

Network biology minicourse (part 4) Algorithmic challenges in genomics

Network alignment and querying

Roded Sharan

School of Computer Science, Tel Aviv University

Multiple Species PPI Data

• Rapid growth in number of species measured.

Being Comparative

<u>Paradigm:</u> Evolutionary conservation implies functional significance.

<u>Conservation</u>: similarity in sequence and interaction topology.

Main challenges

Local network alignment: detect *conserved* subnetworks across two (or more) networks.

<u>Global network alignment:</u> find 1-1 mapping between networks.

<u>Network querying:</u> given a query subnetwork in species A, find similar instances in the network of species B.

Local Pairwise Alignment

Problem definition

Given two networks (of two species), find pairs of subnetworks (one from each species) that are significantly similar.

- Similarity is measured both on vertices (sequence similarity) and edges (topological similarity).
- Under certain formulations reduces to subgraph isomorphism (NP hard).

Network Alignment

Alignment graph:

<u>Nodes:</u> pairs of sequence-similar proteins, one per species. <u>Edges:</u> conserved interactions.

- Facilitates search for conserved subnetworks.
- First introduced by Ogata et al.'00 and Kelley et al.'03.

PathBLAST (Kelley et al.'03)

[a] Pathway alignment [b] Alignment graph

H. pylori Yeast ~1500 PPIs ~15000 PPIs

	Vertices	Edges				
	(homologs)	Total	Direct	Gap	Mismatch	
Yeast vs. <i>H. pylori</i> (E _{cutoff} = 10 ⁻²) Random: mean ± SD	829	2,036 509.0 ± 128.0	7 2.5 ± 1.9	260 68.8 ± 23.8	1,769 437.7 ± 110.3	

Best match of bcp is Dot5, which does not interact with the pathway's proteins.

Protein sequence similarity -

Identifying conserved Complexes

- Generalize single-species scoring
- Given two protein subsets, one in each species, with a many-to-many correspondence between them, wish:
- 1. Each subset induces a dense subgraph.
- 2. Matched protein pairs are sequence-similar.

$$L(C,C') = L(C) \cdot L(C') \cdot \prod_{u,v \text{ matched}} \frac{\Pr(S_{u,v} \mid \text{homologs})}{\Pr(S_{u,v} \mid \text{random})}$$

Recall:
$$L(C) = \prod_{(u,v)\in E'} \frac{p}{p(u,v)} \prod_{(u,v)\notin E'} \frac{1-p}{1-p(u,v)}$$

S. et al. *JCB* 2005

Evolutionary-based Scoring

A Word on PPI Evolution

- PPI networks are shaped by duplication and indel events.
- Indel events arise due to mutations that change protein surface and are much more frequent.

Koyuturk et al., JCB 2006

Scoring (MaWish)

- The score of two aligned protein subsets is based on the **match, mismatch** and **duplication** events they induce.
- Each event is associated with a parameter (heuristically set) which determines its relative weight.

Score improvement

Match: Interaction in Bottar species M_c - Protein @ workletk Model: Dehætwobh@twork Mismatch: Interaction in one of the N - Background (Null) Model: Random subnetwork species and not the other The score that is assigned to every two pairs of homologous proteins is proportional to their sequence similarity level

 $Score(A, B) = Score(A) \cdot Score(B)$

 $Score(A \cup B) = Score(A \cup C)$

Score(A U B) = 1 _ Score(A U C) = 1

Score improvement (cont.)

 $P(A, B \mid M_c)$

Hirsh et al., ECCB 2006

Local multiple alignment

3-way comparison?

S. cerevisiae

- 4389 proteins
- 14319 interactions

C. elegans

- 2718 proteins
- 3926 interactions

D. melanogaster

- 7038 proteins
- 20720 interactions

S. et al. PNAS 2005

Generalizing Network Alignment

- Alignment graph is extensible to multiple species.
- Likelihood scoring is easily extensible, up to sequence similarity terms: require scoring a multiple sequence alignment.
- Ignored till now: need to balance edge and vertex terms.
- Practical solution:
 - Sensible threshold for sequence similarity.
 - Nodes in alignment graph are filtered accordingly.
 - Node terms are removed from score.

71 conserved regions: 183 significant clusters and 240 significant paths.

Interaction Prediction

A pair of proteins is predicted to interact if:

- 1. Sequence-similar proteins interact in the other two species.
- 2. The proteins co-occur in the same conserved complex.

Species	Sensitivity (%)	Specificity (%)	P-value	Strategy
Yeast	50	77	1-25	[1]
Worm	43	82	1e-13	[1]
Fly	23	84	5e-5	[1]
Yeast	9	99	1e-6	[2]+[1]
Worm	10	100	6e-4	[2]+[1]
Fly	0.4	100	0.5	[2]+[1]

Experimental Validation

- 65 predictions for yeast using strategies [1]+[2] were tested in lab.
- Success rate: 40-52%.
- Outperforms the interolog approach (Matthews et al.'01, Yu et al.'04) at 16-31%.

The Scalability Problem

- Network alignment scales as n^k (in time and space) for *n* proteins and *k* species, hence practical only for k=2,3 (takes several hours).
- Progressive alignment is fast (Graemlin by Flanick et al., GR 2006) but does not perform as well.

<u>Main idea:</u> imitate the greedy search w/o explicitly constructing the alignment graph.

Scaling Up Network Alignment

- Maintain linear representation.
- Observe: "network alignment node" is a vertical "path"
- Given a current seed, use dynamic programming to identify the vertical "path" which contributes most to the score.
- Complexity reduces to $O(m2^k)$!

#Species	#Nodes	#PPI edges	#Sequence similarity	Restricted order	
			edges	run time (sec)	
3	8132	102288	26834	40	
5	11945	193843	57142	72	
7	17236	301365	103887	83	
10	31458	877032	327219	140	

Network querying

Problem definition

- Given a query graph Q and a network G, find the subnetwork of G that is:
 - Aligned with Q
 - The alignment has maximal score

Network G

Query Q

Isomorphic Alignment

Match of sequence-similar proteins

Homeomorphic Alignment

Match of sequence-similar proteins and deletion/insertion of degree-2 nodes

Score of Alignment

 $h(q_5, v_5)$

h(q₆,v₆)

Complexity

- Network querying problem is NPC by reduction from subgraph isomorphism (in contrast to sequence querying!!!)
- Naïve algorithm has O(n^k) complexity
 - n = size of the PPI network, k = size of the query
 - Intractable for realistic values of *n* and *k*
 - *n* ~5000, *k*~10
- Reduction in complexity can be achieved by:
 - Constraining the network [Pinter et al., Bioinformatics'05]
 - Allowing vertex repetitions
 - Constraining the query (fixed parameter algs.)

PathBLAST

Reduction to finding paths in an "alignment" graph.

- Repetitions are possible.
- No general handling of insertions/deletions

[a] Pathway alignment [b] Alignment graph

DP-Based Approach

Use dynamic programming (a la sequence alignment):
W(i,j) is the maximal score of a partial alignment of query nodes {1...i} that ends at vertex j of the network.

$$W(i, j) = \max \begin{cases} W(i-1, m) + h(i, j) + w(m, j), (m, j) \in E & \text{match} \\ W(i, m) + w(m, j) + \delta_i, (m, j) \in E & \text{insertion} \\ W(i-1, j) + \delta_d & \text{deletion} \end{cases}$$

Shlomi et al., BMC Bioinformatics '06; Yang & Sze, JCB'07

Cross-Species Comparison of Signaling Pathways

• But DP may introduce protein repetitions along the path.

Yang & Sze, JCB'07

Ideas can be generalized to tree queries and beyond (QNet)

Bruckner et al., RECOMB 2009

TORQUE: Topology-free querying

Input:

- **♦**Graph G=(V,E)
- **♦**Color set {1,2,...,k}
- A coloring of network vertices

<u>Output:</u> a connected subgraph that is colorful.

Algorithmic idea

- Two implemented approaches:
 - Dynamic programming (color coding)
 - -ILP

Comparison with QNet

Summary & the road ahead...

1960		1970 1980			1990				
Biologica	l sequence	comparis	on						
First protein sequences by Sanger, others ⁵⁸	Dayhoff, ⁵⁹ Jukes/ Cantor ⁵⁵	Needleman/ Wunsch ⁶⁰	PAM, BLOSUM matrix Sn Wate	Swiss Gen EMBI nith/ erman ⁶¹	s-Prot, Bank, L-Bank	Stor Doolittle ⁶²	mo ⁶³ Tayle Lipma othe	Hausst Borodov Church or, ⁶⁴ an, ⁶⁵ ers	ar, ⁶⁶ sky, ⁶⁷ ill ⁶⁸ BLAST
A new type of data becomes routinely available Mathematical models of		p	Scoring via transition robabilities	Put genome datab	blic e-scale ases	Minin motifs dom	g for and ains	Hidde Marke mode	en DV IS
	evolution	Automated pairwise alignment	Fast d progra align	ynamic mming ment	A pi in	nalysis of global roperties; formation content	Multip alignm	ple nent	Database queries are staple of molecular biology
Interaction detection with two-hybrid mass spec.	Interologs; evolutionary models	Ogata/ Kanehisa ²⁶	MaWish Patł	BIND MINT, BLAST	DIP, GRID S	Alo netw cale-free mo property; bustness	n's vork tifs ⁶⁹ Shar Karp/lo	???? ran/ deker ¹⁸	? ?????
Biologica	l network o	omparisor							
1990	2001	2002	2003	2	2004	2005		20103	?