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WHY RANDOM?

First step towards “typical” instances.

Intriguing mathematical properties 

Solvable (by theoretical physics standards, mean field ...).                      
Using belief propagation, Bethe approximation and its 
extensions, cavity method, replica symmetry breaking. 

Ideas, inspiration and benchmarks for algorithms

also Andrea’s talk
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THE PICTURE

This talk’s example: Graph coloring on random graphs. 

Resulting picture relevant for: satisfiability, CSP, vertex 
cover, independent sets, max-cut, .... error correcting codes, 
sparse estimation, regression, clustering, compressed 
sensing, feature learning, neural networks, ....  
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GRAPH COLORING

How many proper colorings on a large random graph?

Can they be sampled uniformly? MCMC properties? 

Variant 1: Finite temperature 

Variant 2: Planted graphs                                                                
Fix a random string of colors {s⇤i }i=1,...,N

s⇤i = s⇤j ) (ij) /2 E

µ({si}i=1,...,N ) =
1

ZG(�)
e��

P
(ij)2E �si,sj

also Andrea’s talk
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COUNTING COLORINGS

Annealed entropy

Quenched entropy

sann = lim

N!1

1

N
[logE(ZG)] = log q +

c

2

log 1� 1

q

s = lim

N!1

1

N
E[log (ZG + 1)]

c fixed, N ! 1,|V | = N, |E| = M, c = 2M/N

Averaging and the large N limit. 
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COUNTING COLORINGS

c fixed, N ! 1,

s = lim

N!1

1

N
E[log (ZG + 1)]

|V | = N, |E| = M, c = 2M/N

sann = lim

N!1

1

N
[logE(ZG)] = log q +

c

2

log (1� 1

q
)

  cc: colorability threshold 

  cK: Kauzmann/condensation 

s < sann for c > cK

s = 0 for c > cc

(Krzakala et al. PNAS’07)
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PHASE TRANSITIONS

cu cd cK cc

  cc: colorability threshold 

  cK: Kauzmann/condensation transition 

  cd: dynamical/clustering/reconstruction transition 

  cu: unicity threshold

sometimes (e.g. 3-SAT or 3-coloring) cK= cd 
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SAMPLING

cluster = blue blob = subspace 

that MCMC samples 

uniformly in linear time. 

⌃ = lim

N!1

1

N
E[log (#clusters)]

Recall: random graph, random or 
warm start, weaker convergence 
that total variation. 

cu cd cK cc

q ! 1 ⇡ q log q ⇡ 2q log q⇡ q
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TEMPERATURE DEPENDENCE

liquid

ideal glass
dynamical glass

liquid
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TEMPERATURE DEPENDENCE

liquid

ideal glass
dynamical glass

liquid

sampling easy

sampling hard
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WHAT IS A PHASE TRANSITION? 

Phase transition always characterized by a divergence of a 
correlation length:

point-to-set 

two-point 

T & Td

T & TK

(Montanari, Semerjian’06)
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PLANTED COLORING

Definition: Fix a random string                          choose M edges 
at random such that if 

Interest n.1 = paradigm of statistical inference (95% of use of 
MCMC in computer science). Bayes optimal inference = 
computing marginals of the posterior distribution = 
approximate counting problem. 

Interest n.2 = Math simpler. “Warm start” for MCMC for free.             

{s⇤i }i=1,...,N

s⇤i = s⇤j ) (ij) /2 E

also Andrea’s talk
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Definition: Fix a random string                          choose M edges 
at random such that if              

{s⇤i }i=1,...,N

(Krzakala, LZ’09)

PLANTED COLORING

s⇤i = s⇤j ) (ij) /2 E
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PLANTED PHASE TRANSITIONS

For c<cK random and planted contiguous, statistical inference 
impossible, planted configuration is an equilibrium one.

In cases for which cK= cd (e.g. 3-col, 3-sat) we have that for c>cK 
statistical inference is easy. MCMC becomes fast correlated to 
the planted configuration. 

cu cd cK cc
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PLANTED PHASE TRANSITIONS

For c<cK random and planted contiguous, statistical inference 
impossible, planted configuration is an equilibrium one.  

“spinodal” phase transition at  

‣ evaluation of marginals (inference, sampling) hard

‣ evaluation of marginals tractable                  

cu cd cK cc

cK < c < cs
c > cs

cs

cs

q ! 1 ⇡ q log q ⇡ 2q log q⇡ q ⇡ q2
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1ST ORDER TRANSITION
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1ST ORDER TRANSITIONS

Phase of possible but hard inference. Equilibrium state 
hidden by metastability.  

The hard phase quantified also in: planted constraint 
satisfaction, compressed sensing, stochastic block model, 
dictionary learning, blind source separation, sparse PCA, 
error correcting codes, others ....

amount of information 
in the measurements

easyhardimpossible

known bounds known algorithms

cK cs
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THE BIG QUESTION

Establish rigorous notions of algorithmic complexity 
(some kind of dichotomies) that are sensitive to the 
dynamical (cd) and the spinodal (cs) phase transition.  
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