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The SAT problem

The boolean satisfiability (SAT) problem:

set of clauses: each clause =
constrains a (small) subset of variables

1 OX2
n variables x; taking values
in {TRUE, FALSE} = {+, -}

Computational question: decide if there exists any variable
assignment x € {+, -}" satisfying all clauses.



Constraint satisfaction problems

SAT is a constraint satisfaction problem (CSP).

A general CSP is a set of variables subject to some
constraints: the question is to decide whether there exists
some variable assignment satisfying all constraints.

For a large class of CSPs, including SAT, best known
algorithms have exponential runtime on worst-case instances,
motivating interest in average-case behavior.

One direction is to investigate the typical behavior for models
of random CSPs, as the system size becomes large. This line
of research has been pursued since the 1980s.
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Formal definition of k-SAT

A k-SAT problem is specified by a boolean formula

clause of width k = 4
! 1

(+x1 OR +X3 OR —X5 OR —X7 )
AND (=X1 OR =X OR +X5 OR +Xp )
AND ( =X3 OR +X4 OR —Xg OR +X7 )

Assign variables x; € {+, -} to satisfy all clauses.
Equivalently, a factor graph with colored edges:

clauses F

blue edge affirms
edge negates

1 OX2 X3 4 5 X6 6
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set V of n variables

, each clause degree k

set E of random edges

randomly divided into affirmative and negative
— altogether forms a random k-SAT instance ¥:
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SAT threshold conjecture

SAT threshold conjecture. For each fixed k (with k > 2),
random k-SAT has a sharp satisfiability threshold o, (k):

P(SAT)
converges to sharp threshold
in limit n — o

SAT

(with high probability)

UNSAT

(with high probability)

clause-to-variable ratio « (k fixed)

Since early '90s, known for k = 2, open for k > 3.
(k = 2) Goerdt '92, '96, Chvatal-Reed '92, de la Vega '92
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Friedgut ('99) proved there is a threshold sequence s (n):
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Threshold conjecture: Friedgut’s theorem (8/28)
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First moment
Let Z(G) = |SOL(G)| = #satisfying assignments of G.

Denote Z = Z(¥) where ¢ is a random k-SAT formula with
n variables, m ~ Poisson(n«) clauses. Assume m = na.

EZ = 27(1 — 1/25)™ = exp {n(m 2 +aln(l— 1/2k)) }

Exponent zero at a; = 2XIn2. Above a1, EZ < 1.
P(Z #0) <EZ, so Z = 0 whp. So if ag, exists, it is < ;.

The bound isn't tight: there is a non-trivial interval (e, 1)
where EZ > 1 even though Z = 0 with high probability. Thus
[EZ is dominated by a rare event where Z is extremely large.
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Statistical physics of random CSPs

A major challenge has been to understand the complicated
geometry of the solution space SOL for random CSPs.

Statistical physicists made major advances on this front by
showing how to adapt heuristics from the study of spin glasses

(disordered magnets) to explain the CSP solution space.
Mézard—Parisi '85, '86, '87; Fu—Anderson '86

Some remarkable physics conjectures for spin glasses & CSPs
on dense graphs have been rigorously proved:

Aldous '00, Guerra '03, Talagrand '06, Panchenko '11, Wastlund '10
(for conjectures of Parisi, Mézard, Krauth in '70s and '80s)

Less is understood for sparse models like random k-SAT.
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A ‘universality class’ of sparse random CSPs

Extensive physics literature proposes a class of sparse random
CSPs exhibiting the same qualitative behavior — ‘1RSB’.

Krzakata—Montanari—Ricci- Tersenghi—-Semerjian—Zdeborova '07,
Zdeborové—Krzakata '07, Montanari—Ricci-Tersenghi—-Semerjian '08

Such models are believed to exhibit a complex phase diagram:
solution space SOL exhibits several distinct behaviors.

KMRSZ '07

Structural phenomena have been linked to algorithmic barriers.
e.g. Achlioptas—Coja-Oghlan '08, Sly '10, Gamarnik—Sudan '13, Rahman—Virag '14
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The 1RSB threshold

increasing «

g _.... :{&}_ .. UNSAT

The 1RSB models are predicted to exhibit a very specific
clustering structure in the regime of « preceding asa,t.

On the basis of this structural assumption, one can derive an
explicit conjecture cv,c = v.. This is the 1RSE threshold

formula. Similar formulas can be derived in other models.
derivation for random k-SAT: Mertens—Mézard—Zecchina '06
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Moment method and 1RSB

In prior literature, best bounds on as,; are by moment method
on Z (number of solutions), with increasingly sophisticated
truncation/conditioning to handle the non-concentration of Z.

Kirousis—Kranakis—Krizanc—Stamatiou '96
Achlioptas—Moore '02, Achlioptas—Peres '03, Coja-Oghlan—Panagiotou '14

The physics explains the source of non-concentration (‘RSB’)
— strongly suggests moment method on Z cannot detect u,t.
The 1RSB hypothesis indicates a better path to the threshold.

The predicted threshold value «, is a complicated function —
makes it (highly) unlikely that a rigorous determination of g
can be made without relying on the physics insight.
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We can adopt another perspective on the random k-SAT
solution space SOL < {+, -}", by defining

v = uniform probability measure over SOL.

Fix the k-SAT instance, thereby fixing 1/, and consider X ~ v:
a {+, —}-valued stochastic process indexed by the variables.

Asking about the geometric structure of SOL can be recast as
asking about the behavior of typical samples X ~ v.

The (random) measure v is an example of a graphical model
(or factor model/Gibbs measure/Markov random field).
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RS(B) in graphical models

Physicists classify graphical models  as replica symmetric or
replica symmetry breaking (RS/RSB) as follows. For simplicity,
assume variables X; take values in {+, -} for all 1 </ < n.

We say v is RS if faraway variables are ‘nearly independent’
(correlation decay). In particular, if X!, X? < v (replicas), then

1 n
overlap(X*, X?) = —Z:X,-lX,-2 is concentrated (LLN).
n
i—1

Otherwise, v has long-range dependencies and it is RSB. In
this case overlap(X?!, X?) has a non-trivial distribution.
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Random k-SAT exhibits both RS and RSB regimes:

increasing «

Nearer to ae,¢, almost all mass in bounded number of clusters.

Replicas X1, X2 < 1/ are either in different clusters with
overlap = 0, or in the same cluster with overlap = 1.

Both events occur with non-neglible probability, so overlap
distribution is non-trivial. This is the RSB regime.
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Clusters of solutions

Why does the solution space SOL exhibit clustering?

increasing «

The random SAT graph is sparse — each variable participates
in bounded number of clauses. Each clause has some freedom.
A typical x € SOL thus has > n7 free variables.

By sparsity, extract n7’ free variables with no shared clauses.

Flipping any subset of these variables gives another X € SOL:
x € cluster € SOL with |cluster| > 2"

Such clustering is a generic feature of sparse random CSPs.



Condensation, 1RSB,
and cluster encodings
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Where are we?

Random k-SAT with n variables, m ~ Poisson(nca) clauses:

Qe v .

So far, we've tried to give a tour of the phase diagram — the
(conjectural) geometry of SOL < {+,-}", as « varies.

S

How did physicists actually come up with such a picture
(complete with exact numerical predictions)?

What are the implications for the rigorous approaches to asg,:?
For example, how does all this relate back to EZ?
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Cluster complexity function

Under an additional set of assumptions (1RSB)

expected #clusters of size exp{ns }
= typical #clusters of size exp{ns }
= explnr(s) o}

for explicit ¥(s), the so-called ‘cluster complexity function.’
(Implicitly, X(s) = X(s;«).) Then Z = |SOL| has expectation

EZ = Z exp{n[s + X(s)]}.

0<s<In2

Dominated by s = s, where ¥'(s,) = —1. Since we know X,
we can see how maxs[s + X(s)] changes with .
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RS to RSB (condensation/Kauzmann transition)

EZ = exp{n[s. + X(s.)]} where Y'(s,) = —1. As « increases:
RS RSB UNSAT

() N &

typical picture is dominated by
O(1) clusters of this size
(the condensation phenomenon)

Upon onset of RSB (condensation/Kauzmann transition), EZ
becomes dominated by atypically large clusters. Z < EZ whp.
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Definition of 1RSB

The detailed phase diagram is derived with the assumption

expected #clusters of size exp{ns}
= typical #clusters of size exp{ns}

— from this, non-concentration of Z < RSB in SOL. For the
assumption to hold, need lack of RSB at level of clusters.

The one-step replica symmetry breaking (LRSB) heuristic
postulates that solution clusters are replica symmetric even
when individual satisfying assignments are RSB.

This assumption underlies the explicit derivation of X (s),
and yields o, = max{a : Lnax(a) = maxs X(s; ) > 0}.
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1RSB formulas

The one-step replica symmetry breaking (LRSB) heuristic
postulates that solution clusters are replica symmetric even
when individual satisfying assignments are RSB.

How to get from this to formulas? What does it really mean
for clusters to be RS? Need graphical model of clusters.

The random graphs are locally tree-like — few short cycles.
Trees are great for formulas (fixed-point equations).

The measure v over SOL reflects k-SAT on the random graph.
To reduce to ‘k-SAT on a tree,” we need to understand the
marginal vy over large neighborhoods U, say U = B;(v).
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Cavity measure and fixed points
Markov: vy(x,) = 1{x satisfies all clauses in U}vc y(x,y)-

The central difficulty is to understand the law of x,, in the
cavity graph G\U. ldeally, 3 measure g on {+, -} so that

ve\u(x H q(x,) forany U. (*)
uE(

If W< U, vy is marginal of vy v~ fixed-point eqn. for g.
Solve for q,. Write Z, as telescoping product of Z;/Z;_;:

(Z,)Vm = = zlll Xys Xoy) H g (xy) =

uedv

o (x) yields Z, = ¢" for explicit ¢!
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BP fixed points

ve\u(x 1_[ q(x,) forany U

ueolU

breaks down upon onset of RSB. 1RSB says that a
modification of (x) holds within each individual cluster ~:

I/G\U (xo0) H qLHp (x,) forany v, U.
ueolU

Instead of recursion for single g, have the (vector) BP eqns.:

q" = BP(g"; G). 1RSB correspondence v <> 17 < q".

Lift G to new CSP GBP whose constraints are the BP eqns.:

{clusters v} <> {BP fixed points g7} <> {solutions of GBF}.
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Cluster complexity function

{clusters v} < {BP fixed points g7} <> {solutions of GBF}.
GBP is just another CSP — but 1RSB says that GEF is RS
even if G is RSB. The desired condition (%) then holds.

Thus can get to a fixed-point equation for a single Q, solve for
Q., and get the partition function Z(GBF).

On G, q is a measure on x € {+,-}, and Z(G) is the number
of k-SAT solutions. On GBF, Q is a measure on q € Z{+, -},
and the partition function Z(GBP) is the number of clusters.

Z(GBP) = exp{nEmax(a)} for explicit ¥ o v~ explicit .
With more work, can predict full curve ¥(s; ).
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Combinatorial cluster encoding

If only interested in max, X (s), can further reduce BP to WP:
gx—y (measure on {+ -}) projects to m,_,, € {+, -, free}.

see Parisi '02, Braunstein—Mézard—Zecchina '02
Maneva—Mossel-Wainwright '05

{clusters v} < {BP fixed points g7} < {WP fixed points 7"},
77 € {+, -, free}?E with 17 = WP(z7; G).
WP has nice interpretation: if variable v neighbors clause a,

71, = +/- iff a forces x, = +/- in cluster ~;
), = +/- iff dv\a forces x, = +/- in cluster .

random regular NAE-SAT, random regular IND-SET, random SAT
So far, in models where a,,; was rigorously determined, lower
bounds go through WP configurations 7. Informal idea is to
show that the 7's ‘do not cluster’ — partially confirms 1RSB.
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Open questions

What is the typical value of Z7

Other aspects of phase diagram (structural properties of SOL)?

How does the picture change at positive temperature?

Models with higher levels of RSB (MAX-CUT)?



Explicit k-SAT threshold & thanks!

Let &2 = space of probability measures on [0,1]. Define the
distributional recursion R, : & — &2,

Ru)(E)= % ma(@ [ 1] g e © 8 TTant)

d=(d",d")
| _ e Fa(ka/HE SV =
with 7, (d) = @)y M =N*(d,n) = H (1 _Enij)

We show (Ra)lll/z =g lhe, and use fi, to define

M +n —nnia-
¢(a)—;wa<d>jln((l_a_ e 1))ﬂdua o [Tt

For k > kg, the random k-SAT threshold ag,: = a, is the unique solution
of ®(a) = 0 in the interval 2KIn2 —2 < a < 2kIn2.
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