- Need e.g. a $O(poly(L_n))$ bound on $c_S(L_n)$ by different means.
A \textit{poly}(L_n) \text{ upper bound on } c_S(L_n)

- \(c_S(L_n) = O(n \times T_{\text{rel}}(L_n)) \)

- \(T_{\text{rel}}(L_n) \leq \mathcal{C} \) (congestion rate)

\[
\mathcal{C} := \max_{\eta \sim \eta'} \sum_{\sigma, \sigma': \Gamma_{\sigma, \sigma'} \ni (\eta, \eta')} \frac{\mu(\sigma)\mu(\sigma')}{\mu(\eta)p(\eta, \eta')} |\Gamma_{\sigma, \sigma'}|
\]

where, for any \(\sigma, \sigma' \in \tilde{\Omega} \), \(\Gamma_{\sigma, \sigma'} \) is a path in \(\tilde{\Omega} \) from \(\sigma \) to \(\sigma' \).

- Typically \(\mathcal{C} = O(\exp(cL_n)) \). We need \(O(\text{poly}(L_n)) \).
An improved canonical paths argument

- Reversible ergodic Markov chain X_t on \mathcal{X}.

Lemma (Canonical paths with burn-in time)

$$T_{rel} \leq 6T^2\rho + 3C(X^\prime)\rho^2$$
An improved canonical paths argument

- Reversible ergodic Markov chain X_t on \mathcal{X}.

- $\mathcal{X}' \subset \mathcal{X}$ be such that for any pair $x, y \in \mathcal{X}'$ it is possible to define a canonical path $\Gamma_{x,y}$ entirely contained in \mathcal{X}'. Let $C(\mathcal{X}')$ be the associated congestion rate.

Lemma (Canonical paths with burn-in time)

$$T_{rel} \leq 6T^2\rho + 3C(\mathcal{X}')\rho^2$$
An improved canonical paths argument

- Reversible ergodic Markov chain X_t on \mathcal{X}.

- $\mathcal{X}' \subset \mathcal{X}$ be such that for any pair $x, y \in \mathcal{X}'$ it is possible to define a canonical path $\Gamma_{x,y}$ entirely contained in \mathcal{X}'. Let $C(\mathcal{X}')$ be the associated congestion rate.

- Fix time T and let

$$\rho = \min_{x \in \mathcal{X}} \mathbb{P}_x(X_T \in \mathcal{X}')$$
An improved canonical paths argument

- Reversible ergodic Markov chain X_t on \mathcal{X}.

- $\mathcal{X}' \subset \mathcal{X}$ be such that for any pair $x, y \in \mathcal{X}'$ it is possible to define a canonical path $\Gamma_{x,y}$ entirely contained in \mathcal{X}'. Let $C(\mathcal{X}')$ be the associated congestion rate.

- Fix time T and let

$$\rho = \min_{x \in \mathcal{X}} \mathbb{P}_x(X_T \in \mathcal{X}')$$

Lemma (Canonical paths with burn-in time)

$$T_{rel} \leq \frac{6T^2}{\rho} + \frac{3C(\mathcal{X}')}{\rho^2}$$
Back to thin rectangles

Theorem
Consider the original triangulation chain on $n \times m$ rectangle with (possibly) boundary edges sticking in but not longer than $n/4$. Then

$$T_{\text{rel}} = O(poly(n)).$$

Corollary (The needed $poly(Ln)$ bound)
For the restricted chain on $\tilde{\Omega}$ on $L_n \times m$ rectangle

$$T_{\text{rel}}(L_n) = O(poly(L_n)) = O(polylog(n)).$$
Sketch of proof

Define \(\Omega' \subset \Omega \) as follows:

- any edge does not exceed by more than \(O(\log n) \) its minimal allowed (by the boundary edges) length.
- for any \(x \neq y \), if \(\sigma_y \) crosses the ground state edge \(\bar{\sigma}_x \) at \(x \) then \(|\sigma_y| \leq |\bar{\sigma}_x| + O(\log n) \).

Lemma

Fix \(T = cn^2 m \). Then \(\Omega' \) satisfies the hypotheses of the \textit{“canonical paths with burn-in lemma”} with

\[
\rho = \min_{\sigma} \mathbb{P}(\sigma(T) \in \Omega') \geq 1/2
\]

and congestion rate \(C' = O(poly(n)) \) for a suitable choice of canonical paths in \(\Omega' \).
Key feature of the set Ω'

- Pb: Given σ, η construct path between them.

- In principle, to flip σ_x to η_x one may need to reshuffle edges in σ with midpoints very far from x.

- If $\sigma, \eta \in \Omega'$ “very far” is not more than $O(\log n)$.

- It is possible to construct the path by processing the slabs left-to-right without never changing more than 2 slabs at a time.