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Identifying network 
modules 

Network biology minicourse (part 3) 

Algorithmic challenges in genomics 



Gene/Protein Modules  
• A module is a set of genes/proteins performing a 
distinct biological function (Hartwell et al., Nature’99) 

• Examples for PPI modules:  
– protein complex: assembly of proteins that build up 
some cellular machinery. 
– signaling pathway: a chain of interacting proteins 
propagating a signal in the cell. 
 

• A data-driven “definition”: a module is 
characterized by a coherent behavior of its genes 
w.r.t. a certain biological property. 



Module finding vs. clustering  
• Modules can overlap 
• Need not cover the entire network 
• Some problems translate to biclustering… 



Distilling 
Modules 

from 
Networks 

Challenges: 

Scoring/modeling 

Detection 
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From complexes to heavy subgraphs 
• Protein complexes are manifested as dense subgraphs.  
• For example – the SCF complex: 
  
 
 
 
Modeling problem: statistical scoring of density 
Algorithmic problem: find high-scoring subgraphs 

Rbx1 

Skp1 

Cdc4 

Cdc53 



MCODE 
• Vertex weighting based on density of its 
neighborhood 
• Complex prediction: 

– Start from heaviest vertex of weight w. 
– Iteratively, add neighbors whose weight is 
above pw, where p is a parameter. 
– Repeat till all vertices are covered. 

• Postprocessing 

Bader & Hogue, Bioinformatics  2003 



Details & limitations 
• k-core: a graph of minimal degree k. 
• Density: % edges out of all possible vertex pairs. 
• The weight of a vertex is defined as the density of 
the highest k-core of its closed neighborhood, 
multiplied by the corresponding k. 

Main limitations 
• No underlying probabilistic model 
• Complexes cannot overlap (up to postprocessing). 



NetworkBLAST 
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• Use likelihood-ratio scoring. 
• Protein complex model: edges occur indep. with high 
probability  p. 
• Random model: degree-preserving. Probability of edge 
p(u,v) depends on degrees of proteins u,v.  

• Actual score takes into account edge reliabilities 
• log L(C) is additive over edges and non-edges of C 
• Complexes are found via greedy local search S. et al. JCB & PNAS 2005 
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Markov Clustering (MCL)  
Idea: Random walk tends to remain within clusters 
Algorithm: 

– Input: stochastic matrix M of the graph; parameters e, r. 
– Iterate until convergence: 

Expansion: M←Me //higher-length walks  
Inflation: raise each entry to the power of r (and normalize) 
//boost probs of intra-cluster walks 

Enright et al., NAR 2002 



Modularity-based clustering 
Q = #(edges within groups) - E(#(edges within groups in a  
                                   RANDOM graph with same node degrees)) 
Trivial division: all vertices in one group 
==> Q(trivial division) = 0 

Edges within 
groups 

ki = degree of node i 
M = ∑ki = 2|E| 
Aij = 1 if (i,j)∈E,  0 otherwise 
Eij = expected #edges between i and j 
in a random degree-preserving graph. 
Lemma: Eij  ≈ ki*kj / M 

Q = ∑(Aij - ki*kj/M | i,j in the same group) 

Newman, PNAS 2006 



Division into two groups 
 

• Suppose we have n vertices {1,...,n} 
• s - {±1} vector of size n.  

Represent a 2-division: 
– si == sj iff i and j are in the same group 
– ½ (si*sj+1) = 1 if si==sj, 0 otherwise 
 

• ==> 

Q = ∑(Aij - ki*kj/M  | i,j in the same group) 



Division into two groups (2) 

Since 

where 

B = the modularity matrix 
       - symmetric 
 



Division into two groups (3) 

• Which vector s maximizes Q?  
– clearly s ~ u1 maximizes Q, but u1 may not be {±1} 

vector  
– Heuristic: maximize the projection of s on u1 (a1):  

choose si= +1 if u1i>0, si=-1 otherwise 

B's eigenvalues B's orthonormal eigenvectors 
B is symmetric ⇒ B is diagonalizable (real eigenvalues) 

Bui = βiui 



Performance evaluation 
• Based on gold-standards such as: 

‒ GO terms 
‒ GO complexes 
‒ MIPS complexes (yeast) 

 
• Use measures of precision and recall 
• Could be computed by overlaps (taking the mean, 
or combine into Jaccard indices) or statistically 
(hypergeometric encrichment). 



Performance comparison 

Song and Singh. Bioinformatics 2009 

MIPS GO BP GO CC 
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Going back to the sources 
• Data are not binary interactions! (Scholtens et al.’05) 
• Construct a bait-prey graph. 
• Use biclustering to detect sets of preys that co-occur 

with the same baits. 
 
 
 

Geva et al. Bioinformatics  2011 



  
  
  
  
  
  
  
  
  

4 
3 
2 
2 
2 
3 
2 
2 
2 

Maximum Bounded Biclique 
4 
6 
4 
4 
4 
3 
2 
2 
4 

d. ≤Prey degrees Assumption: 

preys 

O(n2d)-time Tanay et al. Bioinformatics  2002 
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Finding Simple Paths 
Problem: Given a graph G=(V,E) and a parameter k, find a 
simple path of length k in G. 
• NPC by reduction from Hamiltonian path. 
• Trivial algorithm runs in O(nk). 
• First application to PPI networks by Steffen et al. 
Bioinformatics 2002 
• We will be interested in a fixed parameter algorithm, i.e., 
time is exponential in k but polynomial in n. 
 

 



Color Coding [AYZ’95] 
Problem: Given a graph G=(V,E) and a parameter k, find a 
simple path with k vertices (length k-1) in G. 
 
Algorithm: Randomly color vertices with k colors, and 
find a colorful path (distinct colors). 
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Main idea: only 2k color subsets vs. nk node subsets. 



Randomization Analysis 

• A colorful path is simple, but a simple 
path may not be colorful under a 
given coloring 

• Solution: run multiple independent 
trials. 

• After one trial:  



Color Coding [AYZ’95] 
Complexity:  

– Space complexity is O(2kn). 
– Colorful path found by DP in O(km2k). 
– O(ek) iterations are sufficient. 
– Overall time is 2O(k)m. 
– Note that the exponential part involves the 
parameter only, that is, the problem is fixed 
parameter tractable. 



Comparison of Running Times 

Path length Color coding Exhaustive 

8 435 866 

9 2,149 15,120 

10 11,650 -- 

• ~4500 vertices, ~14500 edges. 

Scott et al. JCB 2005 



Biologically-Motivated 
Constraints 

• Color-Coding gives an algorithmic basis, now 
introduce biologically motivated extensions. 

• Can introduce edge weights (confidence). 
• Can constrain the start or end of a path by 

type, e.g. membrane to TF (a la Steffen et al.) 
• Can force the inclusion of a specific protein on 

the path by giving it a unique color 
• … 



STE2/3   STE4/18  CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12 

MID2 RHO1 PKC1 BCK1 MKK1/2 SLT2 RLM1 

MID2 ROM2 RHO1 PCK1 MKK1 SLT2 RLM1 
B) Best path of length 7 found from MID2 to RLM1  

STE3 AKR1 STE4 CDC24 BEM1 STE5 STE7 KSS1 STE12 

C) Pheromone response pathway in yeast  

D) Best path of length 9 found from STE2/3 to STE12  

Appl. to 
yeast  

A) Cell wall integrity pathway in yeast 
 



STE2/3   STE4/18  CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12 

The real pathway (main chain): 

STE3 

STE50 
GPA1 

FAR1 
CDC24 

REM1 

STE11 CDC42 

STE4/18 

AKR1 KSS1 
STE5 

STE12 

DIG1/2 
FUS3 

STE7 

A Closer Look at Pheromone Response 
Aggregate of all 
(6-10)-length path 
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Integration: main idea 
• Overcomes noise and incomplete information 
problems. 
• Provides a more complete information on the module’s 
activity or cross-talk or regulation. 
 

Two common integration schemes: 
• Identical modeling of all data types – commonly 
looking for cliques (e.g. Gunsalus et al.’05). 
• Different models for different data types 



Genetic interactions 
A genetic interaction is the interaction of two genetic 
perturbations in determining a phenotype. 
 
Synthetic lethality: Two genes A,B are synthetic lethal if 
knockouts of A or B separately are viable, but knocking 
out both is lethal. 
1 + 1 = 0 
 
• Can be systematically assayed by a Synthetic Geneic 
Array (SGA): query vs. all non-essentials. 
• There are workarounds also for essential genes. 



Integrating PPI & GI (Kelley & Ideker ’05)  

Two common models for genetic interactions: 
1. Between-pathway: bridging genes operating in two 

parallel pathways. When either pathway is active 
the cell is viable. 

2. Within-pathway: occur between protein sub-units 
within a single pathway. A single gene is 
dispensable for the function of the pathway. 



Scoring schemes 
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• Apply likelihood ratio scoring for physical and genetic 
networks separately and combine the scores. 
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Between-Pathway Results 



Within-Pathway Results 



GI Prediction 

• Prediction is based on incomplete motifs, as shown here. 
• Two strategies: motif genes are unconstrained (naïve) or, 
alternatively, forced to be within a model. 



GI Prediction – Between-Pathway 

• Predicted 43 GIs with 87% estimated accuracy (5-fold CV). 
• Physical data greatly improves accuracy (from 5%). 



GIs mostly occur between pathways 
• 1377 interactions are associated with between-pathway 
models; only 394 within-pathway ones.  
(These statistics account for only ~40% of GIs.) 
 
• ~63% of between-pathway models show enriched 
function, while ~57% within-pathway models are enriched. 
 
• Higher accuracy of between-pathway in GI prediction: only 
38% accuracy attained for within-pathway model. 



Summary 

• Modules take different shapes, most focus is on 
protein complexes that are modeled as heavy 
subgraphs 
• Local, global and biclustering strategies  
• Integration of different networks enhances 
prediction accuracy 
• The field is moving toward module prediction from 
multiple information types such as disease modules, 
drug response pathways etc. 
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