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Complexity Dichotomy

A theorem that classifies the complexity of a collection of
computational problems.

Tractability criterion on the problem description: Problems
that satisfy it are easy to solve, and are intractable otherwise.

tractable
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Schaefer’s Dichotomy Theorem

Theorem (Schaefer 78)

For any finite set S of Boolean relations, the decision problem
CSP(S) is either in P or NP-complete.

Feder-Vardi Conjecture

For any finite set S of relations over any finite domain D, the
decision problem CSP(S) is either in P or NP-complete.

Theorem (Bulatov 06)

A dichotomy theorem for all CSP(S) of domain size 3.
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Counting Problems

#Vertex Covers

#d-Colorings

# 3-Sat

#Perfect Matchings

. . .

# induced subgraphs with an odd number of edges
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Counting Problems

Three frameworks:

1 Counting Graph Homomorphisms (this talk)

2 Counting Constraint Satisfaction Problems (tomorrow)

3 Holant Problems (talks of Jin-Yi and Heng)
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Graph Homomorphisms

Given two undirected graphs G and H, a graph homomorphism
from G to H is a map f from V (G ) to V (H) such that

(u, v) ∈ E (G ) =⇒ (f (u), f (v)) ∈ E (H).

Theorem (Lovász 67)

Two graphs H and H ′ are isomorphic iff for all G , the number of
homomorphisms from G to H and from G to H ′ are the same.
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Dichotomy for H-Coloring

Theorem (Hell and Nešeťril 90)

For any H, the problem of deciding if there exists a homomorphism
from an input graph G to H is either in P or NP-complete.
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Counting Graph Homomorphisms

Eval(H) for a fixed graph H: Given an undirected graph G ,
compute the number of homomorphisms from G to H.

Theorem (Dyer and Greenhill 00)

For any H, Eval(H) is either solvable in P-time or #P-complete.

Tractability Criterion: Solvable in P-time if each connected
component of H is either an isolated vertex, a complete graph with
self-loops, or a complete bipartite graph.
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Examples

#Vertex Covers:

V (H) = {0, 1} and E (H) = {(0, 1), (1, 1)}.

#d-Colorings:

V (H) = {1, . . . , d} and E (H) = {(i , j) : i 6= j}.

# induced subgraphs with an odd number of edges?
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Counting Graph Homomorphisms with Weights

Eval(A) for a symmetric matrix A = (Ai ,j) ∈ Cm×m:

Given G = (V ,E ) and ξ : V → [m], call

wtA(ξ) =
∏

(u,v)∈E

Aξ(u),ξ(v)

the weight of an assignment ξ to the vertices. Compute

ZA(G ) =
∑

ξ:V→[m]

wtA(ξ) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v).

Eval(A) ≡ Eval(H): A is the adjacency matrix of H.

Partition functions in statistical physics.
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More Examples

# induced subgraphs with an odd number of edges:

Eval(A) with A =

(
1 1
1 −1

)
.

Let ξ : V → {1, 2}. Then wtA(ξ) = −1 if

subgraph induced by ξ−1(2) has an odd number of edges

and wtA(ξ) = 1 otherwise.
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More Examples

Let ω = e2π
√
−1/3 and ζ = e2π

√
−1/5:


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


1 1 1

1 ω ω2

1 ω2 ω




1 1 1 1 1
1 ζ ζ2 ζ3 ζ4

1 ζ2 ζ4 ζ ζ3

1 ζ3 ζ ζ4 ζ2

1 ζ4 ζ3 ζ2 ζ1


All these matrices are tractable!
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Dichotomy for Nonnegative Matrices

Theorem (Bulatov and Grohe 05)

Given any symmetric nonnegative matrix A ∈ Rm×m
A , Eval(A)

is either solvable in P-time or #P-hard.

Tractability Criterion: in P-time if A is a block diagonal matrix
and every block is either rank-1 or has the form(

0 B
BT 0

)
, where B is rank-1.

Many applications. [Grohe and Thurley 11] for a new exposition.
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Real or Complex Domains

Cancellations (e.g., {±1} or even roots of unity) may sometimes
lead to efficient algorithms and more tractable cases (Permanent
vs Determinant and Holographic algorithms [ Valiant 04 ]).
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Dichotomy Theorems Arise

Theorem (Goldberg, Grohe, Jerrum and Thurley 09)

Given any symmetric matrix A ∈ RA
m×m, Eval(A) is either

solvable in P-time or #P-hard.

Theorem (Cai, C and Lu 11)

Given any symmetric matrix A ∈ CA
m×m, Eval(A) is either

solvable in P-time or #P-hard.

Tractability Criterion

Roughly speaking, tractable matrices A correspond to rank one
modifications of tensor products of Fourier matrices.
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Plan of the Talk

1 Algorithms for Counting Graph Homomorphisms

2 The Group Condition

Graph gadget

Interpolation
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Rank-1 Matrices

When A is rank-1, there exists a b such that Ai ,j = bi · bj .

ZA(G ) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v)

=
∑

x1,...,xn∈[m]

∏
(u,v)∈E

bxu · bxv

=
∑

x1,...,xn∈[m]

∏
i∈[n]

(bxi )
deg(i)


=
∏
i∈[n]

 ∑
xi∈[m]

(bxi )
deg(i)

 .

Similar for

A =

(
0 B
BT 0

)
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Direct Sum of Tractable Matrices

Let A(1) and A(2) be m1 ×m1 and m2 ×m2, and

A =

(
A(1)

A(2)

)
Assume WOLG that G is connected. Then

ZA(G ) =
∑

ξ:V→[m1+m2]

∏
(u,v)∈E

Aξ(u),ξ(v)

=
∑

ξ:V→[m1]

∏
(u,v)∈E

A
(1)
ξ(u),ξ(v) +

∑
ξ:V→[m2]

∏
(u,v)∈E

A
(2)
ξ(u),ξ(v)
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Done with all tractable cases for nonnegative A. Hooray!

What about

(
1 1
1 −1

)
?
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Observed in [Goldberg, Grohe, Jerrum and Thurley 09]:

A =

(
1 1
1 −1

)
=⇒ Ax ,y = (−1)xy

when the rows and columns are indexed by x , y ∈ Z2. Thus,

ZA(G ) =
∑

x1,...,xn∈Z2

∏
(u,v)∈E

(−1)xuxv =
∑

x1,...,xn∈Z2

(−1)
∑

(u,v)∈E xuxv

for some quadratic polynomial in the exponent.

This can be computed in polynomial time!
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Theorem (e.g., see [Lidl and Niederreiter 97])

Given a quadratic polynomial f (x1, . . . , xn) over Z2,∑
x1,...,xn∈Z2

(−1)f (x1,...,xn)

can be computed in polynomial time.

(
1 1
1 −1

)
and


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


are in P-time: (−1)x1y2+x2y1 by indexing the rows by Z2 × Z2.
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Theorem (Cai, C, Lipton and Lu 10)

Given q ≥ 1 and a quadratic polynomial f (x1, . . . , xn) over Zq,∑
x1,...,xn∈Zq

(
e2π
√
−1/q

)f (x1,...,xn)
can be computed in P-time in log q and n (without knowing the
prime factorization of q).

Xi Chen Dichotomy Theorems for Counting Graph Homomorphisms



All m ×m Fourier matrices

Ax ,y = e
2π
√
−1

m
·xy , for x , y ∈ Zm

such as

1 1 1
1 ω ω2

1 ω2 ω

 and


1 1 1 1 1
1 ζ ζ2 ζ3 ζ4

1 ζ2 ζ4 ζ ζ3

1 ζ3 ζ ζ4 ζ2

1 ζ4 ζ3 ζ2 ζ1


are solvable in P-time as well as their tensor products. Most of the
tractable cases in real and complex graph homomorphisms.
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Tensor Product of Tractable Matrices

Let A = A(1) ⊗ A(2), where A(1) is m1 ×m1 and A(2) is m2 ×m2.

ZA(G ) =
∑

ξ:V→[m1]×[m2]

∏
(u,v)∈E

Aξ(u),ξ(v)

=
∑

ξ1:V→[m1]

∑
ξ2:V→[m2]

∏
(u,v)∈E

A
(1)
ξ1(u),ξ1(v)

· A(2)
ξ2(u),ξ2(v)

=

∑
ξ1

∏
(u,v)

A
(1)
ξ1(u),ξ1(v)

∑
ξ2

∏
(u,v)

A
(2)
ξ2(u),ξ2(v)
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Proof of the q = 2 Case

Theorem (e.g., see [Lidl and Niederreiter 97])

Given a quadratic polynomial f (x1, . . . , xn) over Z2,∑
x1,...,xn∈Z2

(−1)f (x1,...,xn)

can be computed in polynomial time.

Proof.

Two cases: f has an x2i or every quadratic term is xixj , i 6= j .
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Case 1: f = x1 · `(x2, . . . , xn) + f ′(x2, . . . , xn). Then∑
x1,...,xn

(−1)f =
∑

x2,...,xn

(−1)f
′ ·
∑
x1

(−1)x1·`

Since ∑
x1

(−1)x1·` =

{
2 if ` = 0

0 if ` = 1

It suffices to compute

2 ·
∑

x2,...,xn:`=0

(−1)f
′
,

which reduces the number of variables by two.
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Case 2: f = x21 + x1 · `(x2, . . . , xn) + f ′(x2, . . . , xn). Then∑
x1,...,xn

(−1)f =
∑

x2,...,xn

(−1)f
′ ·
∑
x1

(−1)x
2
1+x1·`

Since ∑
x1

(−1)x
2
1+x1·` =

{
0 if ` = 0

2 if ` = 1

It suffices to compute

2 ·
∑

x2,...,xn:`=1

(−1)f
′
,

which reduces the number of variables by two.
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Theorem (Cai, C, Lipton and Lu 10)

Given q ≥ 1 and a quadratic polynomial f (x1, . . . , xn) over Zq,∑
x1,...,xn∈Zq

(
e2π
√
−1/q

)f (x1,...,xn)
can be computed in P-time in log q and n (without knowing the
prime factorization of q).

1 Each round of the algorithm reduces either the number of
variables by at least one, or reduce q significantly.

2 P-time even when q is given in binary, where Gauss sums
form the basic building blocks of the algorithm.
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Plan of the Talk

1 Algorithms for Counting Graph Homomorphisms

2 The Group Condition

Graph gadget

Interpolation
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Discrete Unitary Matrices

Definition

We say A = (Ai ,j) ∈ Cm×m is a symmetric M-discrete unitary
matrix, for some positive integer M, if

1 Each Ai ,j is a power of ωM = e2π
√
−1/M ;

2 A1,j = 1 for all j ∈ [m];

3 For all i 6= j ∈ [m], 〈Ai ,∗,Aj ,∗〉 = 0 where

〈Ai ,∗,Aj ,∗〉 =
m∑

k=1

Ai ,k · Aj ,k .
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The Goal

Lemma (The Group Condition Lemma)

Let A ∈ Cm×m be a symmetric M-discrete unitary matrix. Then
either A satisfies the Group Condition or Eval(A) is #P-hard.

Definition (Group Condition)

For all i , j , there exists a k ∈ [m] such that Ak,∗ = Ai ,∗ ◦ Aj ,∗,
where ◦ is the Hadamard product with the `th entry = Ai ,` · Aj ,`.

Xi Chen Dichotomy Theorems for Counting Graph Homomorphisms



Definition (Group Condition)

For all i , j , there exists a k ∈ [m] such that Ak,∗ = Ai ,∗ ◦ Aj ,∗,
where ◦ is the Hadamard product with the `th entry = Ai ,` · Aj ,`.

All m ×m Fourier matrices A, where

Ax ,y = ω(2π
√
−1/m)·xy , for all x , y ∈ Zm

satisfy the Group Condition.(
1 1
1 −1

)
and

1 1 1
1 ω ω2

1 ω2 ω
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Motivation

Lemma

If A is discrete unitary and satisfies the Group Condition, then it
is the tensor product of Fourier and generalized Fourier matrices.

The Group Condition was introduced in [Goldberg, Grohe,
Jerrum and Thurley 09] for {±1}-matrices and generalized

to complex-valued matrices in [Cai, C and Lu 11].

Xi Chen Dichotomy Theorems for Counting Graph Homomorphisms



Lemma (The Group Condition Lemma)

Let A ∈ Cm×m be a symmetric M-discrete unitary matrix. Then
either A satisfies the Group Condition or Eval(A) is #P-hard.

Proof Sketch

Construct a sequence of nonnegative symmetric matrices B[p] such
that each Eval(B[p]) is polynomial-time reducible to Eval(A).
Show that either 1) one of Eval(B[p]) is #P-hard (by [Bulatov
and Grohe 05]), or 2) A satisfies the Group Condition.
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Graph Gadgets

First gadget:

u va b

c d

Each blue thick edge: M − 1 parallel edges.
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Graph Gadgets

Second gadget:

u va b

c1 d1

c2 d2

In general, pth gadget for all p ≥ 1.
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Reduction Using a Gadget

Replacing each edge e by the pth gadget: G ⇒ G [p]

G

⇒

G [p]

u v u v

There is a symmetric matrix B[p] ∈ Cm×m such that

ZB[p](G ) = ZA(G [p]).

So Eval(B[p]) is polynomial-time reducible to Eval(A).
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u va b

c d

B
[1]
i ,j =

∑
a,b,c,d

Ai ,c · Aa,c · Ab,c · Aj ,c · Ai ,d · Aa,d · Ab,d · Aj ,d

=
∑
a,b

(∑
c

Ai ,c · Aa,c · Ab,c · Aj ,c

)(∑
d

Ai ,d · Aa,d · Ab,d · Aj ,d

)

=
∑

a,b∈[m]

∣∣∣∣∣∣
∑
c∈[m]

Ai ,c · Aa,c · Ab,c · Aj ,c

∣∣∣∣∣∣
2
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u va b

c1 d1

c2 d2

B
[2]
i ,j =

∑
a,b

(∑
c

Ai ,c · Aa,c · Ab,c · Aj ,c

)2(∑
d

Ai ,d · Aa,d · Ab,d · Aj ,d

)2

=
∑

a,b∈[m]

∣∣∣∣∣∣
∑
c∈[m]

Ai ,c · Aa,c · Ab,c · Aj ,c

∣∣∣∣∣∣
4
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In general for p ≥ 1:

B
[p]
i ,j =

∑
a,b∈[m]

∣∣∣∣∣∣
∑
c∈[m]

Ai ,c · Aa,c · Ab,c · Aj ,c

∣∣∣∣∣∣
2p

=
∑

a,b∈[m]

∣∣〈Ai ,∗ ◦ Aj ,∗,Aa,∗ ◦ Ab,∗〉
∣∣2p .

So B[p] is both symmetric and positive (setting a = i , b = j).
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Diagonal Entries

Diagonal entries of B[p]:

B
[p]
i ,i =

∑
a,b

|〈1,Aa,∗ ◦ Ab,∗〉|2p =
∑
a,b

|〈Aa,∗,Ab,∗〉|2p = m2p+1.

If B
[p]
i ,j 6= m2p+1 for some p and i 6= j , Eval(B[p]) is #P-hard by
using [Bulatov and Grohe 05], and so is Eval(A). Done!

Otherwise, every entry of B[p] must equal to m2p+1.
Show in this case that A satisfies the Group Condition.
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Off-Diagonal Entries

Fix a pair i 6= j . Then

B
[p]
i ,j =

∑
a,b∈[m]

∣∣〈Ai ,∗ ◦ Aj ,∗,Aa,∗ ◦ Ab,∗〉
∣∣2p =

∑
x∈Xi,j

S
[x]
i ,j · x

2p,

where

1 Xi ,j is the set of possible values of
∣∣〈Ai ,∗ ◦ Aj ,∗,Aa,∗ ◦ Ab,∗〉

∣∣;
2 For each x ∈ Xi ,j , S

[x]
i ,j is the number of (a, b) such that∣∣〈Ai ,∗ ◦ Aj ,∗,Aa,∗ ◦ Ab,∗〉

∣∣ = x .

Also {0,m} ∈ Xi ,j (setting (a, b) = (i , j ′), (i , j) for some j ′ 6= j).
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A Vandermonde System

Since B
[p]
i ,j = m2p+1, we have∑
x∈Xi,j

S
[x]
i ,j · x

2p = m2p+1, for p = 1, . . . , |Xi ,j | − 1.

In addition, there are m2 many pairs (a, b) so∑
x∈Xi,j

S
[x]
i ,j = m2.

A Vandermonde system, with a unique solution:

Xi ,j = {0,m}, S
[m]
i ,j = m and S

[0]
i ,j = m2 −m.
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The Consequence

For all i , j , a, b ∈ [m], we have∣∣〈Ai ,∗ ◦ Aj ,∗,Aa,∗ ◦ Ab,∗〉
∣∣ ∈ {0,m}.

Use this to establish the Group Condition.
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Almost There . . .

Fix i , b ∈ [m]. Set j = 1. As A1,∗ = 1,∣∣〈Ai ,∗ ◦ 1,Aa,∗ ◦ Ab,∗〉
∣∣ = |〈Ai ,∗ ◦ Ab,∗,Aa,∗〉| ∈ {0,m}.

Since
{
Aa,∗ : a ∈ [m]

}
is an orthogonal basis, by Parseval:∑

a

∣∣〈Ai ,∗ ◦ Ab,∗,Aa,∗〉
∣∣2 = m · ‖Ai ,∗ ◦ Ab,∗‖2 = m2.
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The Group Condition

As a result, for all i , b ∈ [m], there exists an a ∈ [m] such that∣∣〈Ai ,∗ ◦ Ab,∗,Aa,∗〉
∣∣ = m.

The first entries of Ai ,∗ ◦ Ab,∗ and Aa,∗ are 1:

Aa,∗ = Ai ,∗ ◦ Ab,∗.
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Conclusion

1 Algorithms for Counting Graph Homomorphisms

2 The Group Condition

Graph gadget

Interpolation

Xi Chen Dichotomy Theorems for Counting Graph Homomorphisms



...

...

...

...

x y
vu

w z

w' z'

d1 d2 d3 dr+1

ba1 c1 a2 c2 aN-1 cN-1

d' d' d' d'1 2 3 r+1

ba1 c1 a2 c2 aN-1 cN-1' ' ' ' ' ' '

N-1  edges

1     edge
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Plan for Tomorrow

1 Dichotomy for Unweighted #CSP:

Tractability criterion: Strong balance

Mal’tsev polymorphisms and Witness functions

The main counting algorithm

2 Dichotomy for Nonnegative and Complex #CSP
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Thanks!
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