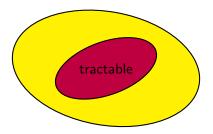
Dichotomy Theorems for Counting Graph Homomorphisms

Xi Chen Columbia University

Xi Chen Dichotomy Theorems for Counting Graph Homomorphisms

A theorem that classifies the complexity of a collection of computational problems.

• Tractability criterion on the problem description: Problems that satisfy it are easy to solve, and are intractable otherwise.



Theorem (Schaefer 78)

For any finite set S of Boolean relations, the decision problem CSP(S) is either in P or NP-complete.

Feder-Vardi Conjecture

For any finite set S of relations over any finite domain D, the decision problem CSP(S) is either in P or NP-complete.

Theorem (Bulatov 06)

A dichotomy theorem for all CSP(S) of domain size 3.

同 ト イ ヨ ト イ ヨ ト

- $\bullet~\#\,\mathrm{Vertex}$ Covers
- # d-Colorings
- #3-SAT
- # Perfect Matchings
- . . .
- # induced subgraphs with an odd number of edges

伺 ト く ヨ ト く ヨ ト

Three frameworks:

- Counting Graph Homomorphisms (this talk)
- Ocunting Constraint Satisfaction Problems (tomorrow)
- Iteration States (talks of Jin-Yi and Heng)

Given two undirected graphs G and H, a graph homomorphism from G to H is a map f from V(G) to V(H) such that

$$(u,v) \in E(G) \implies (f(u),f(v)) \in E(H).$$

Theorem (Lovász 67)

Two graphs H and H' are isomorphic iff for all G, the number of homomorphisms from G to H and from G to H' are the same.

Theorem (Hell and Nešetřil 90)

For any H, the problem of deciding if there exists a homomorphism from an input graph G to H is either in P or NP-complete.

 $E_{VAL}(H)$ for a fixed graph H: Given an undirected graph G, compute the number of homomorphisms from G to H.

Theorem (Dyer and Greenhill 00)

For any H, EVAL(H) is either solvable in P-time or #P-complete.

Tractability Criterion: Solvable in P-time if each connected component of H is either an isolated vertex, a complete graph with self-loops, or a complete bipartite graph.

• # Vertex Covers:

 $V(H) = \{0,1\} \text{ and } E(H) = \{(0,1),(1,1)\}.$

• # *d*-Colorings:

 $V(H) = \{1, \dots, d\}$ and $E(H) = \{(i, j) : i \neq j\}.$

• # induced subgraphs with an odd number of edges?

▲冊▶ ▲目▶ ▲目▶ 目 りく⊙

Counting Graph Homomorphisms with Weights

EVAL(**A**) for a symmetric matrix $\mathbf{A} = (A_{i,j}) \in \mathbb{C}^{m \times m}$:

• Given G = (V, E) and $\xi : V \rightarrow [m]$, call

$$\operatorname{wt}_{\mathbf{A}}(\xi) = \prod_{(u,v)\in E} A_{\xi(u),\xi(v)}$$

the weight of an assignment ξ to the vertices. Compute

$$Z_{\mathbf{A}}(G) = \sum_{\xi: V \to [m]} \operatorname{wt}_{\mathbf{A}}(\xi) = \sum_{\xi: V \to [m]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}.$$

 $EVAL(\mathbf{A}) \equiv EVAL(H)$: **A** is the adjacency matrix of *H*.

Partition functions in statistical physics.

induced subgraphs with an odd number of edges:

EVAL(**A**) with
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

Let $\xi: V \to \{1,2\}$. Then $\mathsf{wt}_{\mathbf{A}}(\xi) = -1$ if

subgraph induced by $\xi^{-1}(2)$ has an odd number of edges

and $wt_{\mathbf{A}}(\xi) = 1$ otherwise.

伺い イラト イラト

All these matrices are tractable!

-

Theorem (Bulatov and Grohe 05)

Given any symmetric nonnegative matrix $\mathbf{A} \in \mathbb{R}^{m \times m}_{\mathbb{A}}$, EVAL(\mathbf{A}) is either solvable in P-time or #P-hard.

Tractability Criterion: in P-time if \mathbf{A} is a block diagonal matrix and every block is either rank-1 or has the form

$$\left(\begin{array}{cc} \mathbf{0} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{0} \end{array}
ight),$$
 where **B** is rank-1.

Many applications. [Grohe and Thurley 11] for a new exposition.

Cancellations (e.g., $\{\pm 1\}$ or even roots of unity) may sometimes lead to efficient algorithms and more tractable cases (Permanent vs Determinant and Holographic algorithms [Valiant 04]).

Theorem (Goldberg, Grohe, Jerrum and Thurley 09)

Given any symmetric matrix $\mathbf{A} \in \mathbb{R}_{\mathbb{A}}^{m \times m}$, EVAL(\mathbf{A}) is either solvable in P-time or #P-hard.

Theorem (Cai, C and Lu 11)

Given any symmetric matrix $\mathbf{A} \in \mathbb{C}_{\mathbb{A}}^{m \times m}$, EVAL(\mathbf{A}) is either solvable in P-time or #P-hard.

Tractability Criterion

Roughly speaking, tractable matrices **A** correspond to rank one modifications of tensor products of Fourier matrices.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algorithms for Counting Graph Homomorphisms

- 2 The Group Condition
 - Graph gadget
 - Interpolation

When **A** is rank-1, there exists a **b** such that $A_{i,j} = b_i \cdot b_j$.

$$Z_{\mathbf{A}}(G) = \sum_{\xi: V \to [m]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}$$

= $\sum_{x_1,...,x_n \in [m]} \prod_{(u,v) \in E} b_{x_u} \cdot b_{x_v}$
= $\sum_{x_1,...,x_n \in [m]} \left(\prod_{i \in [n]} (b_{x_i})^{\deg(i)} \right)$
= $\prod_{i \in [n]} \left(\sum_{x_i \in [m]} (b_{x_i})^{\deg(i)} \right).$ Similar for
 $\mathbf{A} = \begin{pmatrix} \mathbf{0} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{0} \end{pmatrix}$

3

Let $\mathbf{A}^{(1)}$ and $\mathbf{A}^{(2)}$ be $m_1 \times m_1$ and $m_2 \times m_2$, and

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}^{(1)} & \ & \mathbf{A}^{(2)} \end{pmatrix}$$

Assume WOLG that G is connected. Then

$$Z_{\mathbf{A}}(G) = \sum_{\xi: V \to [m_1 + m_2]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}$$
$$= \sum_{\xi: V \to [m_1]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}^{(1)} + \sum_{\xi: V \to [m_2]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}^{(2)}$$

Done with all tractable cases for nonnegative A. Hooray!

What about
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 ?

∃ → < ∃</p>

Observed in [Goldberg, Grohe, Jerrum and Thurley 09]:

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \implies A_{x,y} = (-1)^{xy}$$

when the rows and columns are indexed by $x, y \in \mathbb{Z}_2$. Thus,

$$Z_{\mathbf{A}}(G) = \sum_{x_1,...,x_n \in \mathbb{Z}_2} \prod_{(u,v) \in E} (-1)^{x_u x_v} = \sum_{x_1,...,x_n \in \mathbb{Z}_2} (-1)^{\sum_{(u,v) \in E} x_u x_v}$$

for some quadratic polynomial in the exponent.

This can be computed in polynomial time!

Theorem (e.g., see [Lidl and Niederreiter 97])

Given a quadratic polynomial $f(x_1, \ldots, x_n)$ over \mathbb{Z}_2 ,

$$\sum_{x_1,\ldots,x_n\in\mathbb{Z}_2}(-1)^{f(x_1,\ldots,x_n)}$$

can be computed in polynomial time.

are in P-time: $(-1)^{x_1y_2+x_2y_1}$ by indexing the rows by $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem (Cai, C, Lipton and Lu 10)

Given $q \ge 1$ and a quadratic polynomial $f(x_1, \ldots, x_n)$ over \mathbb{Z}_q ,

$$\sum_{x_1,...,x_n \in \mathbb{Z}_q} \left(e^{2\pi\sqrt{-1}/q}\right)^{f(x_1,...,x_n)}$$

can be computed in P-time in $\log q$ and n (without knowing the prime factorization of q).

All $m \times m$ Fourier matrices

$$A_{x,y} = e^{\frac{2\pi\sqrt{-1}}{m} \cdot xy}, \quad \text{ for } x, y \in \mathbb{Z}_m$$

such as

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \zeta & \zeta^2 & \zeta^3 & \zeta^4 \\ 1 & \zeta^2 & \zeta^4 & \zeta & \zeta^3 \\ 1 & \zeta^3 & \zeta & \zeta^4 & \zeta^2 \\ 1 & \zeta^4 & \zeta^3 & \zeta^2 & \zeta^1 \end{pmatrix}$$

are solvable in P-time as well as their tensor products. Most of the tractable cases in real and complex graph homomorphisms.

Tensor Product of Tractable Matrices

Let $\mathbf{A} = \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)}$, where $\mathbf{A}^{(1)}$ is $m_1 \times m_1$ and $\mathbf{A}^{(2)}$ is $m_2 \times m_2$.

$$Z_{\mathbf{A}}(G) = \sum_{\xi: V \to [m_1] \times [m_2]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}$$

= $\sum_{\xi_1: V \to [m_1]} \sum_{\xi_2: V \to [m_2]} \prod_{(u,v) \in E} A^{(1)}_{\xi_1(u),\xi_1(v)} \cdot A^{(2)}_{\xi_2(u),\xi_2(v)}$
= $\left(\sum_{\xi_1} \prod_{(u,v)} A^{(1)}_{\xi_1(u),\xi_1(v)}\right) \left(\sum_{\xi_2} \prod_{(u,v)} A^{(2)}_{\xi_2(u),\xi_2(v)}\right)$

Theorem (e.g., see [Lidl and Niederreiter 97])

 X_1

Given a quadratic polynomial $f(x_1, \ldots, x_n)$ over \mathbb{Z}_2 ,

$$\sum_{\dots,x_n\in\mathbb{Z}_2}(-1)^{f(x_1,\dots,x_n)}$$

can be computed in polynomial time.

Proof.

Two cases: f has an x_i^2 or every quadratic term is $x_i x_j$, $i \neq j$.

Case 1: $f = x_1 \cdot \ell(x_2, \dots, x_n) + f'(x_2, \dots, x_n)$. Then $\sum_{x_1, \dots, x_n} (-1)^f = \sum_{x_2, \dots, x_n} (-1)^{f'} \cdot \sum_{x_1} (-1)^{x_1 \cdot \ell}$

Since

$$\sum_{x_1} (-1)^{x_1 \cdot \ell} = \begin{cases} 2 & \text{if } \ell = 0 \\ 0 & \text{if } \ell = 1 \end{cases}$$

It suffices to compute

$$2\cdot \sum_{x_2,\ldots,x_n:\ell=0} (-1)^{f'},$$

which reduces the number of variables by two.

ヨッ イヨッ イヨッ

Case 2: $f = x_1^2 + x_1 \cdot \ell(x_2, \dots, x_n) + f'(x_2, \dots, x_n)$. Then $\sum_{x_1, \dots, x_n} (-1)^f = \sum_{x_2, \dots, x_n} (-1)^{f'} \cdot \sum_{x_1} (-1)^{x_1^2 + x_1 \cdot \ell}$

Since

$$\sum_{x_1} (-1)^{x_1^2 + x_1 \cdot \ell} = \begin{cases} 0 & \text{if } \ell = 0 \\ 2 & \text{if } \ell = 1 \end{cases}$$

It suffices to compute

$$2\cdot \sum_{x_2,\ldots,x_n:\ell=1} (-1)^{f'},$$

which reduces the number of variables by two.

Theorem (Cai, C, Lipton and Lu 10)

Given $q \ge 1$ and a quadratic polynomial $f(x_1, \ldots, x_n)$ over \mathbb{Z}_q ,

$$\sum_{x_1,...,x_n \in \mathbb{Z}_q} \left(e^{2\pi\sqrt{-1}/q} \right)^{f(x_1,...,x_n)}$$

can be computed in P-time in $\log q$ and n (without knowing the prime factorization of q).

- Each round of the algorithm reduces either the number of variables by at least one, or reduce q significantly.
- P-time even when q is given in binary, where Gauss sums form the basic building blocks of the algorithm.

- Algorithms for Counting Graph Homomorphisms
- 2 The Group Condition
 - Graph gadget
 - Interpolation

Definition

We say $\mathbf{A} = (A_{i,j}) \in \mathbb{C}^{m \times m}$ is a symmetric *M*-discrete unitary matrix, for some positive integer *M*, if

• Each
$$A_{i,j}$$
 is a power of $\omega_M = e^{2\pi\sqrt{-1}/M}$;

2
$$A_{1,j} = 1$$
 for all $j \in [m]$;

• For all
$$i \neq j \in [m]$$
, $\langle \mathbf{A}_{i,*}, \mathbf{A}_{j,*} \rangle = 0$ where

$$\langle \mathbf{A}_{i,*}, \mathbf{A}_{j,*} \rangle = \sum_{k=1}^m A_{i,k} \cdot \overline{A_{j,k}}.$$

同 ト イ ヨ ト イ ヨ ト

Lemma (The Group Condition Lemma)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a symmetric *M*-discrete unitary matrix. Then either \mathbf{A} satisfies the Group Condition or EVAL(\mathbf{A}) is #P-hard.

Definition (Group Condition)

For all *i*, *j*, there exists a $k \in [m]$ such that $\mathbf{A}_{k,*} = \mathbf{A}_{i,*} \circ \mathbf{A}_{j,*}$, where \circ is the Hadamard product with the ℓ th entry $= A_{i,\ell} \cdot A_{i,\ell}$.

Definition (Group Condition)

For all *i*, *j*, there exists a $k \in [m]$ such that $\mathbf{A}_{k,*} = \mathbf{A}_{i,*} \circ \mathbf{A}_{j,*}$, where \circ is the Hadamard product with the ℓ th entry = $A_{i,\ell} \cdot A_{j,\ell}$.

All $m \times m$ Fourier matrices **A**, where

$$A_{x,y} = \omega^{(2\pi\sqrt{-1}/m) \cdot xy}, \quad \text{for all } x, y \in \mathbb{Z}_m$$

satisfy the Group Condition.

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$$

Lemma

If **A** is discrete unitary and satisfies the Group Condition, then it is the tensor product of Fourier and generalized Fourier matrices.

The Group Condition was introduced in [Goldberg, Grohe, Jerrum and Thurley 09] for $\{\pm 1\}$ -matrices and generalized to complex-valued matrices in [Cai, C and Lu 11].

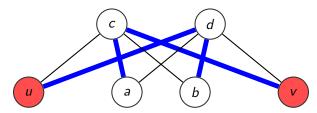
Lemma (The Group Condition Lemma)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be a symmetric *M*-discrete unitary matrix. Then either \mathbf{A} satisfies the Group Condition or EVAL(\mathbf{A}) is #P-hard.

Proof Sketch

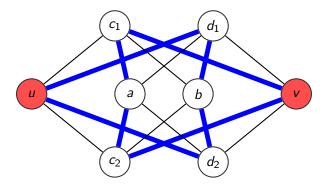
Construct a sequence of nonnegative symmetric matrices $\mathbf{B}^{[p]}$ such that each $\mathrm{EVAL}(\mathbf{B}^{[p]})$ is polynomial-time reducible to $\mathrm{EVAL}(\mathbf{A})$. Show that either 1) one of $\mathrm{EVAL}(\mathbf{B}^{[p]})$ is #P-hard (by [Bulatov and Grohe 05]), or 2) **A** satisfies the Group Condition.

First gadget:



Each blue thick edge: M - 1 parallel edges.

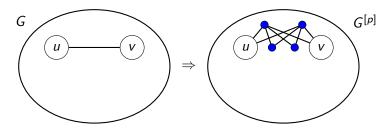
Second gadget:



In general, pth gadget for all $p \ge 1$.

→ 3 → 4 3

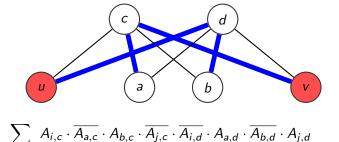
Replacing each edge e by the pth gadget: $G \Rightarrow G^{[p]}$



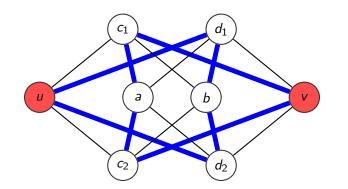
There is a symmetric matrix $\mathbf{B}^{[p]} \in \mathbb{C}^{m imes m}$ such that

$$Z_{\mathbf{B}^{[p]}}(G) = Z_{\mathbf{A}}(G^{[p]}).$$

So $EVAL(\mathbf{B}^{[p]})$ is polynomial-time reducible to $EVAL(\mathbf{A})$.



$$B_{i,j}^{[1]} = \sum_{a,b,c,d} A_{i,c} \cdot \overline{A_{a,c}} \cdot A_{b,c} \cdot \overline{A_{j,c}} \cdot \overline{A_{i,d}} \cdot A_{a,d} \cdot \overline{A_{b,d}} \cdot A_{j,d}$$
$$= \sum_{a,b} \left(\sum_{c} A_{i,c} \cdot \overline{A_{a,c}} \cdot A_{b,c} \cdot \overline{A_{j,c}} \right) \left(\sum_{d} \overline{A_{i,d}} \cdot A_{a,d} \cdot \overline{A_{b,d}} \cdot A_{j,d} \right)$$
$$= \sum_{a,b \in [m]} \left| \sum_{c \in [m]} A_{i,c} \cdot \overline{A_{a,c}} \cdot A_{b,c} \cdot \overline{A_{j,c}} \right|^2$$



$$B_{i,j}^{[2]} = \sum_{a,b} \left(\sum_{c} A_{i,c} \cdot \overline{A_{a,c}} \cdot A_{b,c} \cdot \overline{A_{j,c}} \right)^{2} \left(\sum_{d} \overline{A_{i,d}} \cdot A_{a,d} \cdot \overline{A_{b,d}} \cdot A_{j,d} \right)^{2}$$
$$= \sum_{a,b \in [m]} \left| \sum_{c \in [m]} A_{i,c} \cdot \overline{A_{a,c}} \cdot A_{b,c} \cdot \overline{A_{j,c}} \right|^{4}$$

In general for $p \ge 1$:

$$B_{i,j}^{[p]} = \sum_{a,b\in[m]} \left| \sum_{c\in[m]} A_{i,c} \cdot \overline{A_{a,c}} \cdot A_{b,c} \cdot \overline{A_{j,c}} \right|^{2p}$$
$$= \sum_{a,b\in[m]} \left| \langle \mathbf{A}_{i,*} \circ \overline{\mathbf{A}_{j,*}}, \mathbf{A}_{a,*} \circ \overline{\mathbf{A}_{b,*}} \rangle \right|^{2p}.$$

So $\mathbf{B}^{[p]}$ is both symmetric and positive (setting a = i, b = j).

(*) *) *) *)

-

Diagonal Entries

Diagonal entries of $\mathbf{B}^{[p]}$:

$$B_{i,i}^{[p]} = \sum_{a,b} |\langle \mathbf{1}, \mathbf{A}_{a,*} \circ \mathbf{A}_{b,*} \rangle|^{2p} = \sum_{a,b} |\langle \mathbf{A}_{a,*}, \mathbf{A}_{b,*} \rangle|^{2p} = m^{2p+1}.$$

If $B_{i,j}^{[p]} \neq m^{2p+1}$ for some p and $i \neq j$, EVAL($\mathbf{B}^{[p]}$) is #P-hard by using [Bulatov and Grohe 05], and so is EVAL(\mathbf{A}). Done!

Otherwise, every entry of $\mathbf{B}^{[p]}$ must equal to m^{2p+1} . Show in this case that **A** satisfies the Group Condition.

Off-Diagonal Entries

Fix a pair $i \neq j$. Then

$$B_{i,j}^{[p]} = \sum_{a,b\in[m]} \left| \langle \mathbf{A}_{i,*} \circ \overline{\mathbf{A}_{j,*}}, \mathbf{A}_{a,*} \circ \overline{\mathbf{A}_{b,*}} \rangle \right|^{2p} = \sum_{x\in X_{i,j}} S_{i,j}^{[x]} \cdot x^{2p},$$

where

X_{i,j} is the set of possible values of |⟨A_{i,*} ∘ A_{j,*}, A_{a,*} ∘ A_{b,*}⟩|;
For each x ∈ X_{i,j}, S^[x]_{i,j} is the number of (a, b) such that

$$|\langle \mathbf{A}_{i,*} \circ \overline{\mathbf{A}_{j,*}}, \mathbf{A}_{a,*} \circ \overline{\mathbf{A}_{b,*}} \rangle| = x.$$

Also $\{0, m\} \in X_{i,j}$ (setting (a, b) = (i, j'), (i, j) for some $j' \neq j$).

A Vandermonde System

Since
$$B_{i,j}^{[p]} = m^{2p+1}$$
, we have
 $\sum_{x \in X_{i,j}} S_{i,j}^{[x]} \cdot x^{2p} = m^{2p+1}$, for $p = 1, \dots, |X_{i,j}| - 1$.

In addition, there are m^2 many pairs (a, b) so

$$\sum_{x\in X_{i,j}}S_{i,j}^{[x]}=m^2.$$

A Vandermonde system, with a unique solution:

$$X_{i,j} = \{0, m\}, \quad S_{i,j}^{[m]} = m \text{ and } S_{i,j}^{[0]} = m^2 - m.$$

For all $i, j, a, b \in [m]$, we have

$$\left|\left\langle \mathsf{A}_{i,*}\circ\overline{\mathsf{A}_{j,*}},\mathsf{A}_{a,*}\circ\overline{\mathsf{A}_{b,*}}
ight
angle
ight|\in\{0,m\}.$$

Use this to establish the Group Condition.

Fix
$$i, b \in [m]$$
. Set $j = 1$. As $\mathbf{A}_{1,*} = \mathbf{1}$,
 $|\langle \mathbf{A}_{i,*} \circ \mathbf{1}, \mathbf{A}_{a,*} \circ \overline{\mathbf{A}_{b,*}} \rangle| = |\langle \mathbf{A}_{i,*} \circ \mathbf{A}_{b,*}, \mathbf{A}_{a,*} \rangle| \in \{0, m\}$.
Since $\{A_{a,*} : a \in [m]\}$ is an orthogonal basis, by Parseval:
 $\sum_{a} |\langle \mathbf{A}_{i,*} \circ \mathbf{A}_{b,*}, \mathbf{A}_{a,*} \rangle|^2 = m \cdot ||\mathbf{A}_{i,*} \circ \mathbf{A}_{b,*}||^2 = m^2$.

イロン イロン イヨン イヨン

Ξ.

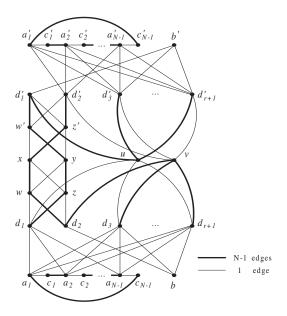
As a result, for all $i, b \in [m]$, there exists an $a \in [m]$ such that

$$\left|\left< \mathbf{A}_{i,*} \circ \mathbf{A}_{b,*}, \mathbf{A}_{a,*} \right> \right| = m$$

The first entries of $\mathbf{A}_{i,*} \circ \mathbf{A}_{b,*}$ and $\mathbf{A}_{a,*}$ are 1:

$$\mathbf{A}_{a,*} = \mathbf{A}_{i,*} \circ \mathbf{A}_{b,*}.$$

- Algorithms for Counting Graph Homomorphisms
- 2 The Group Condition
 - Graph gadget
 - Interpolation



・ロト ・日・・日・・日・・ つくの

- Dichotomy for Unweighted #CSP:
 - Tractability criterion: Strong balance
 - Mal'tsev polymorphisms and Witness functions
 - The main counting algorithm
- Oichotomy for Nonnegative and Complex #CSP

Thanks!

□ ▶ ▲ 臣 ▶ ▲ 臣

э