

Genomic Compression: Storage, Transmission, and Analytics

Noah M. Daniels Bonnie Berger

Genomic data are growing exponentially

Year

A bigger cloud?

A bigger cloud?

Still constrained by Moore

Genomic data are growing exponentially

Redundancy in data

Compression background

Storage and transmission

Analysis

Source coding theorem [Shannon, 1948]

N i.i.d. random variables from source *X* each with entropy H(X)

cannot be compressed into fewer than *NH(X)* bits without loss of information

$$H(X) = -\sum_{i} P(x_i) \log_b P(x_i)$$

Approach Shannon limit as efficiently as possible (fast, lossless compression)

Be willing to throw away information (*lossy* compression)

Approaching Shannon limit

Huffman coding [1952]

Arithmetic coding [Rissanen 1976]

Lempel-Ziv [1977]

Burrows-Wheeler Transform [1994]

Huffman coding

More frequent symbols take fewer bits

More frequent symbols take fewer bits

DNA (A,C,T,G)

More frequent symbols take fewer bits

DNA (A,C,T,G)

2 bits/symbol: 00, 01, 10, 11

- Variable-length prefix code
- More frequent symbols take fewer bits
- DNA (A,C,T,G)
- 2 bits/symbol: 00, 01, 10, 11
- Suppose AT bias

- Variable-length prefix code
- More frequent symbols take fewer bits
- DNA (A,C,T,G)
- 2 bits/symbol: 00, 01, 10, 11
- Suppose AT bias
- P. falciparum 20% GC

A T C G

A 0.4T 0.4C 0.1

G 0.1

A 0.4 T 0.4 C 0.1 — _____ G 0.1 — _____

Naive encoding: 2 bits/base Huffman coding: 1.8 bits/base

	Α	Т	G	С
F	0.4	0.4	0.1	0.1
Codeword	0	10	110	111
Bits	1	2	3	3
Avg Bits	0.4	0.8	0.3	0.3

Encode entire message as a number

	A	т	G	С
F	0.4	0.4	0.1	0.1
Interval	[0,0.4)	[0.4,0.8)	[0.8,0.9)	[0.9,1)

GATTACA

GATTACA

GATTACA

0.824704

Arithmetic coding

How do we know when the message ends? I lied; we need a stop symbol

How do we know when the message ends? I lied; we need a stop symbol Bigger problem: floating point precision

- I lied; we need a stop symbol
- Bigger problem: floating point precision

Integer version

- I lied; we need a stop symbol
- Bigger problem: floating point precision
- Integer version

Rodionov & Volkov, 2007 & 2010 (p-adic arithmetic)

- I lied; we need a stop symbol
- Bigger problem: floating point precision
- Integer version
- Rodionov & Volkov, 2007 & 2010 (p-adic arithmetic)
- Huffman coding is a specialized case, less likely to be optimal

Used by gzip (& others)

Used by gzip (& others)

GATTACATTA GATTAC<1,4>

Used by gzip (& others)

GATTACATTA GATTAC<1,4> Pointer

Used by gzip (& others)

Burrows-Wheeler Transform (BWT)

Burrows-Wheeler Transform (BWT)

block-sorting compression

Burrows-Wheeler Transform (BWT)

block-sorting compression

not itself a compressor, but a way to sort input, reversibly

block-sorting compression

not itself a compressor, but a way to sort input, reversibly

Lends itself to run-length encoding

block-sorting compression

not itself a compressor, but a way to sort input, reversibly

Lends itself to run-length encoding

Why not just gzip it?

Why not just gzip it?

sequence

Why not just gzip it?

sequence

quality scores (one per base)

Why not just gzip it?

sequence

quality scores (one per base)

sequence: 4-letter alphabet
Why not just gzip it?

sequence

quality scores (one per base)

sequence: 4-letter alphabet

quality scores: 40-value range

Why not just gzip it?

sequence

quality scores (one per base)

sequence: 4-letter alphabet

quality scores: 40-value range

sequence: must be lossless

Why not just gzip it?

sequence

quality scores (one per base)

sequence: 4-letter alphabet

quality scores: 40-value range

sequence: must be lossless

quality scores: lossy might be ok

Take advantage of structure

Take advantage of structure

Store differences from a reference

Take advantage of structure

Store differences from a **reference**

Cluster similar reads (reference-free)

Take advantage of structure

Store differences from a reference

Cluster similar reads (reference-free)

don't have references for all species

Reference-free

Reference-free

Locally Consistent Encoding

Reference-free

Locally Consistent Encoding

Buckets reads by substrings

Reference-free

Locally Consistent Encoding

Buckets reads by substrings

improves LZ77 runtime AND compression

Identify local maxima

Identify local maxima Identify local minima

Identify local maxima Identify local minima Partition at each side

Identify local maxima Identify local minima Partition at each side Extend L and R to "core blocks"

Identify local maxima Identify local minima Partition at each side Extend L and R to "core blocks"

Identify local maxima Identify local minima Partition at each side Extend L and R to "core blocks"

21312032102021312032102

Identify local maxima Identify local minima Partition at each side Extend L and R to "core blocks"

21**3**1**2**0**3**210**2**0**2**1**3**1**2**0**3**2102

Identify local maxima Identify local minima Partition at each side Extend L and R to "core blocks"

21312032102021312032102

213 12 03 2102 02 13 12 03 2102

Identify local maxima Identify local minima Partition at each side Extend L and R to "core blocks"

21312032102021312032102

213 12 03 2102 02 13 12 03 2102

2131,3**12**0,2**032**,3**2102**0,2**02**1,2**13**1, 3**12**0,2**03**2,3**2102**

Core blocks between 8 & 20 99% of all HTS reads of length \geq 50 include at least one core of length \leq 14

Identify overlapping reads by core blocks Reorder reads to favor LZ77

Given a mapping (reads to reference)

Given a mapping (reads to reference)

Partition reads into blocks according to locus

Given a mapping (reads to reference)

Partition reads into blocks according to locus

Build contig covering all reads within a block

Given a mapping (reads to reference)

Partition reads into blocks according to locus

Build contig covering all reads within a block

Encode locus for each read within contig

Given a mapping (reads to reference)

Partition reads into blocks according to locus

Build contig covering all reads within a block

Encode locus for each read within contig

Encode rare differences (sequencing errors)

GTCGTCTACA T CGTCGTCTACA AACCTCGTCTACA GTCTACA TCTA ACGTGCTAAACGTCGTTTACAGTCTACAGA

GTCGTCTACA T CGTCGTCTACA AACCTCGTCTACA AACCTCGTCTACA TCTA GTCTACA TCTA ACGTGCTAAACGTCGTTTACAGTCTACAGA

ACGTGCTAAACGTCGTCTACA TCTACAGA

ACGTGCTAAACGTCGTCTACA TCTACAGA

Tokenization of read names

Tokenization of read names

LZ77
DeeZ [Hach, et al. 2014]

Tokenization of read names

LZ77

Lossy QS compression from SCALCE

DeeZ [Hach, et al. 2014]

Tokenization of read names

LZ77

Lossy QS compression from SCALCE

Random access

- **Reference-based**
- -but no aligning
- -statistical, generative model of reads
- For RNA-seq data (but need not be)

GAUU | AUUA

GAUUAGAUUG

Path encoding in graph G

Path encoding in graph G

1 node per k-mer

Path encoding in graph G

1 node per k-mer

edge between k-mers (u,v) if v follows u

Path encoding in graph G

1 node per k-mer

edge between k-mers (u,v) if v follows u

Each read encoded as a path in G

1st node of each read path (read head)

1st node of each read path (read head)

4-ary tree of depth k

1st node of each read path (read head)

4-ary tree of depth k

edges removed for nonexistent k-mers

- 1st node of each read path (read head)
- 4-ary tree of depth k
- edges removed for nonexistent k-mers traverse in fixed order, emitting 1 for edge

- 1st node of each read path (read head)
- 4-ary tree of depth k
- edges removed for nonexistent k-mers
- traverse in fixed order, emitting 1 for edge
- resulting bit string gzipped

remaining nodes (read tails)

remaining nodes (read tails)

arithmetic coding

remaining nodes (read tails)

arithmetic coding

probability distribution per node in G

Reference-free

Reference-free

Buckets reads based on k-mers (k=15)

Reference-free

Buckets reads based on *k*-mers (*k*=15) Replace common *k*-mer with pointer

Reference-free

Buckets reads based on *k*-mers (*k*=15)

Replace common k-mer with pointer

Reorder reads within each bucket

Reference-free

Buckets reads based on k-mers (k=15)

Replace common k-mer with pointer

Reorder reads within each bucket

This boosts Izip performance

Split-swap read transformation

The Quality Score Problem

The Quality Score Problem

CGTCAGAAATCAGATACGGACAAT

The Quality Score Problem

The Quality Score Problem

Given reads from a genome, can we efficiently compress quality scores while maintaining or even improving accuracy?

Quality scores in SNP-calling

Quality scores in SNP-calling

Quality score compressors

Quality score compressors

Greater dynamic range than sequence

Greater dynamic range than sequence

Can be lossless or lossy

Greater dynamic range than sequence

Can be lossless or lossy

Focus here on lossy

Universally collapse dynamic range 40 => 8 Small effect on SNP calling error Available in CRAM

QS bins	New value
N (no call)	N (no call)
2-9	6
10-19	15
20-24	22
25-29	27
30-34	33
35-39	37
≥40	40

Lossy compression of quality scores

Lossy compression of quality scores

Neighboring QSs often similar

Lossy compression of quality scores

Neighboring QSs often similar

Reduce dynamic range

Lossy compression of quality scores

Neighboring QSs often similar

Reduce dynamic range

Arithmetic coding

Lossy compression of quality scores

Neighboring QSs often similar

Reduce dynamic range

Arithmetic coding

Small loss (<0.1%) of SNP calling accuracy

QVZ [Malysa, et al. 2015]

Based on rate-distortion theory

Discard as little information as possible for a desired bit rate

Key insight: neighboring QSs are likely to be correlated

Illumina reads often have lower QSs at end

QVZ [Malysa, et al. 2015]

1. Compute the empirical transition probabilities of a Markov-1 model

1. Compute the empirical transition probabilities of a Markov-1 model

2. Construct a codebook using the Lloyd-Max algorithm

1. Compute the empirical transition probabilities of a Markov-1 model

2. Construct a codebook using the Lloyd-Max algorithm

3. Quantize the input using the codebook, use arithmetic encoder

QVZ [Malysa, et al. 2015]

Compression

Approximate k-mer search Naïve approaches

 Need to quickly find all *3k* Hamming neighbors of each k-mer from the read in the dictionary to identify mis-matched bases.

- Need to quickly find all 3k Hamming neighbors of each k-mer from the read in the dictionary to identify mis-matched bases.
- Naïve approaches
 - Sorted list
 - Memory efficient but binary search is CPU and cache inefficient
 - Hash tables
 - Faster CPU-wise, but memory and cache inefficient

Approximate k-mer search Locality sensitive hashing

An (R, cR, P_1, P_2) -sensitive LSH family F of hash functions $h: M \to S$ is defined if $\forall p, q \in M$, a uniformly random $h \in F$ satisfies: if $||p - q|| \le R$ then $\mathbb{P}(h(p) = h(q)) \ge P_1$ If $||p-q|| \ge cR$ then $\mathbb{P}(h(p) = h(q)) \le P_2$ Project k-mers onto random $\frac{k}{2}$ -mers, forming a $(1, c, \frac{1}{2}, 2^{c-1})$ -sensitive family of hash functions under the Hamming metric

Approximate k-mer search Double hashing for fun and profit

Approximate k-mer search Double hashing for fun and profit

• Notice that each $h: M \to S$ comes with an orthogonal projection $h': M \to S$

- Notice that each $h: M \to S$ comes with an orthogonal projection $h': M \to S$
- Also, if $||p,q|| \le 1$ then by counting, at least one of h(p) = h(q) or h'(p) = h'(q) must hold.

- Notice that each $h:M \to S$ comes with an orthogonal projection $h':M \to S$
- Also, if $||p,q|| \le 1$ then by counting, at least one of h(p) = h(q) or h'(p) = h'(q) must hold.
- Thus, by double hashing, all Hamming neighbors of a k-mer can be found by looking in just two hash buckets.
 - Better cache-efficiency
 - Cheating by carefully choosing the projection and sorting the buckets gives also processor-efficiency.

Approximate k-mer search Fast retrieval of Hamming neighbors

Clustered by front half of k-mer								
(2	G	G	С	Α	G	A	С
(C	G	G	С	С	G	A	С
(2	G	G	С	Α	G	Т	С

Clustered by front half of k-mer									
	С	G	G	С	A	G	A	С	
	С	G	G	С	С	G	A	С	
	С	G	G	С	A	G	Т	С	
Clustered by back half of k-mer									

A	G	G	С	A	G	A	С
G	G	G	С	A	G	A	C
С	С	G	С	A	G	A	С
Т	Α	Т	Α	Α	G	Α	С

Clustered by front half of k-mer								
	С	G	G	С	A	G	A	С
	С	G	G	С	С	G	A	С
	С	G	G	С	A	G	Т	С
Clustered by back half of k-mer								

	Α	G	G	С	Α	G	A	С
	G	G	G	С	A	G	Α	С
	С	С	G	С	A	G	Α	С
	Т	A	Т	A	A	G	A	С
_ =	С	G	G	С	A	G	A	С

Clustered by front half of k-mer								
	С	G	G	С	A	G	A	С
	С	G	G	С	С	G	A	С
	С	G	G	С	A	G	Т	С
Cluste	ere	d b	y b	ack	k ha	lf c	of k	-mer
	A	G	G	С	A	G	A	С
	A G	G G	G G	c c	A A	G G	A A	C C
	A G C	G G C	G G G	C C C	A A A	G G G	A A A	C C C
	A G C T	G G C A	G G G T	C C C A	A A A A	G G G G	A A A A	C C C C

Result Highlights

Comparison with other methods

Method	Bits/Q	Time (s)	Area Under ROC Curve
Uncompressed	8	N/A	0.8254
Quartz	0.3564	2,696	0.8288
QualComp	0.5940	33,316	0.8053
Janin et al.	0.5376	164,702	0.8019

Result Highlights

Comparison with other methods

Method	Bits/Q	Time (s)	Area Under ROC Curve
Uncompressed	8	N/A	0.8254
Quartz	0.3564	2,696	0.8288
QualComp	0.5940	33,316	0.8053
Janin et al.	0.5376	164,702	0.8019

Quartz is orders of magnitude faster

MINCE: 15-mers optimal (8-mer labels!)

using labels as search heuristic; don't want too many

Quartz: 32-mers optimal

in a genome, most 8-mers may exist; most 32-mers will not

and they tend to be unique

	k=16	k=32
unique	21.8%	85.7%
unique at Hamming 1	0.0008%	79.3%

Uniqueness of k-mers (hg19)

Why not longer k-mers?

Want to ensure at most 1 sequencing error per k-mer

Assume independence of errors Error rate of p

Likelihood of *l* errors $\binom{k}{l}(1-p)^{k-l}p^{l}$

1% error rate *k*=32 *l*≥2 2% $k=64 \ l\geq 2\ 13\%$

2% error rate *k*=32 *l*≥2 13% $k=64 l\geq 2 36\%$

Compression for speed

Compressive genomics

caBLAST [Loh, et al. 2012]

caBLASTP [Daniels, et al. 2013]

BLAST uses seed-and-extend

but must extend on many fruitless seeds

Use compression to reduce the search space

Coarse Database

STAQEPKSAEDSLRARD

LQSTAQEPKSAEQRDSVNARDRQRNVIIAQE

LQ<mark>STAQEPKSAE</mark>QRDSVNARDRQRNVIIAQE

LQ<mark>STAQEPKSAE</mark>QRDSVNARD</mark>RQRNVIIAQE

LQ QR VN

Lossless compression!

Query Sequence

STAQEPKSAEDSVNARD

Coarse Database

Simulated data growth

Daniels, Gallant, Peng, Baym, Cowen, Berger 2013

Simulated data growth

Daniels, Gallant, Peng, Baym, Cowen, Berger 2013

Real data growth on a protein database

Metagenomics

Problem: Given reads from a microbiome, match each read with similar proteins.

Metagenomic Reads

>read1
ACGTGGCTATCAACTCGCTAACTAA
>read2
ACGTGGCTATCAACTCGCTAACTAA
>read3
ACGTGGCTATCAACTCGCTAACTAT

. . .

>readk
TCGTCGAACTACATTACATTTACAG
>readk+1
TCGTCGAACTACATTACAAATACAG

• • •

>readm
GCTCGGACTATATATAGGCCTAGAA
...

>read1 ACGTGGCTATCAACTCGCTAACTAA >read2 ACGTGGCTATCAACTCGCTAACTAA >read2 ACGTGGCTATCAACTCGCTAACTAA >read3 ACGTGGCTATCAACTCGCTAACTAT >read1-r1 LVSELIAT ACGTGGCTATCAACTCGCTAACTAT LAS >read4-r3 RVDSH >read1-r3 RVDSH >read2-1 SSNVITFT read2-1 SSNVITFT read2-2 RRTTLHLQ >read2-3 VELHYIY >readm GCTCGGACTATATATATAGGCCTAGAA >read2-r2 CKNVVRR >read2-r3 VNV
>read2VAINSL1ACGTGGCTATCAACTCGCTAACTAA>read1-r1>read3LVSELIATACGTGGCTATCAACTCGCTAACTAT>read1-r2LAS>read1-r3WDSH>read2-1>readkSSNYITFT>readk+1rcGTCGAACTACATTACAATACAGTCGTCGAACTACATTACAATACAG>read2-2>readm>read2-3VELHYIY>read2-r1CSST>read2-r1>readmCSST>readm>read2-r2GCTCGGACTATATATATAGGCCTAGAACKCNVVRR>read2-r3VWVVV
Image: constraint of the systemLAS >read1-r3 RVDSH >read2-1 SSNYITFT >readk+1 TCGTCGAACTACATTACAAATACAG >read2-2 RRTTLHLQ >read2-3 VELHYIY >read2-r1 CSST >readm GCTCGGACTATATATAGGCCTAGAA CCCAGAALAS >read1-r3 RVDSH >read2-2 >read2-2 VELHYIY >read2-r1 CSST >read2-r2 CKCNVVRR >read2-r3 VNV
>readk TCGTCGAACTACATTACATTACAG >readk+1 TCGTCGAACTACATTACAAATACAG SSNYITFT >read2-2 RRTTLHLQ >read2-3 VELHYIY >read2-71 CSST >read2-r1 CSST >read2-r2 CKCNVVRR >read2-r3 VNV
<pre> VELHYIY >read2-r1 CSST >read2-r2 GCTCGGACTATATATAGGCCTAGAA VRV VELHYIY >read2-r1 CSST >read2-r2 CKCNVVRR >read2-r3 VNV</pre>
GCTCGGACTATATATAGGCCTAGAA CKCNVVRR >read2-r3 VNV

MICA [Yu, Daniels, et al. 2015]

searching NCBI NR database

Compression = clustering

Compression = clustering

Cluster similar entities

Compression = clustering

Cluster similar entities

or sub-entities

Compression = clustering

Cluster similar entities

or sub-entities

Only store the common parts once

Compression = clustering

Cluster similar entities

or sub-entities

Only store the common parts once

Only analyze the common parts once

Database

Queries

Reads Reference Loci

Result Highlights CORA: 1000 Genomes Project

CORA: 1000 Genomes Project

Scales sublinearly with very high sensitivity on real genomic data

Data constrained by physical process

Hertzsprung-Russell Diagram

coarse search

coarse search

fine search

O(coarse + fine)

O(k + fine)

 $N_{r_c}^{ent}(D) :=$

 $N_{r_c}^{ent}(D) :=$ largest number of points $x_1, \ldots, x_n \in D$

 $N_{r_c}^{ent}(D) :=$ largest number of points $x_1, \ldots, x_n \in D$

s.t.
$$||x_i - x_j|| \ge \rho, \forall i \ne j$$

 $N_{r_c}^{ent}(D) :=$ largest number of points $x_1, \ldots, x_n \in D$

s.t. $||x_i - x_j|| \ge \rho, \forall i \ne j$ for some radius ρ
Metric entropy

 $N_{r_c}^{ent}(D) :=$ largest number of points $x_1, \ldots, x_n \in D$

s.t. $||x_i - x_j|| \ge \rho, \forall i \ne j$ for some radius ρ

$$\dim_{\mathrm{Minkowski}}(D) := \lim_{\rho \to 0} \frac{\log N_{\rho}(D)}{\log 1/\rho}$$

$$d := \arg\max_{d^*} \{ N_{\rho}(D) \propto \rho^{d^*} | \rho \in [\rho_1, \rho_2] \}$$

d is the dimension that maximizes the metric entropy

$$d := \arg\max_{d^*} \{ N_{\rho}(D) \propto \rho^{d^*} | \rho \in [\rho_1, \rho_2] \}$$

d is the dimension that maximizes the metric entropy

$$\rho = r_c$$

$$d := \arg\max_{d^*} \{ N_{\rho}(D) \propto \rho^{d^*} | \rho \in [\rho_1, \rho_2] \}$$

d is the dimension that maximizes the metric entropy

$$\rho = r_c$$

k clusters

$$d := \arg\max_{d^*} \{ N_{\rho}(D) \propto \rho^{d^*} | \rho \in [\rho_1, \rho_2] \}$$

d is the dimension that maximizes the metric entropy

$$\rho = r_c$$

 $k ext{ clusters } k \le N_{r_c}^{ent}(D)$

k clusters

$$d := \arg\max_{d^*} \{ N_{\rho}(D) \propto \rho^{d^*} | \rho \in [\rho_1, \rho_2] \}$$

d is the dimension that maximizes the metric entropy

$$\rho = r_c$$
$$k \le N_{r_c}^{ent}(D)$$

O(k + fine)

$$d := \arg\max_{d^*} \{ N_{\rho}(D) \propto \rho^{d^*} | \rho \in [\rho_1, \rho_2] \}$$

d is the dimension that maximizes the metric entropy

$$\rho = r_c$$

k clusters	$k \le N_{r_c}^{ent}(D)$
------------	--------------------------

 $O(N_{r_c}^{ent}(D) + fine)$

 $O(N_{r_c}^{ent}(D) + |F|)$

$$O(N_{r_c}^{ent}(D) + |F|) \qquad F = \bigcup_{c \in B_C(q, r+r_c)} c$$

$$O(N_{r_c}^{ent}(D) + |F|) \qquad F = \bigcup_{c \in B_C(q, r+r_c)} c$$

$$F \subset B_D(q, r+2r_c)$$

$$O(N_{r_c}^{ent}(D) + |F|) \qquad F = \bigcup_{c \in B_C(q, r+r_c)} c$$

 $F \subset B_D(q, r+2r_c)$

$$F| \le |B_D(q, r+2r_c)|$$

$$O(N_{r_c}^{ent}(D) + |F|) \qquad F = \bigcup_{c \in B_C(q, r+r_c)} c$$

 $F \subset B_D(q, r+2r_c)$

$$|F| \le |B_D(q, r+2r_c)| \sim |B_D(q, r)| \left(\frac{r+2r_c}{r}\right)^d$$

$$O(N_{r_c}^{ent}(D) + |F|) \quad F = \bigcup_{c \in B_C(q, r+r_c)} c$$

$$F \subset B_D(q, r+2r_c)$$

$$|F| \le |B_D(q, r+2r_c)| \sim |B_D(q, r)| \left(\frac{r+2r_c}{r}\right)^d$$

Doubling search radius increases hits by at most 2^d

$$O(N_{r_c}^{ent}(D) + |F|) \quad F = \bigcup_{c \in B_C(q, r+r_c)} c$$

$$F \subset B_D(q, r+2r_c)$$

$$|F| \le |B_D(q, r+2r_c)| \sim |B_D(q, r)| \left(\frac{r+2r_c}{r}\right)$$

Doubling search radius increases hits by at most 2^d

d

$$O\left(N_{r_c}^{ent}(D) + |B_D(q,r)| \left(\frac{r+2r_c}{r}\right)^d\right)$$

$$O\left(N_{r_c}^{ent}(D) + |B_D(q,r)| \left(\frac{r+2r_c}{r}\right)^d\right)$$

 $O\left(N_{r_c}^{ent}(D) + |B_D(q,r)| \left(\frac{r+2r_c}{r}\right)^d\right)$

Lossless compression bounded by Shannon

Lossless compression bounded by Shannon Lossy compression can go further

Lossless compression bounded by Shannon Lossy compression can go further Clever preprocessing of reads can boost standard compressors

- Lossless compression bounded by Shannon
- Lossy compression can go further
- Clever preprocessing of reads can boost standard compressors
- All comes down to structure of the data:

- Lossless compression bounded by Shannon
- Lossy compression can go further
- Clever preprocessing of reads can boost standard compressors
- All comes down to structure of the data:
- minimize bits/base

- Lossless compression bounded by Shannon
- Lossy compression can go further
- Clever preprocessing of reads can boost standard compressors
- All comes down to structure of the data:
- minimize bits/base
- identify common substrings

- Lossless compression bounded by Shannon
- Lossy compression can go further
- Clever preprocessing of reads can boost standard compressors
- All comes down to structure of the data:
- minimize bits/base
- identify common substrings
- find correlations among quality scores
Going further

New sequencing technologies

New sequencing technologies

longer, more error-prone reads

New sequencing technologies

longer, more error-prone reads

different error models

New sequencing technologies

longer, more error-prone reads

different error models

Can we get the benefits of compressive acceleration with a more general model