(An algorithmic perspective to the) Decay of Correlation in Spin Systems

Yitong Yin Nanjing University

Decay of Correlation

 σ : fixing leaves to be occupied/unoccupied by I

Decay of correlation: $\Pr[v \in I \mid \sigma]$ does not depend on σ when $l \to \infty$ iff $\lambda \leq \lambda_c = \frac{d^d}{(d-1)^{(d+1)}}$

counting total weights $\lambda^{|I|}$ of all I.S. in graphs with max-degree $\leq d+1$

- $\lambda < \lambda_c \Rightarrow FPTAS$ [Weitz 06]
- $\lambda > \lambda_c \Rightarrow$ no FPRAS unless NP=RP [Sly10] [Galanis Štefankovič Vigoda 12] [Sly Sun 12]

Spin System

 $\begin{array}{ll} \mbox{undirected graph } G = (V, E) & \mbox{fixed integer } q \geq 2 \\ \mbox{configuration} & \sigma \in [q]^V \end{array}$

weight:
$$w(\sigma) = \prod_{\{u,v\}\in E} A(\sigma_u, \sigma_v) \prod_{v\in V} b(\sigma_v)$$

 $A: [q] \times [q] \to \mathbb{R}_{\geq 0} \quad \text{symmetric } q \times q \text{ matrix} \\ \text{(symmetric binary constraint)}$

 $b: [q] \to \mathbb{R}_{\geq 0}$ q-vector (unary constraint)

partition function: $Z_G = \sum_{\sigma \in [q]^V} w(\sigma)$ Gibbs distribution: $\mu_G(\sigma) = \frac{w(\sigma)}{Z_G}$

undirected graph G = (V, E)fixed integer $q \ge 2$ configuration $\sigma \in [q]^V$ weight: $w(\sigma) = A(\sigma_u, \sigma_v) = b(\sigma_v)$ $\{u,v\} \in E$ $v \in V$ • **2-spin model:** $q = 2, \sigma \in \{0, 1\}^{V}$ $A = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} = \begin{bmatrix} \beta & 1 \\ \gamma \end{bmatrix} \begin{array}{c} \text{edge} \\ \text{activities} \end{bmatrix} b = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} \lambda \\ 1 \end{bmatrix} \begin{array}{c} \text{external} \\ \text{field} \end{bmatrix}$ • hardcore model: $\beta=0, \gamma=1$ $Z_G = \sum \lambda^{|I|}$ I: independent sets in G• Ising model: $\beta = \gamma$ • multi-spin model: general $q \ge 2$ $A = \begin{bmatrix} \beta & 1 \\ & \beta & 1 \\ & 1 & \ddots \\ & & & \beta \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ • Potts model: • *q*-coloring: $\beta=0$

Models

- spin systems:
 - Ising model, Potts model, q-coloring
 - hardcore model generalization monomer-dimer (NOT a spin system) • hypergraph matchings $Z_G = \sum_{M: \text{ matchings in } G} \lambda^{|M|}$
- Holant problem defined by the (weighted-)EQ, the At-Most-One constraint, and any binary constraints
- The recursion of marginal probabilities is the same as a recursion on the tree of self-avoiding walks.

Gibbs Measure

undirected graph G = (V, E) configuration $\sigma \in [q]^V$

Gibbs distribution: $\mu(\sigma) = \mu_G(\sigma) = \frac{w(\sigma)}{Z_G}$

by the chain rule: denoted $V = \{v_1, v_2, \dots, v_n\}$

$$Z_G = \frac{w(\sigma)}{\mu(\sigma)} = \frac{w(\sigma)}{\prod_{i=1}^n \Pr_{X \sim \mu_G} [X_{v_i} = \sigma_{v_i} \mid \forall j < i : X_{v_j} = \sigma_{v_j}]}$$

marginal probability: $\mu_v^{\sigma}(x) = \Pr_{X \sim \mu_G} [X_v = x \mid X_S = \sigma]$

where $v \in V, x \in [q]$, boundary condition $\sigma \in [q]^S$ on $S \subset V$

Spatial Mixing (Decay of Correlation)

 μ_v^σ : marginal distribution at vertex v conditioning on σ

weak spatial mixing (WSM) at rate $\delta($):

 $\forall \sigma, \tau \in [q]^{\partial R} : \qquad \|\mu_v^{\sigma} - \mu_v^{\tau}\|_{TV} \le \delta(t)$

Spatial Mixing (Decay of Correlation)

 μ_v^σ : marginal distribution at vertex v conditioning on σ

weak spatial mixing (WSM) at rate $\delta($):

$$\forall \sigma, \tau \in [q]^{\partial R} : \qquad \|\mu_v^{\sigma} - \mu_v^{\tau}\|_{TV} \le \delta(t)$$

strong spatial mixing (SSM) at rate $\delta($):

 $\forall \sigma, \tau \in [q]^{\partial R}, \forall \rho \in [q]^{S} : \|\mu_v^{\sigma \cup \rho} - \mu_v^{\tau \cup \rho}\|_{TV} \le \delta(t)$

Tree Recursion

Tree Recursion

: unoccupied

Self-Avoiding Walk Tree (Godsil 1981; Weitz 2006)

SSM in tree

hardcore model: independent set I of weight $w(I) = \lambda^{|I|}$

of log-of-ratio)

Induction on *l* with hypothesis:

 $|\log R_{\ell}^{+}(\vec{\lambda}) - \log R_{\ell}^{-}(\vec{\lambda})| \leq |\log R_{\ell}^{+}(\lambda) - \log R_{\ell}^{-}(\lambda)|$ $|\log(1 + R_{\ell}^{+}(\vec{\lambda})) - \log(1 + R_{\ell}^{-}(\vec{\lambda}))| \leq |\log(1 + R_{\ell}^{+}(\lambda)) - \log(1 + R_{\ell}^{-}(\lambda))|$

hardcore model: independent set I of weight $w(I) = \lambda^{|I|}$

(d+1)-regular tree is the extremal case for WSM among all trees of max-deg $\leq d+1$

uniqueness threshold for the infinite (d+1)-regular tree:

[Weitz 07]:
$$\lambda_c = \frac{d^d}{(d-1)^{d+1}}$$

 $\lambda < \lambda_c : \text{SSM}$ at exponential rate on trees of max-deg $\leq d + 1$

 $\underbrace{ \left\{ \bullet \text{ SSM at exponential rate on graphs of max-deg } \leq d + 1 \\ \bullet \text{ FPTAS for graphs of max-deg } \leq d + 1 \\ \end{aligned} \right\}$

 $\lambda = \lambda_c$: SSM at polynomial rate on graphs of max-deg $\leq d$ +1

[Sly 10] [Galanis Štefankovič Vigoda 12] [Sly Sun 12]:

 $\lambda > \lambda_c\,:\, {\rm no}\; {\rm FPRAS}\; {\rm for}\; (d{\rm +}1){\rm -regular}\; {\rm graphs}\; {\rm unless}\; {\rm NP=RP}$

Problem 1: Approximability of the hardcore model when $\lambda = \lambda_c$.

Weitz's approach works for hypergraph matchings:

hypergraph H=(V,E), where $E\subseteq 2^V$: an $M\subseteq E$ is a matching if all edges in M are disjoint

Problem 2: Transition of approximability for hypergraph matchings.

The Potential Method

hardcore model: independent set I of weight $w(I) = \lambda^{|I|}$

recursion:
$$R_T^{\sigma \cup \rho} = \lambda \prod_{i=1}^d \frac{1}{1 + R_i^{\sigma \cup \rho}}$$

SSM:

symmetric version:
$$f(x) = \frac{\lambda}{(1+x)^d}$$

unique fixed point: $\hat{x} = f(\hat{x})$

$$f(x) = \frac{\lambda}{(1+x)^d} \xrightarrow{\phi} g(y) = \phi(f(\phi^{-1}(y)))$$

$$f(x) = \frac{\lambda}{(1+x)^d} \xrightarrow{\phi(x) = \operatorname{arcsinh}(\sqrt{x})} y$$

$$f(x) = \frac{\lambda}{(1+x)^d}$$

$$f(x) = \frac{\lambda}{(1+x)^d} \xrightarrow{\phi(x) = \operatorname{arcsinh}(\sqrt{\lambda})} \xrightarrow{g(y) = \operatorname{arcsinh}(\sqrt{\lambda})} \xrightarrow{g(y)$$

The Potential Method

hardcore model: independent set I of weight $w(I) = \lambda^{|I|}$

The Potential Method

antiferromagnetic 2-spin:

$$Z_{G} = \sum_{\sigma \in \{0,1\}^{V}} \prod_{\{u,v\} \in E} A(\sigma_{u}, \sigma_{v}) \prod_{v \in V} b(\sigma_{v})$$

where $A = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} = \begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix} \quad b = \begin{bmatrix} b_{0} \\ b_{1} \end{bmatrix} = \begin{bmatrix} \lambda \\ 1 \end{bmatrix}$

antiferromagnetic: $\beta\gamma < 1$

$$f(\vec{x}) = \lambda \prod_{i=1}^{d} \frac{\beta x_i + 1}{x_i + \gamma} \quad \text{let } \phi(x) = \int \frac{1}{\sqrt{x(\beta x + 1)(x + \gamma)}} dx$$

$$\overbrace{x_i}^{i=1} \quad \text{so } \Phi(x) = \phi'(x) = \frac{1}{\sqrt{x(\beta x + 1)(x + \gamma)}}$$

decay factor (in the potential world):

$$\alpha = \sum_{i=1}^{d} \left| \frac{\partial f(\vec{x})}{x_i} \right| \frac{\Phi(f(\vec{x}))}{\Phi(x_i)} \le \sqrt{\frac{df(x)}{(\beta f(x) + 1)(f(x) + \gamma)}} \sqrt{\frac{dx}{(\beta x + 1)(x + \gamma)}} \le \sqrt{|f'(\hat{x})|}$$
(where $f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d$)

partition function of *anti-ferromagnetic* 2-spin system with parameter (β, γ, λ) on graphs with max-degree $\leq \Delta$

uniqueness: WSM on all d-regular trees for $d \leq \Delta$ **non-uniqueness:** no WSM on a *d*-regular tree with $d \leq \Delta$ [Li Lu Y. 12; 13]: (β, γ, λ) in the interior of uniqueness regime FPTAS for graphs with max-degree $\leq \Delta$ [Sly Sun 12]: (β, γ, λ) in the interior of non-uniqueness regime no FPRAS for the problem unless NP=RP γ $\beta, \gamma \leq 1$ decay rate 2.5 $\beta \gamma = 1$ niqueness threshold monotone 1. threshold achieved by heatbath random walk 2 1.0 > 1unimodal ≻ 1.5 0.5 $\beta\gamma < 1$ $\frac{1}{2000}$ d 1500 500 1000 D $0 < m{eta}, \, m{\gamma} < 1$ 0.5 threshold for the uniqueness the extremal case of ssm/wsm to hold for all a β 0⊾ 0 is no longer the Δ -regular tree 2.5 3 1.5 0.5 1

Ferromagnetic 2-spin

- Transition of approximability is still open.
- [Jerrum Sinclair 93] [Goldberg Jerrum Paterson 03]: FPRAS for ferro Ising model, or ferro 2-spin with $\lambda \leq \sqrt{\gamma/\beta}$
- Tractable when there is no decay of correlation! (or IS there?)

Primitive Spatial Mixing

Primitive Spatial Mixing (PSM) at rate $\delta($):

For rooted trees T_1 , T_2 which are identical in the first l levels, the marginal distributions at the respective roots have:

 $\|\mu_{T_1} - \mu_{T_2}\|_{TV} \le \delta(l)$

weaker than WSM/SSM:

- no fixed vertices
- no boundary condition
- initial values must be "realizable"

Belief Propagation

2-spin model on G=(V,E) with parameter (β,γ,λ)

loopy Belief Propagation:

$$R_{v \to u}^{(t)} = \lambda \prod_{w \in N(u) \setminus \{v\}} \frac{\beta R_{u \to w}^{(t-1)} + 1}{R_{u \to w}^{(t-1)} + \gamma}$$

with initial values $R_{v \rightarrow u}^{(0)}$ for all edge orientations

Belief Propagation

2-spin model on G=(V,E) with parameter (β,γ,λ)

loopy Belief Propagation:

$$R_{v \to u}^{(t)} = \lambda \prod_{w \in N(u) \setminus \{v\}} \frac{\beta R_{u \to w}^{(t-1)} + 1}{R_{u \to w}^{(t-1)} + \gamma}$$

with initial values $R_{v \rightarrow u}^{(0)}$ for all edge orientations

Primitive Spatial Mixing on trees

Primitive Spatial Mixing

Primitive Spatial Mixing (PSM) at rate $\delta($):

For rooted trees T_1 , T_2 which are identical in the first l levels, the marginal distributions at the respective roots have:

 $\|\mu_{T_1} - \mu_{T_2}\|_{TV} \le \delta(l)$

- weaker than WSM/SSM: no fixed vertices
 - no boundary condition
 - initial values must be "realizable"

Problem 3: The approximability of ferromagnetic 2-spin systems is captured by the primitive spatial mixing on trees.

[Guo Lu 15]:
$$\lambda < \left(\frac{\gamma}{\beta}\right)^{\frac{\sqrt{\beta\gamma}}{\sqrt{\beta\gamma-1}}} \longrightarrow PSM \text{ on all trees}$$

if further $\beta \le 1 \longrightarrow FPTAS$
(pinning are realizable)

q-Coloring

proper q-coloring of graph G(V, E) with max-degree $\leq \Delta$

- [Jonasson 02]: WSM on Δ -regular tree iff $q \ge \Delta + 1$
- [Galanis Štefankovič Vigoda 13]: when $q < \Delta$, no FPRAS unless NP=RP, even for triangle-free graphs
- tractable threshold $q \ge \alpha \Delta + \beta$:
 - randomized MCMC algorithms: $\alpha = 11/6$ [Vigoda 99]
 - correlation-decay based algorithms: $\alpha > 2.58 \sim [Lu Y. 13]$
 - SSM-only threshold: α>1.763~ [Goldberg Martin Paterson 04]
 [Gamarnik Katz Misra 13]

Problem 4: Transition of approximability for *q*-colorings.

q-Coloring

Problem 4': Threshold for the SSM for *q*-colorings.

dynamical system:

propagation of errors:

(up to the translation to potentials)

$$\epsilon \leq \sum_{i=1}^{d} \alpha_i(\vec{x}) \epsilon_i = \langle \vec{\alpha}(\vec{x}), \vec{\epsilon} \rangle$$

for the hardcore model:

$$f(\vec{x}) = \lambda \prod_{i=1}^{d} \frac{1}{1+x_i}$$

translated to potentials $\phi(x) = \operatorname{arcsinh}(\sqrt{x})$

$$\epsilon \leq \sum_{i=1}^{d} \sqrt{\frac{df(\vec{x})}{1+f(\vec{x})}} \sqrt{\frac{dx_i}{1+x_i}} \epsilon$$
$$= \alpha_i(\vec{x})$$

dynamical system:

 \mathcal{X} 1

 $f(\vec{x})$

 \mathcal{X}_d

propagation of errors:

(up to the translation to potentials)

if ideally:
$$\epsilon \leq \alpha \sum_{i=1}^{d} \epsilon_i$$
 or generally $\epsilon^p \leq \alpha \sum_{i=1}^{d} \epsilon_i^p$ for $p \geq 1$

- Decay of correlation in terms of # of self-avoiding walks.
 - p=1: aggregate SSM \rightarrow optimal mixing time for monotone systems
 - *p*≥1: SSM and FPTAS in terms of connective constant (a notion of average degree)

Aggregate Spatial Mixing

 μ_v^σ : marginal distribution at vertex v conditioning on σ

aggregate weak spatial mixing (aWSM) at rate $\delta($):

$$\sum_{u \in \partial R} \sup_{\substack{\sigma, \tau \in [q]^{\partial R} \\ \text{differ at } u}} \|\mu_v^{\sigma} - \mu_v^{\tau}\|_{TV} \leq \delta(t)$$
aggregate strong spatial mixing (aSSM) at rate $\delta($):
 $\forall \rho \in [q]^S$:
$$\sum_{u \in \partial R} \sup_{\substack{\sigma, \tau \in [q]^{\partial R} \\ \text{differ at } u}} \|\mu_v^{\sigma \cup \rho} - \mu_v^{\tau \cup \rho}\|_{TV} \leq \delta(t)$$
[Mossel Sly 13]:
for monotone systems { • ferro 2-spin
 (where censoring works) • on bipartite graphs
 (where censoring works) • on bipartite graphs
 mixing time of
ASSM \longrightarrow Glauber dynamics
 $\tau_{mix} = O(n \log n)$

dynamical system:

propagation of errors:

(up to the translation to potentials)

For ferro 2-spin on graphs with max-degree $\leq d+1$:

•
$$d < \frac{\sqrt{\beta\gamma} + 1}{\sqrt{\beta\gamma} - 1}$$
 \longrightarrow ASSM \longrightarrow $\tau_{mix} = O(n \log n)$

- for Ising without field: this is the uniqueness threshold
- for general 2-spin systems: strictly stronger than the uniqueness condition

Connective Constants

[Madras Slade 1996]

 $\mathsf{SAW}(v,\ell)$: set of self-avoiding walks of length l starting from v

connective constant for an infinite graph G:

$$\Delta_{\mathsf{con}}(G) = \sup_{v \in V} \lim_{\ell \to \infty} \sup_{\ell \to \infty} |\mathsf{SAW}(v, \ell)|^{1/\ell}$$

connective constant for a family \mathcal{G} of finite graphs is $\leq \Delta_{con}$ if $\exists C \geq 0$ such that $\forall G(V,E) \in \mathcal{G}$

$$\forall \ell : |\mathsf{SAW}(v,\ell)| \le |V|^C \Delta_{\mathsf{con}}^{\ell}$$

for G(n, d/n): $\Delta_{con} < (1+\varepsilon) d$ w.h.p.

 $\Delta_{con} = \sqrt{2 + \sqrt{2}} \text{ for honeycomb lattice}$ [Duminil-Copin Smirnov 12]

dynamical system:

propagation of errors:

(up to the translation to potentials)

dynamical system:

propagation of errors:

(up to the translation to potentials)

dynamical system:

$f(\vec{x})$ $\overbrace{x_1 \quad x_i \quad x_d}$

propagation of errors:

(up to the translation to potentials)

$$\epsilon^{p} \leq \alpha \sum_{i=1}^{d} \epsilon^{p}_{i} \implies \mathsf{SSM}_{\mathsf{if } \Delta_{\mathsf{con}} < 1/\alpha}$$

[Srivastava Sinclair Štefankovič Y. 15]

FPTAS for family of graphs with bounded Δ_{con} :

- Hardcore model: $\Delta_{con} < \Delta_{c} (\lambda)$ uniqueness
- Ising without field: $\Delta_{con} < \Delta_{c} (\beta)$

condition

• monomer-dimer model: any finite Δ_{con} in terms of Δ_{con} [Jerrum Sinclair 89]: FPRAS for all graphs [Bayati Gamarnik Katz Nair Tetali 07]: FPTAS for constant degree

Problem 5: FPTAS for matchings in general graphs.

Open Problems

- hardcore model at the uniqueness threshold
- transition of approximability of hyper-matchings
- PSM capturing the approximability of ferro 2-spin
- transition of approximability of q-coloring
- deterministically approximately counting matchings in general graphs

$PSM \leq WSM \leq SSM \leq ASSM$

How to establish the "correct" correlation decay and relate it to approximate counting ?

Any questions?