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Gene/Protein Modules

* A module Is a set of genes/proteins performing a
distinct biological function (Hartwell et al., Nature’99)
« Examples for PPl modules:

— protein complex: assembly of proteins that build up
some cellular machinery.

— signaling pathway: a chain of interacting proteins
propagating a signal in the cell.

e A data-driven “definition”: a module 1s

characterized by a coherent behavior of its genes
w.r.t. a certain biological property.



Module finding vs. clustering

* Modules can overlap
* Need not cover the entire network
« Some problems translate to biclustering...
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From complexes to heavy subgraphs

 Protein complexes are manifested as dense subgraphs.
 For example — the SCF complex:

(Skpl:

A

‘Cdcd’

Modeling problem: statistical scoring of density
Algorithmic problem: find high-scoring subgraphs




MCODE

* \Vertex weighting based on density of its
neighborhood
e Complex prediction:
— Start from heaviest vertex of weight w.
— Iteratively, add neighbors whose weight Is
above pw, where p Is a parameter.
— Repeat till all vertices are covered.
 Postprocessing

Bader & Hogue, Bioinformatics 2003



Details & limitations

 k-core: a graph of minimal degree k.

* Density: % edges out of all possible vertex pairs.
* The weight of a vertex Is defined as the density of
the highest k-core of its closed neighborhood,
multiplied by the corresponding k.

Main limitations
* No underlying probabilistic model
o Complexes cannot overlap (up to postprocessing).




NetworkBLAST

» Use likelihood-ratio scoring.

* Protein complex model: edges occur indep. with high
probability p.

- Random model: degree-preserving. Probability of edge
p(u,v) depends on degrees of proteins u,v.

C=(V'E)

wyee P(U,V) @ ueer 1= p(U,V)

 Actual score takes into account edge reliabilities
e log L(C) is additive over edges and non-edges of C
» Complexes are found via greedy local search 5 . ;1 jcB & PNAS 2005
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Markov Clustering (MCL)

ldea: Random walk tends to remain within clusters
Algorithm:

— Input: stochastic matrix M of the graph; parameters e, r.

— Iterate until convergence:
Expansion: M«AMe® //higher-length walks
Inflation: raise each entry to the power of r (and normalize)
//boost probs of intra-cluster walks

Enright et al., NAR 2002



Modularity-based clustering

Q = #(edges within groups) - E(#(edges within groups in a
RANDOM graph with same node degrees))

Trivial division: all vertices in one group

==> Q(trivial division) =0

k; = degree of node |

M =2k = 2|E]

Al =11f (,))eE, O otherwise

Ei] = expected #edges between | and |

In a random degree-preserving graph. /
Lemma: Eij ~ k*k;/ M \

Edges within
Q = 2(Ajj - ki*kj/M | i,j in the same group) | groups

Newman, PNAS 2006



Division intfo two groups

Q = >2_(Al] - ki*kj/M | 1,J in the same group)

» Suppose we have n vertices {1,...,n}

- s - {1} vector of size n.
Represent a 2-division:
- si == sj iff i and j are in the same group
- 7 (si*sj+1) = 1 if si==sj, O otherwise

. 1 ik
PR Q=g ;(Aij 7 )sisi 1)




Division into two groups (2)

Q=5 (A — ) (susy + 1)

i,J

1 since » . Aijj =) i ki=M

1 kik,;
Q= = E :(Aij — )58,
2 ij M B = the modularity matrix

1 // - symmetric

1 “ 7.
Q) = §3TBS where Bij — Aij ]f@]fj




Division into two groups @)

B Is symmetric = B Is diagonalizable (real eigenvalues)

B's eigenvalues B's orthonormal eigenvectors
01 2 P2 2 -+ 2 by W1, U2, - .. Upn| BY; = [

Q) = —STBS‘q = % Z Bia;

= > . azu,]
+ Which vector s maximizes Q?
- clearly s ~ ul maximizes Q, but ul may not be {+1}
vector

- Heuristic: maximize the projection of s on ul (a;):
choose si= +1 if ul>0, si=-1 otherwise




Performance evaluation

» Based on gold-standards such as:
— GO terms
— GO complexes
— MIPS complexes (yeast)

e Use measures of precision and recall

e Could be computed by overlaps (taking the mean,
or combine into Jaccard indices) or statistically
(hypergeometric encrichment).



Performance

1.0

06 08

0.4

0.2

High-throughput physical interactions

Performance comparison

High-throughput physical interactions

High-throughput physical interactions

1.0

Performance

06 08

0.4

0.0

e e
= ]
(= (=]
o
g © § ©
m o m o
: 3
| 5 o 53
o o 1
I N o i .
‘ =] e | (=] . | |
accard ensity o accardC RC sUensityC =] accardC PR sDensityC
Evaluation measures Evaluation measures Evaluation measures
Y2H physical interactions o Y2H physical interactions o Y2H physical interactions
= NetworkBlast - = NetworkBlast - = NetworkBlast
s  CFinder @ | =  CFinder @ = CFinder
DPClus = DPClus < DPClus
MCL 8 o MCL - MCL
Mcode & o Mcode & o Mcode
SpectraiMod E SpectralMod E SpectralMod
OneCluster e = OneCluster e = OneCluster
@ ° o °©
o o
= o
o

0.0
0.0

0N M n Bl

Evaluation measures

4 _-i . | |
' an'cs’rdc -ﬂab‘ i &elndityic

Evaluation measures

- Erd.C: -FJR'C %e’n:'}lwc

Evaluation measures

MIPS GO BP GO CC

Song and Singh. Bioinformatics 2009



Outline

 Protein complex: local prediction strategies

* Protein complex: global (clustering) strategies

* Protein complex: biclustering
e Pathway inference

* Network integration



Going back to the sources

 Data are not binary interactions! (Scholtens et al.’05)
 Construct a bait-prey graph.

 Use biclustering to detect sets of preys that co-occur
with the same baits.

-

o T

Geva et al. Bioinformatics 2011




Maximum Bounded Biclique 3

Assumption: Prey degrees<d. coececes
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Tanay et al. Bioinformatics 2002 O(n29)-time
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Finding Simple Paths

Problem: Given a graph G=(V,E) and a parameter k, find a
simple path of length k in G.

 NPC by reduction from Hamiltonian path.

e Trivial algorithm runs in O(nk).

o First application to PPI networks by Steffen et al.
Bioinformatics 2002

« \We will be interested In a fixed parameter algorithm, I.e.,
time Is exponential in k but polynomial in n.




Color Coding [AYZ'95]

Problem: Given a graph G=(V,E) and a parameter k, find a
simple path with k vertices (length k-1) in G.

Algorithm: Randomly color vertices with k colors, and
find a colorful path (distinct colors).

c:V ->[1Kk];S e 214

P(v,S) = max P(u,S —{c(v
( ) u:(u,v)ek,c(u)eS—{c(v)} ( { ( )})

Main idea: only 2k color subsets vs. nk node subsets.




Randomization Analysis

» A colorful path is simple, but a simple
path may not be colorful under a
given coloring

» Solution: run multiple independent
trials.

- After one trial:
Pr(Success) = k!/kk >1/ek



Color Coding [AYZ'95]

Complexity:
— Space complexity is O(2kn).
— Colorful path found by DP in O(km2X).
— O(eX) iterations are sufficient.
— Overall time is 2°0m,
— Note that the exponential part involves the

parameter only, that is, the problem is fixed
parameter tractable.




Comparison of Running Times

Path length  Color coding Exhaustive

8 435 866
9 2,149 15,120
10 11,650 ==

» ~4500 vertices, ~14500 edges.

Scott et al. JCB 2005



Biologically-Motivated
Constraints

» Color-Coding gives an algorithmic basis, now
introduce biologically motivated extensions.

» Can infroduce edge weights (confidence).

» Can constrain the start or end of a path by
type, e.g. membrane to TF (a la Steffen et al.)

» Can force the inclusion of a specific protein on
the path by giving it a unique color



A) Cell wall integrity pathway in yeast
MID2 RHO1 PKCl BCKl1 MKK1/2SLT2 RLMI1

Q0000 0 ® Aplto

B) Best path of length 7 found from MID2 to RLM1 Y€GST
MID2 ROM2 RHOl PCKl1 MKK1 SLT2 RLM1

0000 00¢

C) Pheromone response pathway in yeast
STE2/3 STE4/18 CDC42 STE20 STE1l STE7 FUS3 DIG1/2 STE12

000006000

D) Best path of length 9 found from STE2/3 to STE12
STE3 AKR1 STE4 CDC24 BEM1 STE5 STE7 KSS1  STE12

000006000




A Closer Look at Pheromone Response

REM1
Aggregate of all
(6-10)-length path S
CDC24 GPAL
STE3  sTE4/18
=T DIG1/2

AKR1

The real pathway (main chain):
STE2/3 STE4/18 CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12




Outline

 Protein complex: local prediction strategies

* Protein complex: global (clustering) strategies

* Protein complex: biclustering
e Pathway inference

* Network integration



Integration: main idea

« Overcomes noise and incomplete information
problems.

 Provides a more complete information on the module’s
activity or cross-talk or regulation.

Two common integration schemes:

e |dentical modeling of all data types — commonly
looking for cligues (e.g. Gunsalus et al.’05).

* Different models for different data types




e e e

~ @enetic Interactions

A genetic interaction is the interaction of two genetic
perturbations in determining a phenotype.

Synthetic lethality: Two genes A,B are synthetic lethal if
knockouts of A or B separately are viable, but knocking
out both is lethal.

1+1=0

e Can be systematically assayed by a Synthetic Geneic
Array (SGA): query vs. all non-essentials.
* There are workarounds also for essential genes.



: Integrating PPl & Gl (Kelley & Ideker ’05)

Two common models for genetic interactions:

1. Between-pathway: bridging genes operating in two
parallel pathways. When either pathway is active
the cell is viable.

2. Within-pathway: occur between protein sub-units
within a single pathway. A single gene is
dispensable for the function of the pathway.
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Scoring scheme

e Apply likelihood ratio scoring for physical and genetic
networks separately and combine the scores.

C=(V'E)
-7 f 1]

wyee P(U,V) wyeer 1= p(U,V)

//

I—(Cwithin ) o L(C physical ) L(C genetic)
L(Cbetween) = I—physical (Cl) I—physical (CZ) I—genetic (Cl’ CZ)



Between-Pathwav Results

Interactions

Genetic (SGA) ------ -
Genetic bundle ssmmms
Physical binding
Shared proteins s

M) Prefoldin complex

Q) Cell cortex

V) Cell
cortex
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Within-Pathway Results

Genetic Interactions
SGA (SL) ———-— -

SGA (88) ——— -
MIPS = ————-
Physlcal interactlons
Binding

Regulatory

Reaction

Spliceosome Mucleic acid and related transport



“~Gl Predictio

d Between pathway b within pathway
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e Prediction is based on incomplete motifs, as shown here.

e Two strategies: motif genes are unconstrained (naive) or,
alternatively, forced to be within a model.
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Maive predictions

EO 100 160 &S00 250 au0

Humber of incemplste motifs

8 15 29 29 26

Number of incomplete motifs

e Predicted 43 Gls with 87% estimated accuracy (5-fold CV).

e Physical data greatly improves accuracy (from 5%).




Gls mostly occur between pathways

=

e 1377 interactions are associated with between-pathway
models; only 394 within-pathway ones.

(These statistics account for only ~40% of Gls.)

e ~“63% of between-pathway models show enriched
function, while ~57% within-pathway models are enriched.

e Higher accuracy of between-pathway in Gl prediction: only
38% accuracy attained for within-pathway model.



Summary

* Modules take different shapes, most focus Is on
protein complexes that are modeled as heavy
subgraphs

* Local, global and biclustering strategies

e Integration of different networks enhances
prediction accuracy

 The field i1s moving toward module prediction from
multiple information types such as disease modules,
drug response pathways etc.
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