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Decay of Correlation
hardcore model:

• λ < λc ⇒ FPTAS

• λ > λc ⇒ no FPRAS unless NP=RP

Decay of correlation:   Pr[v∈I | σ] does not depend on σ when l→∞

random independent set I

iff

counting total weights λ|I| of all I.S. in graphs with max-degree ≤ d+1

[Sly10]  [Galanis Štefankovič Vigoda 12]  [Sly Sun 12]

[Weitz 06]

(d+1)-



Spin System
undirected graph G = (V, E) fixed integer q ≥ 2

� 2 [q]Vconfiguration

w(�) =
Y

{u,v}2E

A(�u,�v)
Y

v2V

b(�v)weight:

A : [q]⇥ [q] ! R�0

b : [q] ! R�0

symmetric q×q matrix

q-vector 

(symmetric binary constraint)

partition function: ZG =
X

�2[q]V

w(�)

Gibbs distribution: µG(�) =
w(�)

ZG

(unary constraint)



• 2-spin model:   q =2,  

• hardcore model:   β=0, γ=1

• Ising model:  β = γ

• multi-spin model:  general q ≥ 2
• Potts model:

• q-coloring:    β=0

undirected graph G = (V, E) fixed integer q ≥ 2
� 2 [q]Vconfiguration
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Models
• spin systems:

• Ising model, Potts model, q-coloring 

• hardcore model

• monomer-dimer

• Holant problem defined by the (weighted-)EQ, the 
At-Most-One constraint, and any binary constraints

• The recursion of marginal probabilities is the same 
as a recursion on the tree of self-avoiding walks.

(NOT a spin system)

hypergraph matchings
generalization

 correlation decay 
on trees

tractability of
approximate counting

(hopefully)

ZG =
X

M : matchings in G

�|M |



Gibbs Measure
undirected graph G = (V, E) � 2 [q]Vconfiguration

Gibbs distribution:

by the chain rule: V = {v1, v2, . . . , vn}denoted

where v∈V, x∈[q],  boundary condition σ∈[q]S on S⊂V

marginal probability: µ

�
v (x) = Pr

X⇠µG

[Xv = x | XS = �]

FPTAS 
for ZG

µ

�
v (x)approximately computing

within
µ

�
v (x)± 1

n in time Poly(n)

µ(�) = µG(�) =
w(�)

ZG



Spatial Mixing (Decay of Correlation)

R

G

v
t

weak spatial mixing (WSM) at rate δ( ): 
kµ�

v � µ⌧
vkTV  �(t)8�, ⌧ 2 [q]@R :

µ�
v : marginal distribution at vertex v conditioning on σ

boundary 
conditions

on infinite graphs: 

WSM uniqueness of infinite-
volume Gibbs measure

�

µ�
v

�  �c =
dd

(d�1)(d+1)
WSM of hardcore model

on infinite (d+1)-regular tree

∂R
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Spatial Mixing (Decay of Correlation)

R
v

t

strong spatial mixing (SSM) at rate δ( ): 

weak spatial mixing (WSM) at rate δ( ): 

S

kµ�
v � µ⌧

vkTV  �(t)8�, ⌧ 2 [q]@R :

8�, ⌧ 2 [q]@R, 8⇢ 2 [q]S :

µ�
v : marginal distribution at vertex v conditioning on σ

SSM

µ

⇢
v(x)marginal prob.

is well approximated
by the local information 

kµ�[⇢
v � µ⌧[⇢

v kTV  �(t)

∂R



Tree Recursion

µ(I) / �|I|

hardcore model:

independent set I in T
=

�
Qd

i=1(1� pi)

1 + �
Qd

i=1(1� pi)

Ti

pT = Pr[v is occupied ]

v

vi

pi = Pr[vi is occupied ]

in Ti

T

RT =
pT

1� pT
occupancy ratio: 

RT = �
dY

i=1

1

1 +Ri



R�
3 =

Pr[v3 is occupied | �]
1� Pr[v3 is occupied | �]

R�
2 =

Pr[v2 is occupied | �]
1� Pr[v2 is occupied | �]R�

1 =

Pr[v1 is occupied | �]
1� Pr[v1 is occupied | �]

R�
v =

Pr[v is occupied | �]
1� Pr[v is occupied | �]

R�
v = �

dY

i=1

1

1 +R�
i

vvv

Tree Recursion

µ(I) / �|I|

hardcore model:

independent set I in G
v

v1 v2 v3

:  occupied :  unoccupied
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Self-Avoiding Walk Tree
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1v T = T;)?(G, v)

6

6

6

6

6

G

(Godsil 1981; Weitz 2006)

if cycle closing edge < cycle starting edge

�

if cycle closing edge > cycle starting edge

SSM in trees:
• SSM in graphs
• efficient approximation 

of marginals

{
hold for 2-spin model,

monomer-dimer, 
hypergraph matchings

R�
v = �

dY

i=1

1

1 +R�
i

µ�
v µ�

root

=in G in T



SSM in tree
hardcore model: independent set I of weight w(I) = �|I|

|p�[⇢
T � p⌧[⇢

T |  �(`)

Weitz’s 
approach:

Goal:   WSM in (d+1)-regular tree

SSM in all trees of max-deg ≤ d +1

⇣
� < �c =

dd

(d�1)d+1

⌘

(d+1)-regular tree is the extremal case for WSM
among all trees of max-deg ≤ d +1

`T’

8�, ⌧

|p�T 0 � p⌧T 0 |  �(`)

“Pinning = Pruning”
(model specific)

WSM
in T’

⇢`
T

8�, ⌧



all 0s, all 1s

hardcore model: independent set I of weight w(I) = �|I|

(d+1)-regular tree is the extremal case for WSM
among all trees of max-deg ≤ d +1

`
�

� �

�

��
�

� = 0

�
=
0

vector of nonuniform λ~� :

Induction on l with hypothesis:
| logR+

` (
~�)� logR�

` (
~�)|  | logR+

` (�)� logR�
` (�)|

| log(1 +R+
` (

~�))� log(1 +R�
` (

~�))|  | log(1 +R+
` (�))� log(1 +R�

` (�))|

(d+1)-regular treeT :

R+
` (

~�) := sup
� at level `

R�
T(~�)

R�
` (

~�) := inf
� at level `

R�
T(~�)

R+
` (�), R

�
` (�) : for uniform λ 

R±
` (

~�) = �
dY

i=1

1

1 +R⌥
`�1(

~�i)

(through the lens
of log-of-ratio)



hardcore model: independent set I of weight w(I) = �|I|

(d+1)-regular tree is the extremal case for WSM
among all trees of max-deg ≤ d +1

� = �c

� > �c

�c =
dd

(d�1)d+1

� < �c

uniqueness threshold for the infinite (d+1)-regular tree:

:  SSM at exponential rate on trees of max-deg ≤ d +1

• SSM at exponential rate on graphs of max-deg ≤ d +1
• FPTAS for graphs of max-deg ≤ d +1

n
SAW
tree

:  SSM at polynomial rate on graphs of max-deg ≤ d +1

:  no FPRAS for (d+1)-regular graphs unless NP=RP
[Sly 10]  [Galanis Štefankovič Vigoda 12] [Sly Sun 12]:

[Weitz 07]:

Problem 1:  Approximability of the hardcore model when λ=λc.
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k

d

λ = 1: easy

hard

• matchings of hypergraphs with activity λ of max-deg ≤(k+1) and max-edge-size ≤(d+1)
• independent sets of hypergraphs with activity λ of max-deg ≤(d+1) and max-edge≤(k+1)

uniqueness
threshold

[Liu Lu 15]

FPTAS / SSM at exp rate:

no FPRAS unless NP=RP:
[DKRS 14]
[Liu Lu 15]

� < �c =
dd

k(d� 1)(d+1)

� > 2k+1+(�1)k

k+1 �c ⇡ 2�c

SSM at polynomial rate:

� = �c

[Weitz 07] [Sly 10]hardcore

monomer
-dimer

[BGKNT 08]

Problem 2:  Transition of approximability for hypergraph matchings.

(duality)

hypergraph H=(V,E), where E⊆2V:  an M⊆E is a matching if all edges in M are disjoint

Weitz’s approach works for hypergraph matchings:

(e.g. matchings in 3-uniform 
hypergrpahs of max-deg 5 )



|R�[⇢
T �R⌧[⇢

T |  �(`)

The Potential Method
hardcore model: independent set I of weight w(I) = �|I|

⇢`
T

8�, ⌧

R�[⇢
T = �

dY

i=1

1

1 +R�[⇢
i

xi

f(~x) = �

dY

i=1

1

1 + xi

recursion:

R =
p

1� p
where

0 ∞

fixed

valu
es

arbitrary initial values

`

error  �(`)

SSM: dynamical system:



0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

f(x) =
�

(1 + x)d

unique fixed point: x̂ = f(x̂)

symmetric version:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
|f 0(x̂)| > 1

(
x

+ = f(x�)

x

� = f(x+)

9x�
< x̂ < x

+

|f 0(x̂)|  1

|f 0(x̂)|  1

�  �c =
dd

(d� 1)(d+1)



0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

y

f(x) =
�

(1 + x)d

x

�

g(y) = arcsinh

 s
�

(1 + sinh(y)2)d

!

g(y) = �(f(��1(y)))

�(x) = arcsinh(
p
x)

�

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

f(x) =
�

(1 + x)d

|f 0(x)| > 1

|f 0(x̂)| < 1

|g0(y)| < 1 everywhere!

Always
contract!

(if                )|f 0(x̂)| < 1

=

s
df(x)

1 + f(x)

r
dx

1 + x


p

|f 0(x̂)|

x = �

�1(y)where

|g0(y)| = �

0(f(x))

�

0(x)
|f 0(x)|

�

0(x) =
1

2
p
x(1 + x)

by choosing (assuming                )|f 0(x̂)| < 1



 f(~x)�(f(~x))

dX

i=1

1

(1 + xi)�(xi)
max

i
✏i

original: potential:

xi yiyi = �(xi)

f(~x) = �

dY

i=1

1

1 + xi
g(~y) = �(f(��1(y1), . . . ,�

�1(yd)))

✏i = |yi � y0i|

=
dX

i=1

����
@f(~x)

xi

����
�(f(~x))

�(xi)
✏i

Mean Value Theorem:

(where                    , denote                      )⇠i = �(xi) �(x) = �

0(x)

✏ = |g(~y)� g(~y0)| =
���rg(~⇠) · ~✏

���

�

✓����
@f(~x)

xi

���� =
f(~x)

1 + xi

◆
recall:



s
f(~x)

1 + f(~x)

dX

i=1

r
xi

1 + xi
max

i
✏i



s
df(x)

1 + f(x)

r
dx

1 + x

max

i
✏i

(choose                                           )�(x) = �

0(x) = 1p
x(1+x)

(concavity) f(x) =
�

(1 + x)d
(where                        )


p
|f 0

(x̂)|max

i
✏i

(assuming                )|f 0(x̂)| < 1



The Potential Method
hardcore model: independent set I of weight w(I) = �|I|

⇢`
T

8�, ⌧

|R�[⇢
T �R⌧[⇢

T |  �(`)

0 ∞

fixed

valu
es

arbitrary initial values

`

SSM: dynamical system for potentials:

�(xi)

�(f(~x)) = �

 
�

dY

i=1

1

1 + xi

!

✏ =
���

�
R�[⇢

T

�
� �

�
R⌧[⇢

T

���

↵ < 0.999uniqueness:

�(`)  �(�)

�0(�)
· ↵`

 ↵max

i
✏i  ↵` · ✏initial



The Potential Method
antiferromagnetic 2-spin:

ZG =
X

�2{0,1}V

Y

{u,v}2E

A(�u,�v)
Y

v2V

b(�v)

A =


A00 A01

A10 A11

�
=


� 1
1 �

�
b =


b0
b1

�
=


�
1

�
where

antiferromagnetic:

xi

f(~x) = �

dY

i=1

�xi + 1

xi + �

�(x) =

Z
1p

x(�x+ 1)(x+ �)
dx

�(x) = �

0(x) =
1p

x(�x+ 1)(x+ �)
so

let

↵ =
dX

i=1

����
@f(~x)

xi

����
�(f(~x))

�(xi)


s
df(x)

(�f(x) + 1)(f(x) + �)

s
dx

(�x+ 1)(x+ �) 
p

|f 0(x̂)|

(where                             )f(x) = �

✓
�x+ 1

x+ �

◆d

decay factor (in the potential world):

�� < 1



partition function of anti-ferromagnetic 2-spin system 
with parameter (β,γ,λ) on graphs with max-degree ≤Δ

uniqueness:  WSM on all d-regular trees for d≤Δ
non-uniqueness: no WSM on a d-regular tree with d≤Δ
[Li Lu Y. 12; 13]: (β,γ,λ) in the interior of uniqueness regime

[Sly Sun 12]:
FPTAS for graphs with max-degree ≤Δ

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

�

�

0< �, � <1

�� = 1 uniqueness threshold

threshold achieved by
heatbath random walk

�

�

threshold for the uniqueness
to hold for all d

(β,γ,λ) in the interior of non-uniqueness regime

no FPRAS for the problem unless NP=RP1 The Monotonicity of the Contraction Ratio

500 1000 1500 2000
d

0.5

1.0

1.5

cd

Figure 1: cd again d. For both two curves, we fix γ = 0 and λ = 150. The curve above is when β = 1, while
below β = 1.001. Notice the shape of the curve changed dramatically. Moreover, cd < 1 holds everywhere for the
setting below, while it only holds for d up to about 350 for the setting above.

In Theorem, the criterion of SSM is to check if c is less than 1, where c is the maximum value among all cd
for all possible number d of children for any vertex in the tree. For a graph with degree bound D, the set of all
possible such d in the corresponding SAW tree is {d|d ≤ D}. Thus, we would like to investigate the property of
cd as a function of d. In particular, we want to know if cd is monotonic with respect to d. If so, then we only
need to check if cD < 1 at the degree bound D.

Our parameters (β, γ,λ) always satisfy that βγ < 1, β, γ ≥ 0, and λ ≥ 0. It turns out that if 0 ≤ β, γ ≤ 1,
then cd is monotonic in d; otherwise cd is a single-peaked function in d, and there exists a unique maximum point.
Moreover, cd is increasing before it and decreasing afterwards. The rest of this section is devoted to prove this.

Recall that cd = xd(1− xd)
d(1−βγ)
H(xd)

, where xd is the fixing point of fd(x) such that x = fd(x). For simplicity,

we drop the constant factor of (1 − βγ) and set c(d) = dxd(1−xd)
H(xd)

. Also notice that we consider d as a positive
real number throughout this section.

Take the derivative w.r.t. d, we get

c′(d) =
xd(1− xd)

H(xd)
+ d · ∂xd

∂d

(1− 2xd)H(xd)− xd(1− xd)H ′(xd)

H2(xd)
(1)

However, xd satisfies that x = f(x), then we have:

1

xd
− 1 = λhd(xd)

Thus,

log(
1− xd

xd
) = log λ+ d log h(xd)

Take the partial derivative with respect to d on both side, we have:

− 1

xd(1− xd)

∂xd

∂d
= log h(xd) + d

∂xd

∂d

1− βγ

H(xd)

Hence, we have:
∂xd

∂d
= − log h(xd) ·

H(xd)xd(1− xd)

H(xd) + d(1− βγ)xd(1− xd)

1

d

�, � � 1

� > 1

�� < 1

monotone

unimodal

D

decay rate

the extremal case of ssm/wsm
is no longer the Δ-regular tree



Ferromagnetic 2-spin
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�� = 1 uniqueness threshold

threshold achieved by
heatbath random walk

�

�
ferromagnetic 2-spin:

ZG =
X

�2{0,1}V

Y

{u,v}2E

A(�u,�v)
Y

v2V

b(�v)

A =


A00 A01

A10 A11

�
=


� 1
1 �

�
b =


b0
b1

�
=


�
1

�

• Transition of approximability is still open.

• [Jerrum Sinclair 93] [Goldberg Jerrum Paterson 03]: 
FPRAS for ferro Ising model, or ferro 2-spin with

• Tractable when there is no decay of correlation!

� 
p

�/�

(or IS there?)



Primitive Spatial Mixing

Primitive Spatial Mixing (PSM) at rate δ( ): 
For rooted trees T1, T2 which are identical in the first l levels,
the marginal distributions at the respective roots have: 

kµT1 � µT2kTV  �(l)

• no fixed vertices
• no boundary condition
• initial values must be “realizable”

weaker than WSM/SSM:



Belief Propagation

R(t)
v!u = �

Y

w2N(u)\{v}

�R(t�1)
u!w + 1

R(t�1)
u!w + �

2-spin model on G=(V,E) with parameter (β,γ,λ) 

loopy Belief Propagation:

with initial values          for all edge orientationsR(0)
v!u

Spatial Mixing on trees

convergence of loopy BP on graphs

Weak



Belief Propagation

R(t)
v!u = �

Y

w2N(u)\{v}

�R(t�1)
u!w + 1

R(t�1)
u!w + �

2-spin model on G=(V,E) with parameter (β,γ,λ) 

loopy Belief Propagation:

with initial values          for all edge orientationsR(0)
v!u

Spatial Mixing on trees

convergence of loopy BP on graphs
(if initial values are chosen wisely)

Primitive



Primitive Spatial Mixing

Primitive Spatial Mixing (PSM) at rate δ( ): 
For rooted trees T1, T2 which are identical in the first l levels,
the marginal distributions at the respective roots have: 

kµT1 � µT2kTV  �(l)

• no fixed vertices
• no boundary condition
• initial values must be “realizable”

weaker than WSM/SSM:

Problem 3:  The approximability of ferromagnetic 2-spin systems
is captured by the primitive spatial mixing on trees. 

[Guo Lu 15]: PSM on all trees

FPTASif further
(pinning are realizable)

� <
⇣

�
�

⌘ p
��p

���1

�  1



q-Coloring
proper q-coloring of graph G(V, E) with max-degree ≤Δ

• [Jonasson 02]:  WSM on Δ-regular tree iff q≥ Δ+1

• [Galanis Štefankovič Vigoda 13]: when q<Δ, no FPRAS 
unless NP=RP, even for triangle-free graphs

• tractable threshold q≥αΔ+β:
• randomized MCMC algorithms:   α =11/6  [Vigoda 99]
• correlation-decay based algorithms: α>2.58~ [Lu Y. 13]

• SSM-only threshold: α>1.763~  [Goldberg Martin Paterson 04] 
[Gamarnik Katz Misra 13]

Problem 4:  Transition of approximability for q-colorings.



q-Coloring

v

v1 v2 v3

pv(•) = Pr[v’s color is •]

=

Qd
i=1

(1� pi,•(•))P
c: color

Qd
i=1

(1� pi,c(c))

q colors:
{●, ●, ●, ●, ●}

1, ●
2, ● 3, ●

F : [0, 1]q ⇥ [0, 1]q ⇥ · · ·⇥ [0, 1]q| {z }
d

! [0, 1]qrecursion

Problem 4’:  Threshold for the SSM for q-colorings.

[Gamarnik Katz 07]



for the hardcore model:

translated to potentials 
�(x) = arcsinh(

p
x)

✏ 
dX

i=1

↵i(~x)✏i
xi

dynamical system: propagation of errors:
(up to the translation to potentials)

Correlation Decay in different norms



Correlation Decay in different norms

xi

dynamical system: propagation of errors:
(up to the translation to potentials)

✏  ↵
dX

i=1

✏iif ideally:

•Decay of correlation in terms of # of self-avoiding walks.

• p=1: aggregate SSM      optimal mixing time for monotone systems

• p≥1: SSM and FPTAS in terms of connective constant

✏ 
dX

i=1

↵i(~x)✏i

worst
path

or generally for p≥1

(a notion of average degree)



Aggregate Spatial Mixing

R
v

t

aggregate strong spatial mixing (aSSM) at rate δ( ): 

aggregate weak spatial mixing (aWSM) at rate δ( ): 

S

µ�
v : marginal distribution at vertex v conditioning on σ

∂R

u [Mossel Sly 13]:
for monotone systems

ASSM
mixing time of

Glauber dynamics

(where censoring works)

• ferro 2-spin
• anti-ferro 2-spin 

on bipartite graphs 



xi

dynamical system: propagation of errors:
(up to the translation to potentials)

✏  ↵
dX

i=1

✏i

with

•                                 ASSM 

• for Ising without field:  this is the uniqueness threshold 

• for general 2-spin systems:  strictly stronger than the 
uniqueness condition

ASSM

For ferro 2-spin on graphs with max-degree ≤d+1:

Correlation Decay in different norms



Connective Constants
: set of self-avoiding walks of length l starting from v

connective constant for an infinite graph G:

[Madras Slade 1996]

connective constant for a family     of finite graphs is ≤Δcon

if ∃C>0 such that ∀ G(V,E) ∈
G

G

for honeycomb lattice
[Duminil-Copin Smirnov 12]

for G(n, d/n):  Δcon< (1+ε) d w.h.p.



xi

dynamical system: propagation of errors:
(up to the translation to potentials)

SSM if Δcon < 1/α

✏ 
dX

i=1

↵i(~x)✏i

Hölder’s
inequality for p≥1
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xi

dynamical system: propagation of errors:
(up to the translation to potentials)

✏ 
dX

i=1

↵i(~x)✏i

Hölder’s
inequality

for the hardcore model (with proper potential function):

choose

where Δc=Δc(λ) satisfies

for p≥1
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xi

dynamical system: propagation of errors:
(up to the translation to potentials)

SSM 
if Δcon<1/α

• Hardcore model:  Δcon < Δc (λ)
• Ising without field:  Δcon < Δc (β)
• monomer-dimer model:  any finite Δcon

FPTAS for family of graphs with bounded Δcon :
uniqueness
condition

in terms of Δcon

Problem 5:  FPTAS for matchings in general graphs.

[Srivastava Sinclair Štefankovič Y. 15]

[Jerrum Sinclair 89]: FPRAS for all graphs

[Bayati Gamarnik Katz Nair Tetali 07]: FPTAS for constant degree 
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Open Problems
• hardcore model at the uniqueness threshold

• transition of approximability of hyper-matchings

• PSM capturing the approximability of ferro 2-spin

• transition of approximability of q-coloring

• deterministically approximately counting matchings 
in general graphs

How to establish the “correct” correlation decay 
and relate it to approximate counting ?

PSM ≤ WSM ≤ SSM ≤ ASSM



Thank you!
Any questions?


