INCENTIVES IN BITCOIN

Aviv Zohar The Hebrew University of Jerusalem & Microsoft Research Israel

The double spending problem

The Double-Spend Attack

Incentives

"Mining"

WORK FROM HOME BEYOUR OWN BOSS, CREATE THE LIFE YOU WANT avery breat

Hash Rate GH/s

Number Of transactions Per Day Source: blockchain.info

Where incentives break down

Incentives to send messages

Competition is important

In order to compete nodes need access to

- Transactions
- recent blocks

No proper incentives to share either one

"On Bitcoin and Red Balloons" [Babaioff, Dobzinsky, Oren, Zohar]

Selfish Mining

First demonstrated by [Eyal & Sirer]

- Attacker knocks out more blocks than he looses
- Works if attacker has "enough" comp. power (e.g., over 1/3), or communicates fast.
- How do we fix this?
- First step: how do we find a best-response?

Optimal Selfish Mining [Sapirshtein, Sompolinsky, Zohar]

What should we do?

$$REV := \mathbb{E}\left[\liminf_{T \to \infty} \frac{\sum_{t=1}^T r_t^1(\pi)}{\sum_{t=1}^T \left(r_t^1(\pi) + r_t^2(\pi)\right)}\right].$$

State: length of each chain after the fork
Actions: wait, adopt, override...

We know how to find the optimal deviation (using a reduction to MDPs)

Table 3: Optimal actions for an attacker with $\alpha = 0.35, \gamma = 0$, in states (a, h)with $a, h \leq 7$.

a h	0	1	2	3	4	5	6	7
0	*	a	*	*	*	*	*	*
1	w	w	w	a	*	*	*	*
2	w	0	w	w	a	*	*	*
3	w	w	0	w	w	a	*	*
4	w	w	w	0	w	w	w	a
5	w	w	w	w	0	w	w	w
6	w	w	w	w	w	0	w	w
7	w	w	w	w	w	w	0	w

Results

- Smaller miners can in fact profit from these attacks
- Some suggested fixes *slightly* worse than expected (e.g., 50-50 fix by E&S) others much worse than prev. thought.

 The really bad news:
 In networks with delays all miners profit from deviation.

Many more incentive problems and connections

Fee markets need to replace minting

- Externalities that are not reflected in prices
 - every transaction accepted consumes resources from all
 - Every block helps all previous blocks be a bit more secure.

"Breaking the chains" of blockchain protocols [Lewnberg, Sompolinsky, Zohar]

Hidden links to social choice?

Intuitions...

Bigger & Faster

- Bitcoin 3.3 transactions per sec
 Visa > 2000 tps
- Bitcoin blocks: every 10 minutes
 Need faster confirmation times!

Speeding up is problematic

Need new protocol that will be more tolerant to delay, but still secure.

Hidden links to social choice?

21

The revelation principle

Tell us about all blocks you saw.

Chainless protocols

Given a DAG

Output a linear order of the blocks (topological sort)

Accept transactions in order of appearance (toss out illegal ones)

Insight from social choice

Blocks Pa, Pi have no conflicting transactions. Can we consider them "accepted"?

Our result: a new protocol (on ArXiv soon)

- Chainless
 - we pick an order over all blocks

- Resilience in the presence of delays.
 - Double spending attacks
 - Confirmation delay attacks (unless it is for a visible double-spend)
- Sased on voting with "ranked pairs"
- Blocks have "preferences"
 - prefer blocks that they see over ones they do not.
- (Unfortunately, much more complicated)

Conclusion

Bitcoin already "exceeds expectations"

Incentives are needed! • I am optimistic!

More insights from social choice?

Thank You!

email: avivz@cs.huji.ac.il