
Spectrum Repacking in 
the Incentive Auction

Kevin Leyton-Brown
Computer Science Department
University of British Columbia

Joint work with Alexandre Fréchette and Neil Newman



FCC’s “Incentive Auction”



Anticipated Revenue: Tens of Billions

Image edited to fit on slide; see https://www.cbo.gov/publication/50128 for the original.

https://www.cbo.gov/publication/50128


Auction Tentatively Set for Next Year

Image edited to fit on slide; see http://goo.gl/y71oyL for the original.

http://goo.gl/y71oyL


The FCC’s “Incentive Auction”

• Forward (ascending-price) auction for telecom firms
– prices in each region increase while demand exceeds supply

• Reverse (descending-price) auction for broadcasters
– stations declare they’re willing to stop broadcasting 

at a given, initially high, price
– consider stations round robin:

• check to see if the station could feasibly be “repacked” into the 
reduced band, given interference constraints

• if not (or if we can’t solve the problem), it’s “frozen”
• if so, offer it lower compensation, take-it-or-leave-it 

• When auctions terminate, ensure revenue target is met
– if not, grow the size of the reduced band (i.e., clear less spectrum); 

auctions continue



Feasibility Testing
Key computational problem: testing the feasibility of a given 
repacking, based on interference constraints
• Basis of “frozen test”: about 100K per auction; 20K are nontrivial
• A hard graph-colouring problem

– 2991 stations (nodes)
– 2.7 million interference constraints

(channel-specific interference)
– Initial skepticism about whether

this problem could be solved
exactly at a national scale

• if not, say the problem is infeasible,
and pay more than necessary

• We’re doing it, using tools
from empirical algorithmics
– automatic algorithm 

configuration
– algorithm portfolios; Hydra
– domain-specific heuristics
– a powerful new caching scheme



Experimental Setup
• FCC’s May 2014 interference data

– clearing target: 19 UHF channels (14-32)

• 5 simulated auctions
– based on the “smoothed ladder” auction mechanism and 

a (proprietary) valuation model
– UHF problems only; VHF was too easy
– randomly partitioned into 3 sets: training (100,572 instances); 

validation (1,000 instances); test (10,000 instances)

• Our goal: solve as many problems as we can in within a 
one-minute cutoff



Feasibility Testing via MIP Encoding



SAT Encoding
• 𝑥𝑥𝑠𝑠,𝑐𝑐: the proposition that station 𝒔𝒔 is assigned to channel 𝒄𝒄

– one such variable for every station 𝑠𝑠 and channel c

• Station 𝑠𝑠 must broadcast on one of its allowable channels
– For every station s and set of allowable channels {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛}, 

create a clause (𝑥𝑥𝑠𝑠,𝑐𝑐1 ∨ ⋯∨ 𝑥𝑥𝑠𝑠,𝑐𝑐𝑛𝑛)

• Station 𝑠𝑠 may broadcast on at most one of these channels
– For every pair of channels 𝑐𝑐1 and 𝑐𝑐2 allowed for station 𝑠𝑠, 

create a clause ¬𝑥𝑥𝑠𝑠,𝑐𝑐1 ∨ ¬𝑥𝑥𝑠𝑠,𝑐𝑐2

• The repacking does not cause harmful interference
– For every interference rule stating that 𝑠𝑠1 cannot broadcast on 𝑐𝑐1

while 𝑠𝑠2 broadcasts on 𝑐𝑐2, create a clause (¬𝑥𝑥𝑠𝑠1,𝑐𝑐1 ∨ ¬𝑥𝑥𝑠𝑠2,𝑐𝑐2)

• Note: mostly 2-clauses
– good for unit propagation: implies clique constraints



Feasibility Testing via SAT Encoding



Feasibility Testing via SAT Encoding



Algorithm Configuration
• High-performance solvers for NP-complete problems 

like SAT are typically parameterized
– which branching heuristic, variable ordering, preprocessing strategy, 

clause learning technique, …
• Address with algorithm configuration



Sequential Model-based Algorithm Configuration (SMAC)

[Hutter, Hoos & LB, 2011]



Best Configured Solver



Problem-Specific Speedups
• Incremental repacking

– Local augmenting
• Can the previous assignment be augmented by fixing all stations that 

don’t neighbor the new station to their previous values?



SATFC 1.0 (officially released by the FCC in Nov 2014)

Essentially a combination of configured Clasp
and a presolver based on local augmentation

1.0



We Made the News! 
Source: TVTechnology.com

But, they still want
it to be faster!



Problem-Specific Speedups
• Incremental repacking

– Local augmenting
• Can the previous assignment be augmented by fixing all stations that 

don’t neighbor the new station to their previous values?

– Starting local search solvers with the previous assignment

• Problem simplification
– Graph decomposition

• Separately solve each component of the (induced) interference graph
• Showing that any component is UNSAT suffices for the whole problem

– Unconstrained station removal
• Drop stations that, for every assignment of other stations, 

can always take a feasible value 
• Doing this first can cause even more graph decomposition



Unconstrained Stations

44%

8%



Algorithm Portfolios

• Often different solvers perform well 
on different problem instances

• Idea: build an algorithm portfolio, 
consisting of different algorithms 
that can work together to solve a 
problem

• SATzilla: state-of-the-art portfolio 
developed by my group (2003-present)
– machine learning to choose algorithm

on a per-instance basis
• Iteratively configure constituent solvers (“Hydra”)

– Keep asking “which solver will offer the greatest marginal 
contribution to the existing portfolio?”



Performance of the Algorithm Portfolio



Caching
• We’d be willing to leverage enormous amounts of 

offline computation to make a faster solver
• Opportunity: we know the constraint graph in advance
• Obstacle: 𝟐𝟐𝒏𝒏 possible repacking problems
• Reason for optimism: not all occur in practice

– The order in which stations exit the auction and hence have to 
be repacked is induced by valuations + auction mechanism

– Valuations depend on the population served by a station, and 
hence are nonuniform

• So, would it work to cache previous solutions?
We tried and… No. Almost no cache hits
– cache built on a training set of 200k problems
– evaluated on test set of 10k problems



Supersets and Subsets
• Observation: if station set 𝑆𝑆 is repackable, 

so is every station set 𝑺𝑺′ ⊆ 𝑺𝑺
– Useful because there are exponentially many such sets 𝑆𝑆′
– Likewise, if 𝑆𝑆 is not repackable, neither is any 𝑆𝑆′′ ⊇ 𝑆𝑆

• Idea: when we encounter a new station set 𝑆𝑆, look for 
any satisfiable superset or any unsatisfiable subset

• Problem: we can’t query this cache with a hash function
– An exponential number of keys could match a given query

• Solution: build a traditional cache that we can hash into, 
and a secondary cache for subset/superset queries



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache
• Secondary cache is defined by 

some ordering 𝑜𝑜



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache
• Secondary cache is defined by 

some ordering 𝑜𝑜
– Represent every station set as a 

bit string ordered by 𝑜𝑜



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache
• Secondary cache is defined by 

some ordering 𝑜𝑜
– Represent every station set as a 

bit string ordered by 𝑜𝑜



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache
• Secondary cache is defined by 

some ordering 𝑜𝑜
– Represent every station set as a 

bit string ordered by 𝑜𝑜
– Sort station sets in descending 

order, interpreted as integers



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache
• Secondary cache is defined by 

some ordering 𝑜𝑜
– Represent every station set as a 

bit string ordered by 𝑜𝑜
– Sort station sets in descending 

order, interpreted as integers



Secondary Cache (satisfiable instances)
• Start with all station sets from 

the primary cache
• Secondary cache is defined by 

some ordering 𝑜𝑜
– Represent every station set as a 

bit string ordered by 𝑜𝑜
– Sort station sets in descending 

order, interpreted as integers
– Very compact: 200k entries, each 

2k stations/bits, takes 50 MB
• So: we can afford multiple 

secondary caches, each with a 
different (random) ordering



Superset Queries 
Does the cache contain any 
superset of the query 𝑺𝑺?



Superset Queries
Does the cache contain any 
superset of the query 𝑺𝑺?



Superset Queries
Does the cache contain any 
superset of the query 𝑺𝑺?
• Perform binary search to find 

the index corresponding to 𝑆𝑆
– If it’s there: direct hit

• If not, look for a superset
– This will be an entry “larger” than 𝑆𝑆, 

and thus ordered earlier



Superset Queries
Does the cache contain any 
superset of the query 𝑺𝑺?
• Perform binary search to find 

the index corresponding to 𝑆𝑆
– If it’s there: direct hit

• If not, look for a superset
– This will be an entry “larger” than 𝑆𝑆, 

and thus ordered earlier
– Work linearly through the list

• Efficient test for a superset:
“Is the cached bit string bitwise 
logically implied by the query?”



Superset Queries
Does the cache contain any 
superset of the query 𝑺𝑺?
• Perform binary search to find 

the index corresponding to 𝑆𝑆
– If it’s there: direct hit

• If not, look for a superset
– This will be an entry “larger” than 𝑆𝑆, 

and thus ordered earlier
– Work linearly through the list

• Efficient test for a superset:
“Is the cached bit string bitwise 
logically implied by the query?”

• Speed things up with multiple 
secondary caches:
• look up 𝑆𝑆 in all of them
• Use the secondary cache with the 

smallest number of entries > 𝑆𝑆
• 200k cache entries 

average query time 30 ms



Cache Performance



Containment Cache Analysis



Putting It All Together
99.0% in 0.2s 99.6% in 60s



Putting It All Together
99.0% in 0.2s 99.6% in 60s



Putting It All Together
99.0% in 0.2s 99.6% in 60s



Performance on Further Simulations
• 80 auctions

– 5,924 – 43,721 instances per auction

• 1,109,707 instances total
– all not solvable by directly augmenting the previous solution
– about 20% of the problems encountered in full simulations

• data generated Oct 22 – Nov 6 using the FCC’s “smoothed 
ladder” simulator and varying simulation assumptions:
– stations’ valuations
– which stations opt to participate
– how much spectrum is being cleared

• 84 MHz: pack into channels 14 – 36
• 126 MHz: pack into channels 14 – 29 

– the timeout given to SATFC (1 min; 5 min)



SATFC Performance on New Data (no cache)



SATFC Performance on New Data (no cache)



Solved Percentages (no cache)



Similarity between auction simulations

For each auction (row), train a cache based on every auction that 
does not share at least 20% of the same problems; evaluate



Cache Performance (leave-one-out analysis)



Conclusions
• Spectrum reallocation is a socially important problem 

that poses interesting new challenges for auction theory
• The FCC has proposed the use of descending auctions 

to buy back spectrum from TV broadcasters
– advantage: “obviously” strategyproof
– disadvantage: millions of NP-complete problems must be 

solved in real time; auction revenue suffers when they can’t be
• We showed how this repacking problem can be 

solved at national scale, via:
– algorithm configuration; algorithm portfolios
– problem-specific speedups; problem simplifications
– containment caching

• likely of independent interest: any setting where many problems must 
be solved, derived from subsets of a given constraint set


	Spectrum Repacking in the Incentive Auction
	FCC’s “Incentive Auction”
	Anticipated Revenue: Tens of Billions
	Auction Tentatively Set for Next Year
	The FCC’s “Incentive Auction”
	Feasibility Testing
	Experimental Setup
	Feasibility Testing via MIP Encoding
	SAT Encoding
	Feasibility Testing via SAT Encoding
	Feasibility Testing via SAT Encoding
	Algorithm Configuration
	Sequential Model-based Algorithm Configuration (SMAC)
	Best Configured Solver
	Problem-Specific Speedups
	SATFC 1.0 (officially released by the FCC in Nov 2014)
	We Made the News! 
	Problem-Specific Speedups
	Unconstrained Stations
	Algorithm Portfolios
	Performance of the Algorithm Portfolio
	Caching
	Supersets and Subsets
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Superset Queries 
	Superset Queries
	Superset Queries
	Superset Queries
	Superset Queries
	Cache Performance
	Containment Cache Analysis
	Putting It All Together
	Putting It All Together
	Putting It All Together
	Performance on Further Simulations
	SATFC Performance on New Data (no cache)
	SATFC Performance on New Data (no cache)
	Solved Percentages (no cache)
	Similarity between auction simulations
	Cache Performance (leave-one-out analysis)
	Conclusions

