(An algorithmic perspective to the) Decay of Correlation in Spin Systems

Yitong Yin
Nanjing University

Decay of Correlation

hardcore model:
random independent set I

$$
\mu(I) \propto \lambda^{|I|}
$$

$$
\operatorname{Pr}[v \in I \mid \sigma]
$$

σ : fixing leaves to be occupied/unoccupied by I
Decay of correlation: $\operatorname{Pr}[v \in I \mid \sigma]$ does not depend on σ when $l \rightarrow \infty$

$$
\text { iff } \lambda \leq \lambda_{c}=\frac{d^{d}}{(d-1)^{(d+1)}}
$$

counting total weights $\lambda^{I I I}$ of all I.S. in graphs with max-degree $\leq d+1$

- $\lambda<\lambda_{c} \Rightarrow$ FPTAS [Weitz 06]
- $\lambda>\lambda_{c} \Rightarrow$ no FPRAS unless NP=RP
[Sly10] [Galanis Štefankovič Vigoda 12] [Sly Sun 12]

Spin System

undirected graph $G=(V, E)$
fixed integer $q \geq 2$ configuration $\sigma \in[q]^{V}$
weight: $w(\sigma)=\prod_{\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right) \prod_{v \in V} b\left(\sigma_{v}\right)$
$A:[q] \times[q] \rightarrow \mathbb{R}_{\geq 0} \quad$ symmetric $q \times q$ matrix (symmetric binary constraint)
$b:[q] \rightarrow \mathbb{R}_{\geq 0} \quad q$-vector (unary constraint)
partition function: $\quad Z_{G}=\sum_{\sigma \in[q]^{V}} w(\sigma)$
Gibbs distribution: $\quad \mu_{G}(\sigma)=\frac{w(\sigma)}{Z_{G}}$
undirected graph $G=(V, E)$
fixed integer $q \geq 2$ configuration $\sigma \in[q]^{V}$

$$
\text { weight: } w(\sigma)=\prod_{\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right) \prod_{v \in V} b\left(\sigma_{v}\right)
$$

- 2-spin model: $q=2, \sigma \in\{0,1\}^{V}$

$$
A=\left[\begin{array}{cc}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right]=\left[\begin{array}{ll}
\beta & 1 \\
1 & \ddots
\end{array}\right] \text { activities } \quad b=\left[\begin{array}{c}
b_{0} \\
b_{1}
\end{array}\right]=\left[\begin{array}{l}
\lambda \\
1
\end{array} \begin{array}{c}
\text { external } \\
\text { field }
\end{array}\right.
$$

- hardcore model: $\beta=0, \gamma=1$

$$
Z_{G}=\sum_{\substack{I: \text { independent } \\ \text { sets in } G}} \lambda^{|I|}
$$

- Ising model: $\beta=\gamma$
- multi-spin model: general $q \geq 2$
- Potts model:
- q-coloring: $\beta=0$

$$
A=\left[\begin{array}{ccc}
{ }^{\beta} & 1 \\
& & 1 \\
1 & \ddots & \\
& &
\end{array}\right] \quad b=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

Models

- spin systems:
- Ising model, Potts model, q-coloring
- hardcore model $\underset{\text { generalization } \longrightarrow}{\longrightarrow}$ hypergraph matchings
- monomer-dimer $Z_{G}=\sum_{\lambda^{|M|}}$ (NOT a spin system)
- Holant problem defined by the (weighted-)EQ, the At-Most-One constraint, and any binary constraints
- The recursion of marginal probabilities is the same as a recursion on the tree of self-avoiding walks.

Gibbs Measure

undirected graph $G=(V, E) \quad$ configuration $\sigma \in[q]^{V}$
Gibbs distribution: $\quad \mu(\sigma)=\mu_{G}(\sigma)=\frac{w(\sigma)}{Z_{G}}$ by the chain rule: denoted $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

$$
Z_{G}=\frac{w(\sigma)}{\mu(\sigma)}=\frac{w(\sigma)}{\prod_{i=1}^{n} \operatorname{Pr}_{X \sim \mu_{G}}\left[X_{v_{i}}=\sigma_{v_{i}} \mid \forall j<i: X_{v_{j}}=\sigma_{v_{j}}\right]}
$$

marginal probability: $\quad \mu_{v}^{\sigma}(x)=\operatorname{Pr}_{X \sim \mu_{G}}\left[X_{v}=x \mid X_{S}=\sigma\right]$ where $v \in V, x \in[q]$, boundary condition $\sigma \in[q]^{S}$ on $S \subset V$
approximately computing $\mu_{v}^{\sigma}(x)$ within $\mu_{v}^{\sigma}(x) \pm \frac{1}{n}$ in time $\operatorname{Poly}(n)$

Spatial Mixing (Decay of Correlation)

μ_{v}^{σ} : marginal distribution at vertex v conditioning on σ

weak spatial mixing (WSM) at rate $\delta($):

$$
\forall \sigma, \tau \in[q]^{\partial R}: \quad\left\|\mu_{v}^{\sigma}-\mu_{v}^{\tau}\right\|_{T V} \leq \delta(t)
$$

on infinite graphs:
WSM uniqueness of infinitevolume Gibbs measure

$$
\lambda \leq \lambda_{c}=\frac{d^{d}}{(d-1)^{(d+1)}}<\begin{gathered}
\text { WSM of hardcore model }
\end{gathered}
$$

Spatial Mixing (Decay of Correlation)

μ_{v}^{σ} : marginal distribution at vertex v conditioning on σ weak spatial mixing (WSM) at rate $\delta($):

$$
\forall \sigma, \tau \in[q]^{\partial R}: \quad\left\|\mu_{v}^{\sigma}-\mu_{v}^{\tau}\right\|_{T V} \leq \delta(t)
$$

strong spatial mixing (SSM) at rate $\delta()$:

$$
\forall \sigma, \tau \in[q]^{\partial R}, \forall \rho \in[q]^{S}: \quad\left\|\mu_{v}^{\sigma \cup \rho}-\mu_{v}^{\tau \cup \rho}\right\|_{T V} \leq \delta(t)
$$

SSM

marginal prob. $\mu_{v}^{\rho}(x)$
is well approximated
by the local information

Tree Recursion

hardcore model:

$$
p_{T}=\operatorname{Pr}[v \text { is occupied }]
$$

independent set I in T

$$
\mu(I) \propto \lambda^{|I|}
$$

$$
=\frac{\lambda \prod_{i=1}^{d}\left(1-p_{i}\right)}{1+\lambda \prod_{i=1}^{d}\left(1-p_{i}\right)}
$$

$$
p_{i}=\operatorname{Pr}\left[v_{i} \text { is occupied }\right] \text { in } T_{i}
$$

occupancy ratio: $\quad R_{T}=\frac{p_{T}}{1-p_{T}}$

$$
R_{T}=\lambda \prod_{i=1}^{d} \frac{1}{1+R_{i}}
$$

Tree Recursion

hardcore model: independent set I in G

$$
\mu(I) \propto \lambda^{|I|}
$$

$$
R_{1}^{\sigma}=\frac{\operatorname{Pr}\left[v_{1} \text { is occupied } \mid \sigma\right]}{1-\operatorname{Pr}\left[v_{1} \text { is occupied } \mid \sigma\right]} R_{2}^{\sigma}=\frac{\operatorname{Pr}\left[v_{2} \text { is occupied } \mid \sigma\right]}{1-\operatorname{Pr}\left[v_{2} \text { is occupied } \mid \sigma\right]} \quad R_{3}^{\sigma}=\frac{\operatorname{Pr}\left[v_{3} \text { is occupied } \mid \sigma\right]}{1-\operatorname{Pr}\left[v_{3} \text { is occupied } \mid \sigma\right]}
$$

Self-Avoiding Walk Tree

(Godsil 1981; Weitz 2006)

hold for 2 -spin model, monomer-dimer, hypergraph matchings
\oslash if cycle closing edge > cycle starting edge
if cycle closing edge < cycle starting edge

SSM in tree

hardcore model: independent set I of weight $w(I)=\lambda^{|I|}$

Goal: WSM in $(d+1)$-regular tree $\left(\lambda<\lambda_{c}=\frac{d^{d}}{(d-1)^{d+1}}\right)$
\Rightarrow SSM in all trees of max-deg $\leq d+1$
Weitz's approach:
($d+1$)-regular tree is the extremal case for WSM among all trees of max-deg $\leq d+1$
hardcore model: independent set I of weight $w(I)=\lambda^{|I|}$

($d+1$)-regular tree is the extremal case for WSM among all trees of max-deg $\leq d+1$ (through the lens Induction on l with hypothesis:
of log-of-ratio)

$$
\begin{gathered}
\left|\log R_{\ell}^{+}(\vec{\lambda})-\log R_{\ell}^{-}(\vec{\lambda})\right| \leq\left|\log R_{\ell}^{+}(\lambda)-\log R_{\ell}^{-}(\lambda)\right| \\
\left|\log \left(1+R_{\ell}^{+}(\vec{\lambda})\right)-\log \left(1+R_{\ell}^{-}(\vec{\lambda})\right)\right| \leq\left|\log \left(1+R_{\ell}^{+}(\lambda)\right)-\log \left(1+R_{\ell}^{-}(\lambda)\right)\right|
\end{gathered}
$$

hardcore model: independent set I of weight $w(I)=\lambda^{|I|}$
$(d+1)$-regular tree is the extremal case for WSM
among all trees of max-deg $\leq d+1$
uniqueness threshold for the infinite $(d+1)$-regular tree:
[Weitz 07]:

$$
\lambda_{c}=\frac{d^{d}}{(d-1)^{d+1}}
$$

$\lambda<\lambda_{c}:$ SSM at exponential rate on trees of max-deg $\leq d+1$
$\stackrel{\substack{\text { Sand } \\ \text { rree }}}{\stackrel{\text { den }}{ }}\rangle\left\{\begin{array}{l}\bullet \text { SSM at exponential rate on graphs of max-deg } \leq d+1 \\ \bullet \text { FPTAS for graphs of max-deg } \leq d+1\end{array}\right.$
$\lambda=\lambda_{c}:$ SSM at polynomial rate on graphs of max-deg $\leq d+1$ [Sly 10] [Galanis Štefankovič Vigoda 12] [Sly Sun 12]:
$\lambda>\lambda_{c}$: no FPRAS for $(d+1)$-regular graphs unless NP=RP
Problem 1: Approximability of the hardcore model when $\lambda=\lambda_{c}$.

Weitz's approach works for hypergraph matchings:

hypergraph $H=(V, E)$, where $E \subseteq 2^{V}$: an $M \subseteq E$ is a matching if all edges in M are disjoint
(duality) • matchings of hypergraphs with activity λ of max-deg $\leq(k+1)$ and max-edge-size $\leq(d+1)$

- independent sets of hypergraphs with activity λ of max-deg $\leq(d+1)$ and max-edge $\leq(k+1)$

Problem 2: Transition of approximability for hypergraph matchings.

The Potential Method

hardcore model: independent set I of weight $w(I)=\lambda^{|I|}$

$$
\text { recursion: } \quad R_{T}^{\sigma \cup \rho}=\lambda \prod_{i=1}^{d} \frac{1}{1+R_{i}^{\sigma \cup \rho}}
$$

SSM:

$$
\left|R_{T}^{\sigma \cup \rho}-R_{T}^{\tau \cup \rho}\right| \leq \delta(\ell)
$$

dynamical system:

symmetric version: $\quad f(x)=\frac{\lambda}{(1+x)^{d}}$
unique fixed point: $\hat{x}=f(\hat{x})$

$$
\begin{array}{r}
\exists x^{-}<\hat{x}<x^{+} \\
\left\{\begin{array}{l}
x^{+}=f\left(x^{-}\right) \\
x^{-}=f\left(x^{+}\right)
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
& f(x)=\frac{\lambda}{(1+x)^{d}} \longrightarrow g(y)=\phi\left(f\left(\phi^{-1}(y)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{\lambda}{(1+x)^{d}} \\
& g(y)=\operatorname{arcsinh}\left(\sqrt{\frac{\lambda}{\left(1+\sinh (y)^{2} d^{d}\right.}}\right) \\
& \text { 0.s } \quad\left|g^{\prime}(y)\right|<1 \text { every/where! } \\
& \text { (if }\left|f^{\prime}(\hat{x})\right|<1 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } x=\phi^{-1}(y) \\
& \text { by choosing } \\
& \text { (assuming }\left|f^{\prime}(\hat{x})\right|<1 \text {) }
\end{aligned}
$$

original:

potential:

$$
f(\vec{x})=\lambda \prod_{i=1}^{d} \frac{1}{1+x_{i}}
$$

$g(\vec{y})=\phi\left(f\left(\phi^{-1}\left(y_{1}\right), \ldots, \phi^{-1}\left(y_{d}\right)\right)\right)$

$$
\epsilon_{i}=\left|y_{i}-y_{i}^{\prime}\right|
$$

Mean Value Theorem:

$$
\epsilon=\left|g(\vec{y})-g\left(\vec{y}^{\prime}\right)\right|=|\nabla g(\vec{\xi}) \cdot \vec{\epsilon}|=\sum_{i=1}^{d}\left|\frac{\partial f(\vec{x})}{x_{i}}\right| \frac{\Phi(f(\vec{x}))}{\Phi\left(x_{i}\right)} \epsilon_{i}
$$

recall:
(where $\xi_{i}=\phi\left(x_{i}\right)$, denote $\Phi(x)=\phi^{\prime}(x)$)

$$
\begin{aligned}
&\left(\left|\frac{\partial f(\vec{x})}{x_{i}}\right|=\frac{f(\vec{x})}{1+x_{i}}\right) \leq f(\vec{x}) \Phi(f(\vec{x})) \sum_{i=1}^{d} \frac{1}{\left(1+x_{i}\right) \Phi\left(x_{i}\right)} \max _{i} \epsilon_{i} \leq \sqrt{\frac{f(\vec{x})}{1+f(\vec{x})} \sum_{i=1}^{d} \sqrt{\frac{x_{i}}{1+x_{i}}}} \max _{i} \epsilon_{i} \\
& \quad \text { (choose } \Phi(x)=\phi^{\prime}(x)=\frac{1}{\sqrt{x(1+x)}} \text {) } \\
& \leq \sqrt{\frac{d f(x)}{1+f(x)}} \sqrt{\frac{d x}{1+x}} \max _{i} \epsilon_{i} \leq \sqrt{\left|f^{\prime}(\hat{x})\right|} \max _{i} \epsilon_{i} \\
& \text { (concavity) (where } f(x)=\frac{\lambda}{(1+x)^{d}} \text {) } \quad \text { (assuming }\left|f^{\prime}(\hat{x})\right|<1 \text {) }
\end{aligned}
$$

The Potential Method

hardcore model: independent set I of weight $w(I)=\lambda^{|I|}$

SSM:

$$
\delta(\ell) \leq \frac{\phi(\lambda)}{\phi^{\prime}(\lambda)} \cdot \alpha^{\ell}
$$

dynamical system for potentials:

uniqueness: $\alpha<0.999$

The Potential Method

antiferromagnetic 2-spin:

$$
Z_{G}=\sum_{\sigma \in\{0,1\}^{V}} \prod_{\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right) \prod_{v \in V} b\left(\sigma_{v}\right)
$$

where $\quad A=\left[\begin{array}{ll}A_{00} & A_{01} \\ A_{10} & A_{11}\end{array}\right]=\left[\begin{array}{ll}\beta & 1 \\ 1 & \gamma\end{array}\right] \quad b=\left[\begin{array}{l}b_{0} \\ b_{1}\end{array}\right]=\left[\begin{array}{c}\lambda \\ 1\end{array}\right]$
antiferromagnetic: $\beta \gamma<1$

$$
\begin{array}{ll}
f(\vec{x})=\lambda \prod_{i=1}^{d} \frac{\beta x_{i}+1}{x_{i}+\gamma} & \text { let } \phi(x)=\int \frac{1}{\sqrt{x(\beta x+1)(x+\gamma)}} \mathrm{d} x \\
x_{i} & \text { so } \Phi(x)=\phi^{\prime}(x)=\frac{1}{\sqrt{x(\beta x+1)(x+\gamma)}}
\end{array}
$$

decay factor (in the potential world):

$$
\begin{aligned}
\alpha=\sum_{i=1}^{d}\left|\frac{\partial f(\vec{x})}{x_{i}}\right| \frac{\Phi(f(\vec{x}))}{\Phi\left(x_{i}\right)} \leq & \sqrt{\frac{d f(x)}{(\beta f(x)+1)(f(x)+\gamma)}} \sqrt{\frac{d x}{(\beta x+1)(x+\gamma)}} \leq \sqrt{\left|f^{\prime}(\hat{x})\right|} \\
& \text { (where } f(x)=\lambda\left(\frac{\beta x+1}{x+\gamma}\right)^{d} \text {) }
\end{aligned}
$$

partition function of anti-ferromagnetic 2-spin system with parameter (β, γ, λ) on graphs with max-degree $\leq \Delta$
uniqueness: WSM on all d-regular trees for $d \leq \Delta$ non-uniqueness: no WSM on a d-regular tree with $d \leq \Delta$
[Li Lu Y. 12; 13]: (β, γ, λ) in the interior of uniqueness regime \Rightarrow FPTAS for graphs with max-degree $\leq \Delta$ [Sly Sun 12]: (β, γ, λ) in the interior of non-uniqueness regime \triangle no FPRAS for the problem unless NP=RP

Ferromagnetic 2-spin

ferromagnetic 2-spin: $\beta \gamma>1$

$$
Z_{G}=\sum_{\sigma \in\{0,1\}^{\vee}} \prod_{\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right) \prod_{v \in V} b\left(\sigma_{v}\right)
$$

$$
A=\left[\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right]=\left[\begin{array}{ll}
\beta & 1 \\
1 & \gamma
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{0} \\
b_{1}
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
1
\end{array}\right]
$$

- Transition of approximability is still open.
- [Jerrum Sinclair 93] [Goldberg Jerrum Paterson 03]: FPRAS for ferro Ising model, or ferro 2 -spin with $\lambda \leq \sqrt{\gamma / \beta}$
- Tractable when there is no decay of correlation!
(or IS there?)

Primitive Spatial Mixing

Primitive Spatial Mixing (PSM) at rate $\delta($):
For rooted trees T_{1}, T_{2} which are identical in the first l levels, the marginal distributions at the respective roots have:

$$
\left\|\mu_{T_{1}}-\mu_{T_{2}}\right\|_{T V} \leq \delta(l)
$$

- no fixed vertices
- no boundary condition
- initial values must be "realizable"

Belief Propagation

2-spin model on $G=(V, E)$ with parameter (β, γ, λ)
loopy Belief Propagation:

$$
R_{v \rightarrow u}^{(t)}=\lambda \prod_{w \in N(u) \backslash\{u\}} \frac{\beta R_{u \rightarrow w}^{(t-1)}+1}{R_{u \rightarrow w}^{(t-1)}+\gamma}
$$

with initial values $R_{v \rightarrow u}^{(0)}$ for all edge orientations

Weak Spatial Mixing on trees

convergence of loopy BP on graphs

Belief Propagation

2-spin model on $G=(V, E)$ with parameter (β, γ, λ)
loopy Belief Propagation:

$$
R_{v \rightarrow u}^{(t)}=\lambda \prod_{w \in N(u) \backslash\{v\}} \frac{\beta R_{u \rightarrow \rightarrow}^{(t-1)}+1}{R_{u \rightarrow w}^{(t)+\gamma}+\gamma}
$$

with initial values $R_{v \rightarrow u}^{(0)}$ for all edge orientations

Primitive Spatial Mixing on trees

convergence of loopy BP on graphs
(if initial values are chosen wisely)

Primitive Spatial Mixing

Primitive Spatial Mixing (PSM) at rate $\delta($):

For rooted trees T_{1}, T_{2} which are identical in the first l levels, the marginal distributions at the respective roots have:

$$
\left\|\mu_{T_{1}}-\mu_{T_{2}}\right\|_{T V} \leq \delta(l)
$$

weaker than WSM/SSM:

- no fixed vertices
- no boundary condition
- initial values must be "realizable"

Problem 3: The approximability of ferromagnetic 2 -spin systems is captured by the primitive spatial mixing on trees.
[Goo Lu 15]: $\quad \lambda<\left(\frac{\gamma}{\beta}\right)^{\frac{\sqrt{B \gamma}}{\sqrt{\beta \gamma-1}}}$

PSM on all trees
if further $\beta \leq 1$
 FPTAS (pinning are realizable)

q-Coloring

proper q-coloring of graph $G(V, E)$ with max-degree $\leq \Delta$

- [Jonasson 02]: WSM on Δ-regular tree iff $q \geq \Delta+1$
- [Galanis Štefankovič Vigoda 13]: when $q<\Delta$, no FPRAS unless $N P=R P$, even for triangle-free graphs
- tractable threshold $q \geq \alpha \Delta+\beta$:
- randomized MCMC algorithms: $\alpha=11 / 6$ [Vigoda 99]
- correlation-decay based algorithms: $\alpha>2.58 \sim$ [Lu Y. 13]
- SSM-only threshold: $\alpha>1.763 \sim$ [Goldberg Martin Paterson 04] [Gamarnik Katz Misra 13]

Problem 4: Transition of approximability for q-colorings.

q-Coloring

recursion $\quad F: \underbrace{[0,1]^{q} \times[0,1]^{q} \times \cdots \times[0,1]^{q}}_{d} \rightarrow[0,1]^{q}$
Problem 4': Threshold for the SSM for q-colorings.

Correlation Decay in different norms

dynamical system:

propagation of errors:

(up to the translation to potentials)

$$
\epsilon \leq \sum_{i=1}^{d} \alpha_{i}(\vec{x}) \epsilon_{i}=\langle\vec{\alpha}(\vec{x}), \vec{\epsilon}\rangle
$$

for the hardcore model:

$$
f(\vec{x})=\lambda \prod_{i=1}^{d} \frac{1}{1+x_{i}}
$$

translated to potentials $\phi(x)=\operatorname{arcsinh}(\sqrt{x})$

$$
\epsilon \leq \sum_{i=1}^{d} \frac{\sqrt{\frac{d f(\vec{x})}{1+f(\vec{x})}} \sqrt{\frac{d x_{i}}{1+x_{i}}}}{=\alpha_{i}(\vec{x})} \epsilon_{i}
$$

Correlation Decay in different norms

dynamical system:

propagation of errors:
(up to the translation to potentials)

$$
\epsilon \leq \sum_{i=1}^{d} \alpha_{i}(\vec{x}) \epsilon_{i}=\langle\vec{\alpha}(\vec{x}), \vec{\epsilon}\rangle
$$

worst
path $\leq\|\vec{\alpha}(\vec{x})\|_{1} \cdot\|\vec{\epsilon}\|_{\infty} \leq \alpha \cdot\|\vec{\epsilon}\|_{\infty}$
if ideally: $\epsilon \leq \alpha \sum_{i=1}^{d} \epsilon_{i}$ or generally $\epsilon^{p} \leq \alpha \sum_{i=1}^{d} \epsilon_{i}^{p}$ for $p \geq 1$

- Decay of correlation in terms of \# of self-avoiding walks.
- $p=1$: aggregate SSM \leftrightarrows optimal mixing time for monotone systems
- $p \geq 1$: SSM and FPTAS in terms of connective constant
(a notion of average degree)

Aggregate Spatial Mixing

μ_{v}^{σ} : marginal distribution at vertex v conditioning on σ
aggregate weak spatial mixing (aWSM) at rate $\delta($):

$$
\sum_{u \in \partial R} \sup _{\substack{\sigma, \tau \in[q) R \\ \text { differ at } u}}\left\|\mu_{v}^{\sigma}-\mu_{v}^{\tau}\right\|_{T V} \leq \delta(t)
$$

aggregate strong spatial mixing (aSSM) at rate $\delta()$:

Correlation Decay in different norms

dynamical system:

propagation of errors:
(up to the translation to potentials)
$\epsilon \leq \alpha \sum_{i=1}^{d} \epsilon_{i}$
with $\alpha<\frac{1}{d}$

For ferro 2 -spin on graphs with max-degree $\leq d+1$:

- $d<\frac{\sqrt{\beta \gamma}+1}{\sqrt{\beta \gamma}-1} \quad \Rightarrow$ ASSM $\Rightarrow \tau_{\text {mix }}=O(n \log n)$
- for Ising without field: this is the uniqueness threshold
- for general 2 -spin systems: strictly stronger than the uniqueness condition

Connective Constants

[Madras Slade 1996]
SAW (v, ℓ) : set of self-avoiding walks of length l starting from v connective constant for an infinite graph G :

$$
\Delta_{\text {con }}(G)=\sup _{v \in V} \lim \sup _{\ell \rightarrow \infty}|\operatorname{SAW}(v, \ell)|^{1 / \ell}
$$

connective constant for a family \mathcal{G} of finite graphs is $\leq \Delta_{\text {con }}$ if $\exists C>0$ such that $\forall G(V, E) \in \mathcal{G}$

$$
\forall \ell: \quad|\operatorname{SAW}(v, \ell)| \leq|V|^{C} \Delta_{\text {con }}^{\ell}
$$

for $G(n, d / n): \Delta_{\text {con }}<(1+\varepsilon) d$ w.h.p.

$\Delta_{\text {con }}=\sqrt{2+\sqrt{2}}$ for honeycomb lattice
[Duminil-Copin Smirnov 12]

Correlation Decay in different norms

dynamical system:

propagation of errors:
(up to the translation to potentials)

$$
\epsilon \leq \sum_{i=1}^{d} \alpha_{i}(\vec{x}) \epsilon_{i}=\langle\vec{\alpha}(\vec{x}), \vec{\epsilon}\rangle
$$

Hölder's
inequality $\leq\|\vec{\alpha}(\vec{x})\|_{\frac{p}{p-1}} \cdot\|\vec{\epsilon}\|_{p} \quad$ for $p \geq 1$
$\epsilon^{p} \frac{\|\vec{\alpha}(\vec{x})\|_{\frac{p}{p-1}}^{p} \sum_{i=1}^{d} \epsilon_{i}^{p}}{\leq \alpha}$

Correlation Decay in different norms

dynamical system:

propagation of errors:
(up to the translation to potentials)

$$
\epsilon \leq \sum_{i=1}^{d} \alpha_{i}(\vec{x}) \epsilon_{i}=\langle\vec{\alpha}(\vec{x}), \vec{\epsilon}\rangle
$$

Hölder's
inequality $\leq\|\vec{\alpha}(\vec{x})\|_{\frac{p}{p-1}} \cdot\|\vec{\epsilon}\|_{p} \quad$ for $p \geq 1$
for the hardcore model (with proper potential function):

$$
\begin{aligned}
& \epsilon \leq \sum_{i=1}^{d} \sqrt{\frac{d f(\vec{x})}{1+f(\vec{x})}} \sqrt{\frac{d x}{1+x}} \epsilon_{i}=\langle\vec{\alpha}(\vec{x}), \vec{\epsilon}\rangle \\
& \epsilon^{p} \leq\|\vec{\alpha}(\vec{x})\|_{\frac{p}{p-1}}^{p} \sum_{i=1}^{d} \epsilon_{i}^{p} \quad \text { choose } \quad p=\frac{1}{1-\frac{\Delta_{c}-1}{2} \ln \left(1+\frac{1}{\Delta_{\mathrm{c}}-1}\right)} \\
& \quad\|\vec{\alpha}(\vec{x})\|_{\frac{p}{p-1}}^{p} \leq \frac{1}{\Delta_{\mathrm{c}}} \quad \text { where } \Delta_{\mathrm{c}}=\Delta_{\mathrm{c}}(\lambda) \text { satisfies } \lambda=\frac{\Delta_{\mathrm{c}}^{\Delta_{\mathrm{c}}}}{\left(\Delta_{\mathrm{c}}-1\right)^{\Delta_{\mathrm{c}}+1}}
\end{aligned}
$$

Correlation Decay in different norms

dynamical system:

propagation of errors:
(up to the translation to potentials)

$$
\epsilon^{p} \leq \alpha \sum_{i=1}^{d} \epsilon_{i}^{p} \square_{\text {if } \Delta_{\mathrm{con}}<1 / \alpha}^{\text {SSM }}
$$

[Srivastava Sinclair Štefankovič Y. 15]
FPTAS for family of graphs with bounded $\Delta_{\text {con }}$:

- Hardcore model: $\Delta_{\text {con }}<\Delta_{c}(\lambda)$
- Ising without field: $\Delta_{\text {con }}<\Delta_{c}(\beta)$
uniqueness
- monomer-dimer model: any finite $\Delta_{\text {con }}$ in terms of $\Delta_{\text {con }}$ [Jerrum Sinclair 89]: FPRAS for all graphs [Bayati Gamarnik Katz Nair Tetali 07]: FPTAS for constant degree

Problem 5: FPTAS for matchings in general graphs.

Open Problems

- hardcore model at the uniqueness threshold
- transition of approximability of hyper-matchings
- PSM capturing the approximability of ferro 2-spin
- transition of approximability of q-coloring
- deterministically approximately counting matchings in general graphs

$$
P S M \leq W S M \leq S S M \leq A S S M
$$

How to establish the "correct" correlation decay and relate it to approximate counting?

Thank you!

Any questions?

