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Ridesharing and Pricing
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Ridesharing platforms

Your friend with a car

Examples of major platforms: Lyft, Uber, Sidecar
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This talk: Pricing and ridesharing

Ridesharing is somewhat unique among online platforms:
The platform sets the transaction price.

Our goal: Understand optimal pricing strategy.
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Our contributions

1. Amodel that combines:
» Strategic behavior of passengers and drivers
» Pricing behavior of the platform
» Queueing behavior of the system

2. What are the advantages of dynamic pricing over static
pricing?
» Static: Constant over several hour periods
» Dynamic: Pricing changes in response to system state;

"surge", "prime time"
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Related work

Our work sits at a nexus between several different lines of
research:

1.

LA B B

Matching queues (cf. [Adan and Weiss 2012])

Strategic queueing models (cf. [Naor 1969])

Two-sided platforms (cf. [Rochet and Tirole 2003, 2006])
Revenue management (cf. [Talluri and van Ryzin 2006])

Large-scale matching markets (cf. [Azevedo and Budish
2013])

Mean field equilibrium (cf. [Weintraub et al. 2008])
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Model

7/39



Two types: Strategic and queueing

We need a strategic model that captures:
1. Platform pricing
2. Passengerincentives
3. Driverincentives

We need a queueing model that captures:
1. Driver time spentidlingvs. driving
2. Ride requests blocked vs. served
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Preliminaries

1. Focuson a block of time (e.g., several hours)
over which arrival rates are roughly stable

2. Focuson asingle region (e.g., a single city neighborhood)
» For technical simplicity
» Insights generalize to networks of regions

3. Focus on throughput: rate of completed rides

» For technical simplicity
» Same results for profit, when system is supply-limited
» Similar numerical results for welfare; theory ongoing
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Strategic modeling: Platform pricing

Platforms:

» Earn a (fixed) fraction ~ of
every dollar spent (e.g., 20%)

» Need both drivers (supply)
and passengers (demand)

» Use pricing to align the two sides

Load-dependent pricing:
If # of available drivers = A, then price offered to ride = P(A)
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Strategic model: Platform pricing

In practice:

» Platforms charge a time-
and distance-dependent
base price

ofe

» Platforms manipulate ©+25% Prime Time

price through a -
multiplier " ot ot o the rier

» Base price typically

is not varied |

Switch to Lyft Line

In our model:
price = multiplier.
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Strategic model: Passengers

How do passengers enter?

v

Passenger = one ride request

v

Sees instantaneous ride price

v

Enters if price < reservation value V/
» V ~ Fy,i.i.d.acrossride requests

1o = exogenous rate of "app opens".
1 = actual rate of rides requested.

Then when A available drivers present:

= poFv(P(A)).
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Strategic model: Drivers

How do drivers enter?

» Sensitive to expected earnings over the block
» Choose to enter if:

reservation earnings rate C' x

expected total time in system

< expected earnings while in system

» ('~ Fg,i.i.d. across drivers

Ao = exogenous rate of driver arrival.
A = actual rate at which drivers enter.
Then:

expected earnings in system
)\ = AOFC’ N n
expected time in system
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Queueing model

1. Drivers enter at rate \.

2. When A drivers available,
ride requests arrive at rate p(A).

3. Ifadriveris available, ride is served; else blocked.
4. Rides last exponential time, mean 7.

5. After ride completion:
» With probability gexit: Driver signs out
» With probability 1 — geyit: Driver becomes available
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Queueing model: Steady state

Jackson network of two queues: M/M(n)/1 and M/M/oco

— product-form steady state distribution 7.

1'Qexil
i»!&—»o R o W

Available drivers (M/M(n)/1) Busy drivers (M/G/«)
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Putting it together: Equilibrium
Given pricing policy P(+),
system equilibrium is (X, u1, 7, t,m) such that:
1. 7isthe steady state distribution, given A and p
2. nisthe expected earnings per ride, given P(-) and 7
3. risthe expected idle time per ride, given 7w and A
4. )\isthe entry rate of drivers, given ¢ and 7:

A= AoFe (LZT>

5. p(A) isthe arrival rate of ride requests when A drivers
are available, given P(-):

1= poFy(P(A)).
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Putting it together: Equilibrium

If price increases when number of available drivers
decreases:

» Equilibria always exist under appropriate
continuity of F, Fy.

» Equilibria are unique under reasonable conditions
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Large Market Limit
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The challenge

» To understand optimal pricing, we need to characterize
system equilibria.

» In particular, need sensitivity of equilibria to changes in
pricing policy.

» Our approach: asymptotics to simplify analysis.
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Large market asymptotics

Consider a sequence of systems indexed by n.
» In n'th system, exogenous arrival rates are n/Ag, nuy.
» In n'th system, pricing policy is P,(+).
» In each system, this gives rise to a system equilibrium.

We analyze pricing by looking at asymptotics of equilibria.
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Static Pricing
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What is static pricing?

Static pricing means: price policy is constant.
Let P(A) = pforall A.

Theorem
Let r,,(p) denote the equilibrium rate of
completed rides in the n'th system. Then:
ra(p) = #(p) £ min{AoFo(vp/7)/ exits toF v(p) }-

Throughput = min { available supply, available demand }
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Static pricing: Illustration

Normalized Rate of Completed Rides (r, /n) vs Price (p)
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Static pricing: Interpretation

Note that at any price, queueing system is always stable:

» When supply <demand:
Drivers become fully saturated

» When supply > demand:
Drivers forecast high idle times and don't enter

Balance price ppq: Price where supply = demand

Corollary
The optimal static price is ppq;.
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Dynamic pricing
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What is dynamic pricing?

Meant to capture "surge" (Uber)
and "prime time" (Lyft) pricing strategies.

We focus on threshold pricing:
» Threshold

» High price p, charged when
available drivers < 6

» Low price p; < pj, charged when
available drivers > 6
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Dynamic pricing: Numerical investigation

» Fix one price,
and vary
the other price.

» Compareto
static pricing.

0.4]

Normalized Rate of

Completed Rides r, /n vs p: Scaling with n.

— Static pricing
— Dynamic pricing
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Dynamic pricing: Numerical investigation

» Fix one price,
and vary
the other price.

» Compareto
static pricing.

Normalized Rate of

Completed Rides r, /n vs p: Scaling with n

— Static pricing
— Dynamic pricing
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Dynamic pricing: Numerical investigation

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

» Fix one price,
and vary 08
the other price.

0.6}
» Compareto
static pricing. Y v
02
— Static pricing I
o 1 2 3 7
P
n = 100
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Dynamic pricing: Numerical investigation

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

» Fix one price,
and vary 08
the other price.

0.6}
» Compareto
static pricing. Y v
02
— Static pricing I
o 1 2 3 7
P
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Dynamic pricing: Numerical investigation

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

» Fix one price,
and vary 08
the other price.

06|
» Compareto
static pricing. Y v
02
— Static pricing I
— Dynamic pricing
o 1 2 3 7
P
n— o0

27/39



Dynamic pricing: Numerical investigation

Normalized Rate of Completed Rides 7(p) vs p: Large-Market Limit
§ \
» Fix one price,

and vary 08

the other price. L
06
» Compareto
static pricing. o1
0.2
— Static pricing
09 1 2 3 4
P
n— oo
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Optimal dynamic pricing

Theorem
Let 7 be the rate of completed rides in the n'th system, using
the optimal static price.

Let r* be the rate of completed rides in the n'th system, using
the optimal threshold pricing strategy.

Then if F, has monotone hazard rate,

* ok
T = Th

— 0asn — oo.
n
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Optimal dynamic pricing

In other words:

In the fluid limit, no dynamic pricing policy
yields higher throughput than optimal static pricing.
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Optimal dynamic pricing

In other words:

In the fluid limit, no dynamic pricing policy
yields higher throughput than optimal static pricing.

This result is reminiscent of similar results in the classical
revenue management literature (e.g., [Gallego and van Ryzin,
1994]).

The main differences arise due to the presence of a two sided
market.
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Proof sketch

Under threshold pricing:

» Drivers are sensitive to two quantities:
idle time, and price.

» Show that optimal ; — oo,

but chosen so that idle time — 0 as n — oc.

» Inthis limit, drivers are sensitive to
the average price per ride:

Davg = ThDh + TePe,

where 73, 7, are & probabilities of being
below or above 6, respectively.

» If pavg decreases, fewer drivers will enter.
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Proof sketch (cont'd)

We note that:

1. If pr < pn < Poal, then pag = pp.

2. If ppal < pe < pp, then payg = py.

3. Ifpy < ppa < pp, thenm, > 0, 7, > 0.
In first two cases, de facto static pricing.
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Proof sketch (cont'd)

We explore the third case.
Suppose that we start with p, < pj, = ppal (SO Pavg = pr)-

Now increase py:
» Before 7, = 0, but now 7, > 0, so some customers pay
Pe; this lowers payg.
» pj higher, so customers arriving when A < 6 pay more;
this increases payg.
When Fy is MHR, we show that the first effect dominates the
second, so throughput falls.
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Robustness
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The value of dynamic pricing

How does dynamic pricing help?
» When system parameters are known,
performance does not exceed static pricing.

» When system parameters are unknown,
dynamic pricing naturally "learns" them.
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Robustness: Illustration

What happens to static pricing in a demand shock?
Robustness of Pricing Policies to Demand Shocks
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Robustness: Illustration

What happens to dynamic pricing in a demand shock?
Robustness of Pricing Policies to Demand Shocks
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Robustness: Dynamic pricing

We can formally establish the observation in the previous
illustration:

» Suppose Fislogconcave, and ,u[()l) < ,uEf) are fixed.

Let p&)l s pf)?l , = optimal static prices in the n'th system.

Let r%l), r = optimal throughputin the n'th system.

Suppose now the true jy € [uél), qu)].

Using both prices p&)l’n, pf,?ln is robust:

» There exists a sequence of threshold pricing policies
with throughput at any such p (in the fluid scaling)

> the linear interpolation of A}’ and rg).

(Same holds w.r.t. Ag.)

v

v

v

v
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Conclusion
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Platform optimization

This work is an example of platform optimization:
Requires understanding both operations and economics.
Other topics under investigation:

1.

LA B B

Network modeling (multiple regions):
Our main insights generalize

Effect of pricing on aggregate welfare
Modeling driver heat maps

Fee structure: changing the percentage
Effect of changing the matching algorithm
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