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e Q(m, n) the set of all triangulations of Rp,




e Q(m, n) the set of all triangulations of Rp,

e m=1: #Q(1, n) = (*"). Equivalence with lattice
paths
(a) A one dimensional lattice (b) The associated lattice path
triangulation



An important difference w.r.t. spin systems

The middle point of each (random) edge is a given
(deterministic) point in the half-integer lattice;

e Assigning an edge o, < assigning a “spin s,”.

For a spin system on a graph interaction is local: the law of
sx is determined given the neighbors.

An edge o, has 4 neighboring edges whose midpoints can
be, however, very far from x.

Lack of locality/geometry.
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Flip moves: an edge is flippable if it is the diagonal of a
parallelogram.
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Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a
parallelogram. In this case:

Flip graph on Q(m, n) is connected.

Markov chain reversible w.r.t. uniform distribution:
e pick a midpoint x u.a.r.
e flip o, with Prob =1/2 if flippable.



Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on Q(m, n)
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Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on Q(m, n)
Aol
po) =5 lol= 3 lou

where |ox| = ||ox]|1-

Glauber chain: pick u.a.r. a midpoint x € A, ,,. If the edge o is
flippable to edge o/, then flip it with probability
plo’) Al
wlo) + (@) ~ NN

Reversible w.r.t. p.

e e

6/26



Weighted triangulations and Glauber dynamics
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Lattice Triangulations
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Weighted triangulations and Glauber dynamics

Simulations suggest a phase transition (here n = m = 50)
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Conjecture
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Main results for any m, n

Theorem (Rapid mixing for small \)

There exists Ao > 0 such that, for all A < )¢ and any possible set
of constraint edges, Tmix = O(mn(m + n)).



Main results for any m, n

Theorem (Rapid mixing for small \)

There exists Ao > 0 such that, for all A < )¢ and any possible set
of constraint edges, Tmix = O(mn(m + n)).

Theorem (Slow mixing for A > 1)

For all A\ > 1 and without constraint edges
Tmix = €Xp (C(m + n))



Rapid mixing for small A
Path coupling (Bubley-Dyer 1997) + exponential metric
[inspired by S. Greenberg, A. Pascoe, D. Randall ’09].
Exponential metric: Fix o > 1, and for o, 7 differing only at x set

Ao ) a® -1 if |ox| = |7x| = 2 (unit diagonals)
0—7 T = .
otherwise.
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Rapid mixing for small A
Path coupling (Bubley-Dyer 1997) + exponential metric
[inspired by S. Greenberg, A. Pascoe, D. Randall ’09].
Exponential metric: Fix o > 1, and for o, 7 differing only at x set

Ao ) a® -1 if |ox| = |7x| = 2 (unit diagonals)
0-7 T = .
otherwise.

’a‘gx| — O[‘TX‘

Lemma
For A < \g = 1/8, a = 8, there is a coupling such that

E,.[A(0,7)] < Ao, ) (1—2|,\+,m‘).



Torpid mixing for A > 1

Definition (Exponential Bottleneck)
Aset A C Q(m, n) such that u(A) < 1/2 and

H(aA) —c(m+n)
< e
1(A)

Here 0A = {(0,0"): 0 € A, o' ¢ A, 0 <> 0'}.

Lemma
Exponential bottleneck =

Tix = Q(exp[c(n+ m)]),  ¢>0.



The Herringbone bottleneck

e Ais the set of all Herringbone triangulations.
e Orientation in 1D layers oscillates +/—.

e o € QA iff an internal edge is vertical.

e For \ > 1, o0 € 0A is exponentially unlikely (in max(n, m))
given A.



Optimal bounds on T,,;, for m =1

Theorem

e \ < 1: Twix = ©(n?) (path coupling + exponential metric)
o A\ > 1 Tuix = exp(Q(n?)) (1 layer bottleneck)

e A\ =1: Twix ~ n3logn (e.g. coupling, D.B. Wilson '01)



Optimal bounds for thin rectangles (m = const, n > 1)

Theorem
o A< 1 Thix = O(n?)
o A > 1: Tmix - eXp(Q(n2/m))
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Optimal bounds for thin rectangles (m = const, n > 1)

Theorem
o A< 1 Thix = O(n?)
o A > 1: Tmix - eXp(Q(n2/m))

A poly(n) bound on Ty for A = 1 is still missing

e Lower bound for )\ > 1: (slightly) improved version of the
Herringbone Bottleneck.

e Upper bound for )\ < 1:

e In time O(n?) the chain enters the set Q of “short” (O(log n))
triangulations. Main tool: Lyapunov function (A. Stauffer
’15).

e Mixing time bounds O(n(+°() of restricted chain in Q via
Log-Sobolev bounds + improved canonical paths
arguments.



Exponential tails of edge length (m fixed).

Lemma (No constraint edges)

Fix A < 1. There exist ci, ¢ such that, for any t > c;n? and any
£>1,
sup sup Ps(|ox(t)| > £) < c1exp(—cf)

o XE/\n,m

Lemma (Constraint edges 7)

Fix A < 1. Let 5 the ground state of o in the presence of
constraint edges 7. There exist ci, ¢, such that, for any t > cyn?,
any { > 1 and any x,

sup P (Uy {7 (£) N 7 0} 1 {10y (0)] = (6] + £}) < s exp(—caf)



Coupling in presence of constraint edges

\/

Pl

-/

\

BN

constraint edges

e Let R be a k x mrectangle inside R, .

vertical crossing

constraint edges

e Let 7,7’ be constraint edges not intersecting R.

Lemma

Fix A < 1 and m. There exists ¢ and kg together with a coupling of
u”, u” such that, if k > ko, with probability at least 1 — exp[—ck]

there exist ek common vertical crossings of unit edges in R.

B e
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Back to thin rectangles: T, = O(n?) for any )\ < 1

Step 1: Burn-in phase.

For some T = c¢()\)n?, uniformly in the initial condition and

w.h.p. N
o(t) € Q, te [T, T+n'.

Q is the set of triangulations with at most O(log n) edges.

e The restricted chain~ to Q is irreducible with reversible
measure g = p(- | Q).

e Because of structural properties i, u well coupled.

« Sufficient to prove Tmix = o(n?).



Step 2: spatial mixing in Q

Te\J,

T\

Lemma (Spatial mixing)
The relative density of the marginals on the left block (light gray)

of [i conditioned on two arbitrary (short) triangulations in the
right block (dark gray) is exponentially (in |J.| ) close to one if

| Je| = Q(polylog(n)).
I i:ttice Triangulations 17/26



Step 3: Log-Sobolev constant in Q

Figure: The rectangle A decomposed into two almost-halves A;, A,
with A; N A; = Q(log n) x m rectangle.

Spatial mixing implies quasi-factorization of the entropy:



Step 3: Log-Sobolev constant in Q

Figure: The rectangle A decomposed into two almost-halves A;, A,
with A; N A; = Q(log n) x m rectangle.

Spatial mixing implies quasi-factorization of the entropy:
Enta(f?) < (1+ n 9)fi [Enta, (F2]A\ A1) + Enta, (F2|A\ A2)] .

4

Multiscale analysis of the Log-Sobolev constant.
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Notation

e Dirichlet form:
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e Entropy:
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Notation

e Dirichlet form:

E(F. 1) =5 3 Ho)p(0,0")(F(0) ~ F(o"))2

U,U/Gﬁ
e Entropy:
Ent(f?) = fi[f? log(f?/al[f*])].

e Logarithmic Sobolev constant

nt(F2
cs(n) = SL;P Eg(i(’i;)) )

° T—mix < C logn x cs(n).

Theorem _
Cs(n) g n1+°(1) = Tmix = O(n”o(l)).



High level overview

e e
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High level overview
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.

e o o o o o o o o o s 8 @ X X X X X X X X X X X

Quasi-factorization of the entropy =

cs(2n) < (14+n"°) x 2 x cs(n/2)

The factor 2 comes from double counting the flips in the
overlapping region.

A random averaging of the location of the overlap block
reduces it to (1 + 1/ log? n).

Sloppy notation: boundary edges are there !
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e o e o o o o o o o o e 8 @ X X X X X X X X x x
.

e o o o o o o o o o s 8 @ X X X X X X X X X X X

Quasi-factorization of the entropy =

cs(2n) < (14+n"°) x 2 x cs(n/2)

The factor 2 comes from double counting the flips in the
overlapping region.

A random averaging of the location of the overlap block
reduces it to (1 + 1/ log? n).

Sloppy notation: boundary edges are there !
= cs(n) < const x cs(polylog(n)).
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Bounds on cs on scale L, = polylog(n)

e Exponential bound cs(L,) = O(exp(cL,)) not difficult but
not sufficient.

o Important feature: on each scale L; = 2~/ n the Log-Sobolev
problem involves constraint edges inherited from the
conditioning on scale L;_, ..., Lo.

e Straightforward “bootstrapping” i.e.

cs(n) < O(cs(Ln)) = O(exp(cLn))
)
cs(Ln) = O(exp(O(polylog(Ly)))

not feasible.

e Need e.g. a O(poly(L,)) bound on cs(L,) by different
means.



A poly(L,) upper bound on cs(L,)

e cs(Lp) = O(n x Te(Ln))

e Ti1(Ln) < C (congestion rate)

— max p(o)p(a’)
C=ne Z p(n)p(n, ’)‘r”‘

o,0’:
Iy or2(mm)
where, for any 0,0’ € Q, I, .+ is a path in Q from o to ¢’

e Typically C = O(exp(cL,)). We need O(poly(L,)).
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An improved canonical paths argument

e Reversible ergodic Markov chain X; on X.

e X' C X be such that for any pair x,y € X’ it is possible to
define a canonical path I', ,, entirely contained in X”. Let
C(X') be the associated congestion rate.

e Fix time T and let

= min P, (X X'
p = minPy(X7 € X7)
Lemma (Canonical paths with burn-in time)

T2 X/
Trel < L + 3C(2 )
P p




Back to thin rectangles

Theorem

Consider the original triangulation chain on n x m rectangle with
(possibly) boundary edges sticking in but not longer than n/4.
Then

Trel = O(pO/y(n))
Corollary (The needed poly(Ln) bound)

For the restricted chain on Q on L, x m rectangle
Tre(Ln) = O(poly(Ly)) = O(polylog(n)).



Sketch of proof

Define Q' C Q as follows:

¢ any edge does not exceed by more than O(log n) its
minimal allowed (by the boundary edges) length.

e for any x # y, if o, crosses the ground state edge &, at x
then |o,| < |5x| + O(log n).

Lemma
Fix T = cn’m. Then S satisfies the hypotheses of the “canonical
paths with burn-in lemma” with

p= mUinIP’(J(T) eQ)>1/2

and congestion rate C' = O(poly(n)) for a suitable choice of
canonical paths in .



Key feature of the set ¢’

e Pb: Given o, 7 construct path between them.

e In principle, to flip o, to 7, one may need to reshuffle
edges in o with midpoints very far from x.

o If o, € Q' “very far” is not more than O(log n).

Clogn

e It is possible to construct the path by processing the slabs
left-to-right without never changing more than 2 slabs at a
time.



