The cutoff phenomenon for random walk on random directed graphs

Justin Salez

Joint work with C. Bordenave and P. Caputo
Outline of the talk
Outline of the talk

1. The cutoff phenomenon for Markov chains
Outline of the talk

1. The cutoff phenomenon for Markov chains
2. Random walk on directed graphs
Outline of the talk

1. The cutoff phenomenon for Markov chains
2. Random walk on directed graphs
3. Main results
Outline of the talk

1. The cutoff phenomenon for Markov chains
2. Random walk on directed graphs
3. Main results
Markov chain mixing

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space X converges to its stationary law $\pi = \pi P$.

$\exists \text{Distance to equilibrium at time } t$

$D_{tv}(t) := \max_{x \in X} \| P_t(x, \cdot) - \pi(\cdot) \|_{tv}$

Mixing times ($0 < \epsilon < 1$): $t_{mix}(\epsilon) := \min \{ t \geq 0 : D_{tv}(t) \leq \epsilon \}$
Markov chain mixing

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space \mathcal{X} converges to its stationary law $\pi = \pi P$:
Markov chain mixing

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space \mathcal{X} converges to its stationary law $\pi = \pi P$:

$$\forall (x, y) \in \mathcal{X}^2, \quad P^t(x, y) \xrightarrow{t \to \infty} \pi(y).$$
Markov chain mixing

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space \mathcal{X} converges to its stationary law $\pi = \pi P$:

$$\forall (x, y) \in \mathcal{X}^2, \quad P^t(x, y) \xrightarrow{t \to \infty} \pi(y).$$

▷ Distance to equilibrium at time t:

$$D_{TV}(t) := \max_{x \in \mathcal{X}} \| P^t(x, \cdot) - \pi(\cdot) \|_{TV}$$
Markov chain mixing

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space \mathcal{X} converges to its stationary law $\pi = \pi P$:

$$\forall (x, y) \in \mathcal{X}^2, \quad P^t(x, y) \xrightarrow{t \to \infty} \pi(y).$$

▷ Distance to equilibrium at time t:

$$D_{TV}(t) := \max_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi(\cdot)\|_{TV}$$

▷ Mixing times $(0 < \varepsilon < 1)$:

$$t_{MIX}(\varepsilon) := \min\{t \geq 0: D_{TV}(t) \leq \varepsilon\}$$
Example: card shuffling
Example: card shuffling

\[\mathcal{X} = \mathfrak{S}_n \]
Example: card shuffling

\[\mathcal{X} = \mathfrak{S}_n \; ; \; P = \text{“top-to-random shuffle”} \]
Example: card shuffling

\[\mathcal{X} = \mathfrak{S}_n \; ; \; P = \text{“top-to-random shuffle”} \; ; \; \pi = \text{uniform} \]
Example: card shuffling

\[X = \mathcal{S}_n \; ; \; P = \text{“top-to-random shuffle”} \; ; \; \pi = \text{uniform} \]

Theorem (Aldous-Diaconis ‘86). For any fixed \(0 < \varepsilon < 1 \),

\[\frac{t_{\text{MIX}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1. \]
Example: card shuffling

\[X = \mathcal{S}_n \; ; \; P = \text{“top-to-random shuffle”} \; ; \; \pi = \text{uniform} \]

Theorem (Aldous-Diaconis ‘86). For any fixed \(0 < \varepsilon < 1 \),

\[
\frac{t_{\text{mix}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1.
\]

- at \(t = 0.99 \, n \log n \), the deck is not mixed at all \((D_{TV}(t) \approx 1)\)
Example: card shuffling

\[\mathcal{X} = \mathcal{S}_n ; \ P = \text{“top-to-random shuffle”} ; \ \pi = \text{uniform} \]

Theorem (Aldous-Diaconis ‘86). For any fixed \(0 < \varepsilon < 1 \),

\[
\frac{t_{\text{mix}}(\varepsilon)}{n \log n} \xrightarrow{n \to \infty} 1.
\]

- at \(t = 0.99 \ n \log n \), the deck is not mixed at all \((D_{TV}(t) \approx 1) \)
- at \(t = 1.01 \ n \log n \), the deck is completely mixed \((D_{TV}(t) \approx 0) \)
Example: card shuffling

\[\mathcal{X} = \mathfrak{S}_n \ ; \ P = \text{“top-to-random shuffle”} \ ; \ \pi = \text{uniform} \]

Theorem (Aldous-Diaconis ‘86). For any fixed \(0 < \varepsilon < 1 \),

\[\frac{t_{\text{mix}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1. \]

- at \(t = 0.99 \, n \log n \), the deck is not mixed at all \((D_{TV}(t) \approx 1) \)
- at \(t = 1.01 \, n \log n \), the deck is completely mixed \((D_{TV}(t) \approx 0) \)

Theorem (Diaconis-Fill-Pitman ‘90). For any fixed \(\lambda \in \mathbb{R} \),

\[D_{TV}(n \log n + \lambda n + o(n)) \]
Example: card shuffling

\[\mathcal{X} = S_n \, ; \, P = \text{“top-to-random shuffle”} \, ; \, \pi = \text{uniform} \]

Theorem (Aldous-Diaconis ‘86). For any fixed \(0 < \varepsilon < 1 \),

\[
\frac{t_{\text{mix}}(\varepsilon)}{n \log n} \xrightarrow{n \to \infty} 1.
\]

- at \(t = 0.99 \, n \log n \), the deck is not mixed at all \((D_{TV}(t) \approx 1) \)
- at \(t = 1.01 \, n \log n \), the deck is completely mixed \((D_{TV}(t) \approx 0) \)

Theorem (Diaconis-Fill-Pitman ‘90). For any fixed \(\lambda \in \mathbb{R} \),

\[
D_{TV}(n \log n + \lambda n + o(n)) \xrightarrow{n \to \infty} \Phi(\lambda)
\]

with \(\Phi: \mathbb{R} \to (0, 1) \) decreasing from \(\Phi(-\infty) = 1 \) to \(\Phi(+\infty) = 0 \).
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including:

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly '10)
 - Ramanujan graphs (Lubetzky, Peres '15)
 - Trees (Basu, Hermon, Peres '15)
 - Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly '15 and Ben-Hamou, S. '15)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly '10)
 - Ramanujan graphs (Lubetzky, Peres '15)
 - Trees (Basu, Hermon, Peres '15)
 - Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly '15 and Ben-Hamou, S. '15)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly ‘10)
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly ‘10)
 - Ramanujan graphs (Lubetzky, Peres ‘15)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly ‘10)
 - Ramanujan graphs (Lubetzky, Peres ‘15)
 - Trees (Basu, Hermon, Peres ‘15)
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly ‘10)
 - Ramanujan graphs (Lubetzky, Peres ‘15)
 - Trees (Basu, Hermon, Peres ‘15)
 - Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly ‘15 and Ben-Hamou, S. ‘15)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly ‘10)
 - Ramanujan graphs (Lubetzky, Peres ‘15)
 - Trees (Basu, Hermon, Peres ‘15)
 - Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly ‘15 and Ben-Hamou, S. ‘15)

Still, this phenomenon is far from being completely understood.
Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
 - Random regular graphs (Lubetzky, Sly ‘10)
 - Ramanujan graphs (Lubetzky, Peres ‘15)
 - Trees (Basu, Hermon, Peres ‘15)
 - Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly ‘15 and Ben-Hamou, S. ‘15)

Still, this phenomenon is far from being completely understood.

In particular, very few results outside the reversible world...
1. The cutoff phenomenon for Markov chains
2. Random walk on directed graphs
3. Main results
Random walk on a digraph

\[X = \{1, \ldots, 6\} \]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\end{array}
\]
Random walk on a digraph

\[\mathcal{X} = \{1, \ldots, 6\} \]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\end{array}
\]

- How long does it take for the walk to mix?
Random walk on a digraph

\[\mathcal{X} = \{1, \ldots, 6\} \]

\[
\begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\end{pmatrix}
\]

- How long does it take for the walk to mix?
- What does the stationary distribution \(\pi \) look like?
Motivation: ranking algorithms (credit: the opte project)
Random digraph with given degrees (Cooper-Frieze '04)
Random digraph with given degrees (Cooper-Frieze ’04)

Goal: generate a random digraph G on $\mathcal{X} = \{1, \ldots, n\}$ with given in-degrees $\{d_x^-\}_{x \in \mathcal{X}}$ and out-degrees $\{d_x^+\}_{x \in \mathcal{X}}$ (equal sum m)
Random digraph with given degrees (Cooper-Frieze ’04)

Goal: generate a random digraph G on $\mathcal{X} = \{1, \ldots, n\}$ with given in-degrees $\{d_x^-\}_{x \in \mathcal{X}}$ and out-degrees $\{d_x^+\}_{x \in \mathcal{X}}$ (equal sum m)
Goal: generate a random digraph G on $\mathcal{X} = \{1, \ldots, n\}$ with given in-degrees $\{d_x^-\}_{x \in \mathcal{X}}$ and out-degrees $\{d_x^+\}_{x \in \mathcal{X}}$ (equal sum m)
Simulation: $n = 3 \times 1000, (d^+, d^-) = (3, 2), (3, 4), (4, 4)$
Simulation: \(n = 3 \times 1000, (d^+, d^-) = (3, 2), (3, 4), (4, 4) \)
Distribution of the stationary masses \(\{n\pi(x) : x \in \mathcal{X}\} \)
Distribution of the stationary masses $\{n\pi(x) : x \in \mathcal{X}\}$
A glimpse at the eigenvalues
1. The cutoff phenomenon for Markov chains
2. Random walk on directed graphs
3. Main results
Cutoff and profile

Sparse regime: \(2 \leq d \pm x \leq \Delta\) with \(\Delta\) fixed as \(n \to \infty\)

\[
\mu := \frac{1}{m} \sum_{x \in X} d - x \log d + x, \quad \sigma^2 := \frac{1}{m} \sum_{x \in X} (d - x)^2 (-\mu)\]

Theorem 1 (cutoff): set \(t_n = \log n \mu\).

\[
\text{D}^2_{\text{tv}}(\lambda t_n + o(t_n)) \xrightarrow{P} \begin{cases} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{cases}
\]

Theorem 2 (profile): set \(w_n = \sqrt{\sigma^2 \log n} \mu^{3/2} (\gg \log \log n)\).

\[
\text{D}^2_{\text{tv}}(t_n + \lambda w_n + o(w_n)) \xrightarrow{P} \Phi(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\lambda} e^{-u^2/2} du
\]
Cutoff and profile

Sparse regime: $2 \leq d_x^{\pm} \leq \Delta$ with Δ fixed as $n \to \infty$
Cutoff and profile

Sparse regime: $2 \leq d_x^\pm \leq \Delta$ with Δ fixed as $n \to \infty$

$$\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+$$
Cutoff and profile

Sparse regime: \(2 \leq d_x^{\pm} \leq \Delta \) with \(\Delta \) fixed as \(n \to \infty \)

\[
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+
\]

Theorem 1 (cutoff): set \(t_n = \frac{\log n}{\mu} \).
Cutoff and profile

Sparse regime: \(2 \leq d_x^\pm \leq \Delta \) with \(\Delta \) fixed as \(n \to \infty \)

\[
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+
\]

Theorem 1 (cutoff): set \(t_n = \frac{\log n}{\mu} \).

\[
\text{D}_{TV} (\lambda t_n + o(t_n)) \xrightarrow{\mathbb{P}} \begin{cases} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{cases} \quad n \to \infty
\]
Cutoff and profile

Sparse regime: \(2 \leq d_{x}^{\pm} \leq \Delta \) with \(\Delta \) fixed as \(n \to \infty \)

\[
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_{x}^{-} \log d_{x}^{+}, \quad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_{x}^{-} (\log d_{x}^{+} - \mu)^2
\]

Theorem 1 (cutoff): set \(t_n = \frac{\log n}{\mu} \).

\[
\mathbb{D}_{TV} (\lambda t_n + o(t_n)) \xrightarrow{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right. \quad \text{as } n \to \infty
\]
Cutoff and profile

Sparse regime: $2 \leq d_x^\pm \leq \Delta$ with Δ fixed as $n \to \infty$

$$\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \quad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- (\log d_x^+ - \mu)^2$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$.

$$D_{TV}(\lambda t_n + o(t_n)) \xrightarrow{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right.$$

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}}$
Cutoff and profile

Sparse regime: $2 \leq d_x^\pm \leq \Delta$ with Δ fixed as $n \to \infty$

$$\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \quad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- (\log d_x^+ - \mu)^2$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$.

$$D_{TV} (\lambda t_n + o(t_n)) \xrightarrow{\mathbb{P}} \begin{cases} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{cases} \quad \text{as } n \to \infty$$

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}} (\gg \log \log n)$.

Cutoff and profile

Sparse regime: \(2 \leq d_x^\pm \leq \Delta\) with \(\Delta\) fixed as \(n \to \infty\)

\[
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \quad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- (\log d_x^+ - \mu)^2
\]

Theorem 1 (cutoff): set \(t_n = \frac{\log n}{\mu}\).

\[
\text{D}_{TV}(\lambda t_n + o(t_n)) \xrightarrow{\mathbb{P}} \begin{cases} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{cases} \quad n \to \infty
\]

Theorem 2 (profile): set \(w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}} (\gg \log \log n)\).

\[
\text{D}_{TV}(t_n + \lambda w_n + o(w_n)) \xrightarrow{\mathbb{P}} \Phi(\lambda) \quad n \to \infty
\]
Cutoff and profile

Sparse regime: $2 \leq d_x^\pm \leq \Delta$ with Δ fixed as $n \to \infty$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \quad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- (\log d_x^+ - \mu)^2
$$

Theorem 1 (cutoff): set $t_n = \log n \mu$.

$$
\text{D_{TV}}(\lambda t_n + o(t_n)) \xrightarrow{n \to \infty}{\mathbb{P}} \begin{cases} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{cases}
$$

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}}$ ($\gg \log \log n$).

$$
\text{D_{TV}}(t_n + \lambda w_n + o(w_n)) \xrightarrow{n \to \infty}{\mathbb{P}} \Phi(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\lambda}^{\infty} e^{-\frac{u^2}{2}} \, du
$$
Sensitivity to initial condition

Theorem 3 (vertex irrelevance): previous results unchanged if

$$D_{tv}(t) := \min_{x \in X} \|P_t(x, \cdot) - \pi\|_{tv}$$

What about a more spread-out initial law, e.g. $$\nu(x) := d - x$$?

Theorem 4 (constant-time relaxation): for fixed $$t \geq 0$$,

$$\|\nu P_t - \pi\|_{tv} \leq \sqrt{\Delta^2 \rho t} + o\left(1\right)$$

with $$\rho^2 := \frac{1}{m} \sum_{x \in X} d - x d + x \leq \frac{1}{2}$$

Corollary: $$\pi(x)$$ is determined by the local geometry around $$x$$ only!
Sensitivity to initial condition

- how does all this depend on the choice of the initial vertex?

Theorem 3
(vertex irrelevance): previous results unchanged if

\[D_{tv}(t) := \min_{x \in X} \| P_t(x, \cdot) - \pi \|_{tv} \]

What about a more spread-out initial law, e.g. \(\nu(x) := d \cdot x^m \)?

Theorem 4
(constant-time relaxation): for fixed \(t \geq 0 \),

\[\| \nu P_t - \pi \|_{tv} \leq \sqrt{\Delta^2 \rho t + o_P(1)} \]

with \(\rho^2 := 1 \frac{m}{\sum_{x \in X} d \cdot x d^2 + x} \leq \frac{1}{2} \)

Corollary:
\(\pi(x) \) is determined by the local geometry around \(x \) only!
Sensitivity to initial condition

how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

\[D_{TV}(t) := \min_{x \in \mathcal{X}} \| P^t(x, \cdot) - \pi \|_{TV} \]
Sensitivity to initial condition

▷ how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

$$D_{TV}(t) := \min_{x \in \mathcal{X}} \| P^t(x, \cdot) - \pi \|_{TV}$$

▷ What about a more spread-out initial law, e.g. $\nu(x) := \frac{d_x}{m}$?
Sensitivity to initial condition

▷ how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

\[D_{TV}(t) \ := \ \min_{x \in X} \| P^t(x, \cdot) - \pi \|_{TV} \]

▷ What about a more *spread-out* initial law, e.g. \(\nu(x) := \frac{d_x^-}{m} \)?

Theorem 4 (constant-time relaxation): for fixed \(t \geq 0 \),

\[
\| \nu P^t - \pi \|_{TV} \leq \frac{\sqrt{\Delta}}{2} \varrho^t + o_P(1) \quad \text{with} \quad \varrho^2 := \frac{1}{m} \sum_{x \in X} \frac{d_x^-}{d_x^+} \leq \frac{1}{2}
\]
Sensitivity to initial condition

▷ how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

\[D_{TV}(t) := \min_{x \in X} \| P^t(x, \cdot) - \pi \|_{TV} \]

▷ What about a more *spread-out* initial law, e.g. \(\nu(x) : = \frac{d_x^-}{m} \)?

Theorem 4 (constant-time relaxation): for fixed \(t \geq 0 \),

\[
\| \nu P^t - \pi \|_{TV} \leq \frac{\sqrt{\Delta}}{2} \varrho^t + o_P(1) \quad \text{with} \quad \varrho^2 := \frac{1}{m} \sum_{x \in X} \frac{d_x^-}{d_x^+} \leq \frac{1}{2}
\]

Corollary: \(\pi(x) \) is determined by the local geometry around \(x \) only!
Distribution of the stationary masses \(\{n\pi(x): x \in \mathcal{X}\} \)
Distribution of the stationary masses $\{n\pi(x) : x \in \mathcal{X}\}$

\[
d_{\mathcal{W}}(\mathcal{L}, \mathcal{L}') = \sup_{f \in \text{Lip}_1(\mathbb{R})} \left| \int_{\mathbb{R}} f \, d\mathcal{L} - \int_{\mathbb{R}} f \, d\mathcal{L}' \right|
\]
Distribution of the stationary masses \(\{n\pi(x): x \in \mathcal{X}\} \)

\[
d_{\mathcal{W}}(\mathcal{L}, \mathcal{L}') = \sup_{f \in \text{Lip}_1(\mathbb{R})} \left| \int_{\mathbb{R}} f \, d\mathcal{L} - \int_{\mathbb{R}} f \, d\mathcal{L}' \right|
\]

Theorem 5 (asymptotics for the equilibrium masses):

\[
d_{\mathcal{W}} \left(\frac{1}{n} \sum_x \delta_{n\pi(x)}, \mathcal{L} \right) \xrightarrow{\mathbb{P}} 0 \quad \text{as} \quad n \to \infty
\]

L \in \text{P}_1(\mathbb{R}) determined by the recursive distributional equation

\[
d_{\mathcal{W}} + I_{d_{\mathcal{W}}} - I_{\sum_{k=1}^X \delta_{X_k}} = X_1, \quad \text{in which} \quad (X_k)_{k \geq 1} \text{ are i.i.d and independent of } I, \quad \text{and} \quad P(I = x) = d_{\mathcal{W}} + x_m.
\]
Distribution of the stationary masses \(\{n\pi(x) : x \in \mathcal{X}\} \)

\[
d_{\mathcal{W}}(\mathcal{L}, \mathcal{L}') = \sup_{f \in \text{Lip}_1(\mathbb{R})} \left| \int_{\mathbb{R}} f \, d\mathcal{L} - \int_{\mathbb{R}} f \, d\mathcal{L}' \right|
\]

Theorem 5 (asymptotics for the equilibrium masses):

\[
d_{\mathcal{W}} \left(\frac{1}{n} \sum_x \delta_{n\pi(x)}, \mathcal{L} \right) \xrightarrow{\mathbb{P}} 0 \quad \text{as} \quad n \to \infty.
\]

\(\mathcal{L} \in \mathcal{P}_1(\mathbb{R}) \) determined by the recursive distributional equation

\[
\frac{1}{d_\mathcal{I}^+} \sum_{k=1}^{d_\mathcal{I}^-} X_k \overset{\text{law}}{=} X_1,
\]

in which \((X_k)_{k \geq 1}\) are i.i.d and independent of \(\mathcal{I}\), \(\mathbb{P}(\mathcal{I} = x) = \frac{d_\mathcal{I}^+}{m} \).
Thank you!