Constraints, Gadgets, and Invariants

Andrei A. Bulatov
Simon Fraser University

Counting and Phase Transitions Boot Camp, Simons Institute, 2016
Relations and Functions

Let A be a finite set

Relation (k-ary): $R \subseteq A^k$, can be viewed as a function

$R: A^k \rightarrow \{0,1\}$

Function (k-ary): $R: A^k \rightarrow \mathbb{R}$ (for optimization)

$R: A^k \rightarrow \mathbb{R}^+$ (for partition functions)
Constraint Problems
Constraint Problems

Instance: $(V; A; C)$ where $\text{CSP}(\Gamma)$

- V is a finite set of variables
- A is a set of values
- C is a set of constraints $\{R_1(s_1), \ldots, R_q(s_q)\}$

R_1, \ldots, R_q can be relations on A, or (nonnegative, real/complex) functions on A

Often assumed to be from a fixed set Γ
Constraint Problems II
Constraint Problems III

Instance: \((V; A; C)\) where \(\text{CSP(}\Gamma\text{)}, \, \$\text{CSP(}\Gamma\text{)}, \, \#\text{CSP(}\Gamma\text{)}\)

- \(V\) is a finite set of variables
- \(C\) is a set of constraints \(\{R_1(s_1), \ldots, R_q(s_q)\}\)

Objective (Decision): whether there is \(h: V \rightarrow A\) such that, for any \(i\), \(R_i(h(s_i))\) is true

Objective (Optimization): find \(h\) that maximizes \(\sum_i R_i(h(s_i))\)

Objective (Counting): find the number of such solutions \(h\)

Objective (Partition function): find the number \(\sum_h \prod_i R_i(h(s_i))\)
Classification

The Classification Problem: Find the complexity of $\text{CSP}(\Gamma)$, $\$\text{CSP}(\Gamma)$, $\#\text{CSP}(\Gamma)$ for every constraint language Γ
Gadgets and Reductions
Gadgets and Reductions

`express’ R

The hope is $\text{CSP}(R) \leq \text{CSP}(Q)$
No auxiliary variables

Then \(\text{CSP}(R) \leq \text{CSP}(Q) \) (in all possible meanings)

More generally, if for every \(R \in \Gamma \) there is an instance of \(\text{CSP}(\Delta) \) with relations/functions \(Q_1, \ldots, Q_n \in \Delta \) such that

- \(R(\overline{x}) = Q_1(\overline{x}_1) \land \cdots \land Q_n(\overline{x}_n) \) then \(\text{CSP}(\Gamma) \leq \text{CSP}(\Delta) \)
- \(R(\overline{x}) = Q_1(\overline{x}_1) + \cdots + Q_n(\overline{x}_n) \) then \(\$\text{CSP}(\Gamma) \leq \$\text{CSP}(\Delta) \)
- \(R(\overline{x}) = Q_1(\overline{x}_1) \times \cdots \times Q_n(\overline{x}_n) \) then \(\#\text{CSP}(\Gamma) \leq \#\text{CSP}(\Delta) \)
Define relation R on A

$R = \emptyset$ if $|A| = 2$

R is AllDifferent otherwise
The set of all functions/relations that can be expressed by an instance of CSP(Δ) is called the weak clone generated by Δ, and denoted $\langle \Delta \rangle$.
Quantification (Decision)

If for every $R \in \Gamma$ there is an instance of CSP(Δ) with relations $Q_1, \ldots, Q_n \in \Delta$ such that

$$R(x) = \exists y \ Q_1(x_1, y_1) \land \cdots \land Q_n(x_n, y_n)$$

then $\text{CSP}(\Gamma) \leq \text{CSP}(\Delta)$

(Jeavons, et al., 1997)

The set of all functions/relations that can be expressed by an instance of CSP(Δ) + existential quantification is called the clone generated by Δ, and denoted $\langle \Delta \rangle_\exists$
Define relation R on $A = \{0, 1, 2\}$

R is NotAllDifferent
Gadgets & Reductions: Optimization

Optimization (Maximization):

For a constraint language Δ by $\langle \Delta \rangle_{\text{max}}$ we denote the set of functions

$$R(\vec{x}) = \max_{\vec{y}}(Q_1(\vec{x}_1, \vec{y}_1) + \cdots + Q_n(\vec{x}_n, \vec{y}_n)),$$

the max-clone.

If $\Gamma \subseteq \langle \Delta \rangle_{\text{max}}$, then $\text{CSP}(\Gamma) \leq \text{CSP}(\Delta)$.
Small Example III

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferroising</td>
<td>λ</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>λ</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>λ</td>
<td>1</td>
</tr>
</tbody>
</table>

R: $x \rightarrow FI \rightarrow FI \rightarrow y$

00 $\max\{\lambda + \lambda, 1+1\}$

01 $\max\{1 + \lambda, \lambda + 1\}$

R: $\begin{array}{c|cc}
0 & 0 & 1 \\
0 & 2\lambda & 1+\lambda \\
1 & 1+\lambda & 2\lambda \\
\end{array}$

$1 < \frac{2\lambda}{1+\lambda} < \lambda$
Gadgets & Reductions: Counting

Counting:

For a constraint language Δ by $\langle \Delta \rangle_\Sigma$ we denote the set of functions

$$R(\overline{x}) = \sum_{\overline{y}} Q_1(\overline{x}_1,\overline{y}_1) \times \cdots \times Q_n(\overline{x}_n,\overline{y}_n),$$

the Σ-clone

If $\Gamma \subseteq \langle \Delta \rangle_\Sigma$, then $\#\text{CSP}(\Gamma) \leq \#\text{CSP}(\Delta)$

For relations: If $\Gamma \subseteq \langle \Delta \rangle_\exists$ then $\#\text{CSP}(\Gamma) \leq \#\text{CSP}(\Delta)$

(B., Dalmau, 2003)
Define relation R on $A = \{0, 1\}$

R is FerroIsing
Polymorphisms
Polymorphisms

Operation $f(x_1, \ldots, x_n)$ is a polymorphism of relation R if for any $\bar{a}_1, \ldots, \bar{a}_n \in R$, it holds $f(\bar{a}_1, \ldots, \bar{a}_n) \in R$.

$\text{Pol}(R)$, $\text{Pol}(\Gamma)$ is the set of all polymorphisms of R, Γ.

$R \in \langle \Gamma \rangle_\exists$ if and only if $\text{Pol}(\Gamma) \subseteq \text{Pol}(R)$

If $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$ then $\text{CSP}(\Delta) \leq \text{CSP}(\Gamma)$

$\#\text{CSP}(\Delta) \leq \#\text{CSP}(\Gamma)$
Polymorphisms: Examples

Let $R = \{(0,1),(1,2),(2,0)\}$ on $A = \{0,1,2\}$ and $f(x,y,z) = x - y + z$. f is a polymorphisms of R

$$
\begin{align*}
 f \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} &= \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \\
 f \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} &= \begin{pmatrix} 1 \\ 2 \end{pmatrix}, ...
\end{align*}
$$

$f(x,y,z)$ is a majority operation, if $f(x,x,y) = f(x,y,x) = f(y,x,x) = x$. If relation R has a majority polymorphism, then $\bar{a} \in R$ if and only if every its binary projection belongs to the corresponding binary projection of R.

21/36
Polymorphisms: Results

Dichotomy Conjecture for decision CSPs (~): CSP(Γ) is poly time if and only if Γ has a nontrivial polymorphism. Otherwise it is NP-complete

Exact counting: More complicated, but can be described through polymorphisms
A multimorphism is a collection of operations m_1, \ldots, m_n on A. m_1, \ldots, m_n is a multimorphism of function R on A if for any $\bar{a}_1, \ldots, \bar{a}_n$

$$R(\bar{a}_1) + \cdots + R(\bar{a}_n) \geq R(m_1(\bar{a}_1, \ldots, \bar{a}_n)) + R(m_n(\bar{a}_1, \ldots, \bar{a}_n))$$

Submodularity: $m_1 = \land, m_2 = \lor$

$$R(\bar{a}) + R(\bar{b}) \geq R(\bar{a} \land \bar{b}) + R(\bar{a} \lor \bar{b})$$
Optimization: Fractional Polymorphisms

Fix a set A and let O^k denote the set of all k-ary operations $m: A^n \to A$. A probability distribution μ on O^k, $\mu: O^k \to [0,1]$ is called a fractional polymorphism of function $R: A^k \to \mathbb{R}$ if for any $\bar{x}_1, \ldots, \bar{x}_n \in A^k$

$$E_{m \sim \mu} [R(m(\bar{x}_1, \ldots, \bar{x}_n))] \leq \text{avg}(R(\bar{x}_1), \ldots, R(\bar{x}_n))$$

Submodularity:

$k = 2$, $\mu(\land) = \mu(\lor) = \frac{1}{2}$, that is,

$$\frac{1}{2} \left(R(\bar{x}_1 \land \bar{x}_2) + R(\bar{x}_1 \lor \bar{x}_2) \right) \leq \frac{1}{2} \left(R(\bar{x}_1) + R(\bar{x}_2) \right)$$
FPol(R), FPol(\Gamma) denote the set of all fractional polymorphisms of function \(R \) or constraint language \(\Gamma \)

\[R \in \langle \Gamma \rangle_{max} \text{ iff } FPol(\Gamma) \subseteq FPol(R) \quad \text{(Zivny et al. 2009)} \]

\(\text{CSP}(\Gamma) \) is polynomial time iff \(\Gamma \) has a `nontrivial’ fractional polymorphism. Otherwise it is NP-hard.

(Thapper, Zivny, 2013, Kolmogorov et al. 2015)
Approximation: Approximation Polymorphisms

Fix a set A and let O^k denote the set of all k-ary operations $m: A^k \rightarrow A$.

A probability distribution μ on $O^k, \mu: O^k \rightarrow [0,1]$ is called an α-approximation polymorphism of function $R: A^k \rightarrow \mathbb{R}$ if for any $\bar{x}_1, ..., \bar{x}_n \in A^k$

$$\alpha \cdot E_{m \sim \mu} \left[R(m(\bar{x}_1, ..., \bar{x}_n)) \right] \geq avg(R(\bar{x}_1), ..., R(\bar{x}_k))$$

Let α_{Γ} be the greatest constant such that there is a `nontrivial' α_{Γ}-approximation polymorphism of Γ. Then (assuming the Unique Games Conjecture) α_{Γ} is the approximation threshold for $CSP(\Gamma)$. (Raghavendra, 2008)
Approximate Counting
Approximate Counting: Clones

Clones for approximate counting are $\langle \Gamma \rangle_\Sigma + \text{limits} = \langle \Gamma \rangle_\omega$, that is, $R \in \langle \Gamma \rangle_\omega$ iff there are $R_1, R_2, \ldots \in \langle \Gamma \rangle_\Sigma$ such that $\lim R_k = R$

If $\Gamma \subseteq \langle \Delta \rangle_\omega$ then $\#\text{CSP}(\Gamma) \leq_{AP} \#\text{CSP}(\Delta)$

Any `morphisms’ for approximate counting?
Morphisms for Approximate Counting

Observation: For any constraint language Γ of rational-valued functions there is a constraint language Δ of relations (possibly on a different set) such that $\#\text{CSP}(\Gamma) \approx \#\text{CSP}(\Delta)$

Partial operation $f(x_1, \ldots, x_n)$ is a partial polymorphism of relation R if for any $\bar{a}_1, \ldots, \bar{a}_n \in R$, it holds $f(\bar{a}_1, \ldots, \bar{a}_n)$ belongs to R or does not exist.

$\text{PPol}(R), \text{PPol}(\Gamma)$ is the set of all partial polymorphisms of R, Γ.

$R \in \langle \Gamma \rangle$ if and only if $\text{PPol}(\Gamma) \subseteq \text{PPol}(R)$
Can We Do Better?

We need to find some sort of `morphisms’ for $\langle \Gamma \rangle_{\Sigma}$ or/and $\langle \Gamma \rangle_{\omega}$

Nothing known yet, but there are options …
Option 1. Does one of the existing types of `morphism`s` work?

Function \(f : \{0,1\}^k \rightarrow \mathbb{R}^+ \) is Log-Super-Modular (LSM) if for any \(\vec{x}_1, \vec{x}_2 \in \{0,1\}^k \)

\[
f(\vec{x}_1)f(\vec{x}_2) \leq f(\vec{x}_1 \land \vec{x}_2)f(\vec{x}_1 \lor \vec{x}_2)
\]

FerroIsing \(\in \) LSM, AntiFerroIsing \(\not\in \) LSM

LSM is closed under \(\langle \cdot \rangle_\Sigma \) and \(\langle \Gamma \rangle_\omega \)

Not clear if it is true for other multimorphisms
Conservative Case

Set of operations (constraint language) Γ on A is conservative if it contains all the unary operations on A.

Almost complete complexity classification of conservative constraint languages

(many people in different combinations, 2014, 2015)
Option 2. Properties of Fourier coefficients?

Let $f : \{0,1\}^n \rightarrow \mathbb{R}^+$ be a function and $S = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$

Fourier coefficient $\hat{f}(S)$ is given by

$$\hat{f}(S) = \frac{1}{2^n} \sum_{x_1, \ldots, x_n \in \{0,1\}^n} f(x_1, \ldots, x_n) (-1)^{x_{i_1} + \cdots + x_{i_k}}$$

Let PF denote the set of functions f such that $\hat{f}(S) \geq 0$ for all S. PF is closed under $\langle \cdot \rangle_\Sigma$ and $\langle \cdot \rangle_\omega$

Some interesting constraint languages from PF and LSM
Option 3. Looking for `morphisms’ w.r.t. $\langle \cdot \rangle_\omega$ is wrong.

We may want to relax the closure operator

A probability distribution μ on O^k, $\mu: O^k \to [0,1]$ is called a log-approximation polymorphism of function $R: A^k \to \mathbb{R}^+$ if it is a 1-approximation polymorphism of $\log R$, that is,

$$E_{m \sim \mu} \left[\log R \left(m(x_1, \ldots, x_k) \right) \right] \geq \text{avg} \left(\log R(x_1), \ldots, \log R(x_k) \right)$$
Log-Approximation Polymorphisms

If μ is an approximation polymorphism of Γ, it is a log-approximation polymorphism of any $R \in \langle \Gamma \rangle$

For any Γ, $\langle \Gamma \rangle \subseteq \langle \Gamma \rangle_{\omega}$

Thus $\#\text{CSP}(\Gamma) \leq_{AP} \#\text{CSP}(\Delta)$ whenever $\langle \Gamma \rangle \subseteq \langle \Delta \rangle$
Thank You!