Consumer behavior and
algorithm design

Prabhakar Raghavan

(-_/' O(-_ ‘/\

Warm up

A small demonstration on using our
understanding of behavior

Connectivity Server

* |In-memory support for queries on the web graph
— Which URLs point to a given URL?
— Which URLs does a given URL point to?
* Applications
— Crawl control
— Web graph analysis
— Link analysis

Adjacency lists

* Each URL represented by an integer

— E.g., for a 4 billion page web, need 32 bits per
node

* Naively, need 64 bits to represent each edge

* Will show scheme achieving 3 bits/edge
— Further optimizations get to 2 bits/edge

Adjaceny list compression

* Properties exploited in compression:
—Similarity (between lists)

— Locality (many links from a page go to
“nearby” pages)

— Use gap encodings in sorted lists
— Distribution of gap values

Main ideas of Boldi/Vigna

* Consider lexicographically ordered list of all
URLs, e.g.,

— www.stanford.edu/alchemy
— www.stanford.edu/bio
— www.stanford.edu/bio
— www.stanford.edu/bio
— www.stanford.edu/bio

O8Y

ogy/p

ant

ogy/p

ant/copyright

ogy/p

ant/people

Basic idea

Each of these URLs has an adjacency list

 Due to templates, the adjacency list of a node is
similar to one of the 7 preceding URLs in the
lexicographic ordering

e Express adjacency list in terms of one of these

 E.g., consider these adjacency lists
-1,2,4,8,16, 32,64
—-1,4,9, 16, 25, 36, 49, 64
-1,2,3,5,8, 13, 21, 34, 55, 89, 144

S

" Encode as (-2), remove 9, add 8 ¢

Summary

= Depends on similarity/locality in canonical
ordering

" Lexicographic ordering works well for the web,
thanks to the behavior of users and page creators

= Adjacency queries can be answered efficiently
" To find neighbors, trace back the chain of prototypes

» This chain is typically short in practice (since similarity
is mostly intra-host)

= Easy to implement one-pass algorithm

Three themes

How consumer behavior is changing
what we compute, and how

Three themes

e Subjective functions
* Riding the fat tails
* PRAM lost, parallelism regained

Subjective functions

 Consumers drive consumption of cycles,
bandwidth, storage

e Lots of cycles still expended in SORT and
SELECT but —a large and growing chunk in
“making users happy”

* 7 billion “objective” functions
— Don’t bother trying to write them down

— Find and optimize proxies

Example subjective function

 What'’s a good search ranking?
VRS Q) *+'+) = #, /O+12') '3+, 24" 1')-+'56) , +'#T"
YOH" 5 H2-+'5) O+ TH") 1 1+
< H#'+'=' #26"H/2H /W)L H#,/O+12'3+, 24"

>§?2#"12- 04,) 8%e'<+Hi+,2'0AA" . #,/O+125'#1"'-4?-+52" . #2'
6"#./,2'24" ; /+" W'+ C 4+ 126%D

(Salton, circa 1975.)

A few other subjective functions

Find me beautiful pictures of sunsets
— E-)25")'5/15+2G"
— E-)¥5HH) /11756

Given feeds from 6 cameras at a stadium, find
the best camera view at each point in time

Show me songs I'll like
[Spelling correction]

Subjective function characteristics

* How do we assess our algorithm?
— Ask users! (What does this mean?)

* Users have some tolerance for junk —no
notion of absolute correctness

* “Infinite” computing doesn’t help

— Resources typically not the primary constraint in
algorithm design

— Even with unbounded computing, don’t know
how to do better

The first 25 years of search ranking

* Focus on tweaking the weights in the basic
vector space

— Presumption of expert “information scientists”
seeking information

e Starting 1995, sea changes

— Ordinary consumers with extraordinary
expectations

— Adversarial content

Better search ranking

e Say your student comes to you and says — | have
a new score for documents, called Pagerank

— How do you combine dot product score and
Pagerank?

* Explore combinations of scores that regress well
to user judgments

— Explicit surveys of trained raters

— Crowd ratings
— Clicks

More generally

 The world is full of signals for good search

ranking (or beautiful pictures, likeable songs,
memorable slogans)

* Combining them left to Machine Learning
— At core, large math programs

e Algorithmic improvement entails
— Inventing new signals (“7+)2/"+5")

— Volume of rating data to train ML

Upshot

 We learn functions we can’t cleanly describe

e Approximate, and iteratively improve (proxy
for) user happiness

— Standard methodology in research/industry
— Data volume is paramount

* Abdicate algorithm design to machine learning
kernels

Computational aesthetics

* Consider a question such as: E-4,-"#7"2-+5+
O+H'6)?7+5'5'0O#"+")66+) 812G’

e An assessment of aesthetics

 We can do a decent job on such problems
using the general approach above

— No pretense of understanding aesthetics
— Nor of synthesizing creativity

Riding the fat tails

Graphs with small average degree, but
some nodes have massive degrees

III

“The Long tai

ANATOMY OF THE LONG TAIL

e]

THE NEW GROWTH MARKET:

roduct not available
in offline retail stores

Chris Anderson, Wired, Oct 2004

Infinite-inventory stores: two properties

1. The vast majority of products are “misses”

2. These “worst-sellers” in aggregate account for
a large fraction of sales

e 25% of Netflix sales and 30% of Amazon sales
are reportedly for products not available in
traditional stores

e But... How many people care about the tail?

— Could the world be bimodal?

Could this be two normal distributions?

e Two views of human behavior consistent with
heavy tails

1. Bimodal population?

Interests

People

23
2000

Many datasets show in fact that ...

e Two views of human behavior consistent with
heavy tails

2. Or “homogenous” population?

 We are all partially eclectic

24

P000

How many links into a random web
page?

In-degree (total, remote-only’? distr.
le+19

le+@9
le+83 ¢ Remote-only in-degree +
le+@’ S
le+86
1668848
166848
1668

1}
Q
o
m
v R
T
O
<
Q
Q2
s
>
<

186

Heavy tails e

VEN
* Decreasing probability distributions over

integers in JOBLK'
— E.g., search query frequencies in decreasing order

* For any fixed * (say, 10000), the probability
mass in all buckets L*'is a “big” constant

* Arise in observed statistics stemming from
human behavior

— Number of friends, popularity of movies ...

A typical heavy tailed distribution

o BJK'M'ON'Y - so-called 6#9+"4) 9"
— log-log plot is a straight line
— For /'L@, bounded expectation

e Other distributions — log-normal, Pareto

— cf Mitzenmacher survey

* Misnomer:
0#17P2) 48+ ." . 452"H/ 1 #15'

Q#6W1?'O# . +§'
aka 6"+7+"+11)§)R),-0+12'

Each page is a node, each hyperlink is a
directed edge

Edges arrive in sequence

For A'S'T'S'@,

— With probability TB link to a random page

— With probability @PT8 copy a random link
Explore-exploit of news stories on news sites

Informal analysis

* Let Uli2X'be the number of pages of degree | at
time 2

* Limiting distribution

DAY
(RRORS

Y ~j o)

I

* Proof uses bounded difference argument

Consequence for probabilistic analysis

* Consumer phenomena yield heavy tails

* Most probabilistic analysis uses light-tailed
distributions (binomials, Poisson ...)

—Reason: we use simple generative models
based on the superposition of independent
events

* Work ahead — analysis of data structures
and algorithms under heavy-tailed inputs

—Early work on inverted indexes and graph
compression

Work ahead

* Better modeling and analysis
— Underlying individual and social behavior

e Behavior of consumers correlated
— To each other

— To “market forces”
« Recommendation systems
 What’s on the front page of the NY Times

e What distributions arise from consumers
subject to such forces?
— How real is the “filter bubble”?

Parallelism today

World computer market =6
(YA#O)".'>I*+1:"
OBPYR"IH/2+."2#'Z-#0O)5'E) 25#1'<")X

Rethinking parallelism

* PRAMs —simple abstraction
— Fine-grained
— Synchronous
— Equal access
— (In principle) straightforward programming
* Modifications
— Networks of fixed topology (Hypercubes, CCC’s)
— BSP, ...

Parallelism — reality

Fault- and error-prone processors
Coarse-grained synchrony
Locality matters

Software development/maintenance costs
dwarf costs of many commodity machines
Want to solve problems such as

— “Which search queries co-occur?”
— “Which friends to recommend?”

Parallel programming is hard

* Threaded programs are difficu

* One successful run is not enoug

 Threaded programs are difficu

t to test
N

t to read

* Threaded programs are difficult to debug
* Hard to repeat the conditions to find bugs

* More machines means more breakdowns

Special thanks to Sergei Vassilivitskii for some of these slides. ~e®® @

MapReduce: easy parallel programming

* Tracks jobs and restarts if needed

* Takes care of data distribution and
synchronization

e But there’s no free lunch:
—Imposes a structure on the data
—Only allows for certain kinds of parallelism

MapReduce basics

Data: Represented as <Key, Value> pairs

Example: A Graph is a list of edges

Key = (u,v)
Value = edge weight

MapReduce architecture

Operations:

Map: <Key, Value> = List(<Key, Value>)
Shuffle: Aggregate all pairs with the same key
Reduce: <Key, List(Value)> - <Key, List(Value)>

MapReduce environments

* 10s to 10,000s processors

e Sublinear Memory: A few Gb of memory/
machine, even for Tb+ datasets

— Unlike PRAMs: memory is not shared

e Batch Processing

For an input of size 1

* Cannot store entire data in memory
—Sublinear memory per machine O(1¢")

* Machines in a cluster do not share memory

—Sublinear number of machines: O(1%")

* Synchronization

— Computation proceeds in rounds
— Aim for O(1) rounds

Counting triangles in a graph

Sequential Version:
foreach 3in [’
foreach I/B9X in >.V),+1,%I3X'
if I/8O9X in \
Triangles[3]++
* Running time: 2 (.j)?

* |n practice this is quadratic, as some vertex
will have very high degree

Naive MapReduce version

Rouno
Rounao

Rouno

1: Generate all possible length 2 paths
2: Check if the triangle is complete
3: Sum all the counts

Fat tails strike again

* How much parallelization can we achieve?
— Generate all the paths to check in parallel
— The running time becomes maxg(- 5)?

* Data skew defeats naive parallelization

* Bottleneck: high degree nodes

— E.g., 3.2 Million neighbors, must generate 10
Trillion (10%3) potential edges to check.

— Generating 100M edges to check per second,
100K seconds ~ 27 hours.

Pivot on lowest degree

Sequential Version [Schank '07]:
foreach 3in ["
foreach {/89} in Adjacency(3)
if deg(/) > deg(3) && deg(9) > deg(3)
if (/89) in \
Triangles[v]++

Why does it help?

e Partition nodes into two groups:
—Low: {v:d, sVm}
—High: {v:d, >¥m}

* There are at most Vm High nodes

—Each produces paths to other High nodes:
* O(O) paths per node

—Therefore they generate: O(OIV') paths

Low-degree paths

Let 1, be the number of nodes of degree ¥

The total number of paths generated by Low
nodes can also be shown to be O(O1V)

Total work is O(OIV') which is optimal
But what about (parallel) runtime?

What made this work?

* The algorithm automatically load balances
— Every node generates O(OX'paths to check
— Hence the reducers take about the same time to
finish
— Fat tails get tamed ...
* Improvement in per-round runtimes:

~2 orders of magnitude on large graphs (10°*)

Closing thoughts

* Ordinary users consume a growing share of
computation

— Their expectations shape the computational
problems we pursue

— Their behavior reshapes the data distributions we
observe

— Recasts how we think about and teach algorithms

 Tremendous challenges and benefits to CS

— Inevitably we transform — and are transformed by
—the social sciences

