Spectrum Repacking in
the Incentive Auction

Kevin Leyton-Brown

Computer Science Department

University of British Columbia

Joint work with Alexandre Fréchette and Neil Newman

FCC’s “Incentive Auction”

Federal Communications Commission

—

[C

The FCC Our Work Tools & Data Business & Licensing Bureaus & Offices

_ Q, | = ‘l‘alr.e Action Comment, Complain, Discuss Transition.FCC.gov »

= Home [/ Our Work / Incentive Auctions

Find out about business opportunities
and the Incentive Auctions process

. 1 ' P . 'LEARN' PROGRAM
Incentive Auctions i ')
::, ¥ y ?

Unleashing spectrum to meet America's demand for mobile
broadband

The United States leads the world in key areas Qucgons
of wireless infrastructure and innovation, Explore the Broadcast

including being the first country to have 4G Television Spectrum Incentive

Long-Term Evolution (LTE) technology Auction Rulemaking

networks at scale and to enable unlicensed use

of white space spectrum. Meanwhile, demands on both licensed and unlicensed

spectrum are increasing dramatically.

Anticipated Revenue: Tens of Billions

U.5. Congress

CONGRESSIONAL BUDGET OFFICE Keith Hall, Director
Washington, DC 20515

Honorable Dean Heller April 21, 2015
United States Senate
Washington, DC 20510

Dear Senator:

This letter responds to several questions that you posed about proceeds from
certain auctions that have been held or will be held by the Federal
Commmunications Commission (FCC).

To briefly summarize some of the major points mentioned below:

e The FCC is planning to hold a two-sided auction—known as an incentive
auction—that will provide an opportunity for television broadcasters to
voluntarily sell their spectrum rights and for wireless firms to buy licenses
to use those frequencies.

e Because the FCC has not conducted such an auction before, it is difficult
to predict what the net proceeds of the auction will be. The Congressional
Budget Office estimates that the net proceeds will probably be between
$£10 billion and $40 billion. with an expected value of $25 billion, the
middle of that range.

Image edited to fit on slide; see https://www.cbo.qgov/publication/50128 for the original.

https://www.cbo.gov/publication/50128

Auction Tentatively Set for Next Year

FierceWireless

Topics: Regulatory News | Spectrum News

FCC tentatively sets March 29, 2016, as start date
for 600 MHz incentive auction
July 20, 2015 | By Phil Goldstein

SHARE The FCC currently plans to start next year's incentive auction of 600 MHz
broadcast TV spectrum on March 29, 2016, according to an FCC website. That
Email would keep the agency just on target to meet FCC Chairman Tom Wheeler's
goal of starting the complex auction in the first quarter of next year, which ends
28 March 31.

w Tweet Last week the FCC postponed its vote on rules for the incentive auction until
Aug. 6 after pressure from Congress to push back the vote that had been
3 planned for the agency's July 16 meeting. The FCC is going to allow more time

for stakeholders, including broadcasters and carriers, to review information to

M2 the FCC and submit filings on the rules.

ile 0 Accordingly, the FCC moved that agenda item onto its list of items that are

currently "on circulation,” meaning that they are being reviewed by the FCC's
five commissioners before being voted on before the full commission. The item

1 is titled: "Broadcast Incentive Auction to Begin March 29, 2016; Procedures for
Competitive Bidding in Auction 1000, Including Initial Clearing Target
&+1 Determination, Qualifying to Bid, and Bidding in Auctions 1001 (Reverse) and

1002 (Forward)."

Image edited to fit on slide; see http://qoo.ql/y71oyL for the original.

http://goo.gl/y71oyL

The FCC’s “Incentive Auction”

 Forward (ascending-price) auction for telecom firms
— prices in each region increase while demand exceeds supply

 Reverse (descending-price) auction for broadcasters

— stations declare they’re willing to stop broadcasting
at a given, initially high, price
— consider stations round robin:

e check to see if the station could feasibly be “repacked” into the
reduced band, given interference constraints

 if not (or if we can’t solve the problem), it’s “frozen”
e if so, offer it lower compensation, take-it-or-leave-it

 When auctions terminate, ensure revenue target is met

— if not, grow the size of the reduced band (i.e., clear less spectrum);
auctions continue

Feasibility Testing

Key computational problem: testing the feasibility of a given
repacking, based on interference constraints

e Basis of “frozen test”: about 100K per auction; 20K are nontrivial

A hard graph-colouring problem
— 2991 stations (nodes)

— 2.7 million interference constraints
(channel-specific interference)

— Initial skepticism about whether " gt |
this problem could be solved WA
exactly at a national scale

e if not, say the problem is infeasible,
and pay more than necessary

e We're doing it, using tools
from empirical algorithmics

— automatic algorithm
configuration

— algorithm portfolios; Hydra
— domain-specific heuristics
— a powerful new caching scheme

Experimental Setup

e FCC’s May 2014 interference data
— clearing target: 19 UHF channels (14-32)

e 5simulated auctions

— based on the “smoothed ladder” auction mechanism and
a (proprietary) valuation model

— UHF problems only; VHF was too easy
— randomly partitioned into 3 sets: training (100,572 instances);
validation (1,000 instances); test (10,000 instances)
e QOur goal: solve as many problems as we can in within a
one-minute cutoff

Feasibility Testing via MIP Encoding

1.0
== EP] EX

Gurobi
0.9 -

0.8
0.7
0.6

0.5 .

Fraction of Instances

0.4 -
0.3 ST —
0.2 .
0.1 =l

0.0 — 5 J i "___

107 10 10 10

Runtime (s)

SAT Encoding

Xs ¢: the proposition that station s is assigned to channel ¢
— one such variable for every station s and channel ¢

Station s must broadcast on one of its allowable channels

— For every station s and set of allowable channels {c4, ..., ¢, },
create a clause (X5, V=V X5)

Station s may broadcast on at most one of these channels

— For every pair of channels ¢; and ¢, allowed for station s,
create a clause (—mcs,c1 \Y% —|xS,Cz)

The repacking does not cause harmful interference

— For every interference rule stating that s; cannot broadcast on ¢,
while s, broadcasts on c;, create a clause (—xg, . V X,)

Note: mostly 2-clauses
— good for unit propagation: implies clique constraints

Feasibility Testing via SAT Encoding

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—— DCCA

Minisat-HACK-999ED-CSSC
Riss3g

Solver43

Lingeling-mixed

YalSAT

= Clasp

-

CPLEX
Gurobi

0.0

100

Runtime (s)

10

Feasibility Testing via SAT Encoding

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

— DECA
Minisat-HACK-999ED-CSSC
Riss3g
Solver43
Lingeling-mixed
YalSAT

= Clasp

== ERIEX

= = Gurobi

B SAT

| UNSAT

TIMEOUT

Runtime (s)

10

Algorithm Configuration

* High-performance solvers for NP-complete problems
like SAT are typically parameterized

— which branching heuristic, variable ordering, preprocessing strategy,
clause learning technique, ...

 Address with algorithm configuration

Parameter domains
& starting values

Calls with Configuration scenario Problem
different instances
Contfi t Target
onfigurator barameter g Solves
- algorithm
settings

Returns solution cost

Sequential Model-based Algorithm Configuration (SMAC)

[Hutter, Hoos & LB, 2011]

----- RF mean prediction
RF mean +/- 2*stddev
4k = True function
O Function evaluations
% Right-censored fun. evals.
ar == == Exp. improvement (scaled)H

responsey

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
parameter x

Initialize with a single run for the default configuration

repeat

Learn a random forest model m : © x 1I — IR from data so far
Marginalize out instance features: f(6) = E.|m/(f, 7)]

Find # that maximizes expected improvement in f(#) over incumbent
Compare # to the incumbent, updating if it’s better.

until time budget exhausted

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Best Configured Solver

0.0

10

10* 10° 10
Runtime (s)

- DCCA
- Clasp
Clasp-H2

10

2

Problem-Specific Speedups

* Incremental repacking

— Local augmenting

e Can the previous assignment be augmented by fixing all stations that
don’t neighbor the new station to their previous values?

SATFC 1.0 (officially released by the FCC in Nov 2014)

1.0
0.9 “g@,gﬁgwyﬁyﬁﬁjv
0.8
0.7

0.5

Fraction of Instances

©
~

Essentially a combination of configured Clasp

0.2
and a presolver based on local augmentation

0.1
== SATFC1.0
B Clasp-H1
00 ¥
10° 10 i
Runtime (s)

10

Source: TVTechnology.com

We Made the News!

& Tweet Like 3 people like this. Sign Up to see what your friends PRINT ™ EMAIL SHARE
like)

DOUG LUNG / RF REPORT
11.07.2014 03:17 PM

Latest FCC Auction Software Sucks Up
Computer Power o

One terabyte of disk space, 4 GB of RAM and a modern multicore processor
are recommended

A key part of the 600 MHz incentive auction will be determining whether suffidient spectrum remains in which
to repack those stations that don't participate in the auction or have their bids accepted. This process involves
creating “pairwise interference constraint” files that pre-calculate all the channels a station could be assigned
to be consistent with preservation of coverage area and population served. During the auction, a “feasibility
checker” can then be used to quickly determine whether a given channel assignment is feasible using the
pairwise interference constraint files.

On Nov. 3, the Incentive Auction Task Force released a preliminary software that can be used to generate the
pairwise constraint data and perform feasibility checking. The notice announcing the software cautions, “We
emphasize that the software we are releasing today is the product of ongoing staff work implementing
decisions adopted by the Commission and has not been finalized for use in the incentive auction. The full
Commission will make all final decisions regarding the repacking process and other matters relating to the
incentive auction at a later date.”

[.]

The README on the Feasibility Checker GitHub site notes the SATFC (SAT-based Feasibility Checker) combines
a formulation of feasibility checking based on propositional satisfiability with a heuristic pre-solver and a SAT
solver tuned for the types of instances observed in auction simulations. SATFC was created by Auctionomics,
notably Alexandre Fréchette, Guillaume Saulnier-Comte, Nick Arnosti, and Kevin Leyton-Brown. For more
information on how it works see Kevin Leyton-Brown's presentation Investigating the Viability of Exact
Feasibility Testing. The paper includes a comparison of different solver methods, including PicoSAT

(see T-Mobile: 84 MHz of UHF Spectrum Can Be Redaimed With Limited Impact on TV).

The Feasibility Checker is primarily intended to run on Unix-like platforms and requires Java 7 or Java 8 to run.
A modified version of the SAT solver clasp v2.2.3 compiled for JNA library usage is required, which in turn
requires having gcc v4.8.1 or higher as well as the standard Unix C libraries. Instructions are provided on how
to compile clasp. The Feasibility Checker requires two sets of data to run. One is the domain file that lists
every station to be studied and the channels on which it can broadcast. The other is the pairwise interference
constraint files data created by the Constraint Generator.

I doubt many individuals will have the time or resources to generate their own constraint files and perform
some feasibility checks to see how the system will function. I would expect groups like the National
Assodiation of Broadcasters to put the software to the test. It will be interesting to see what they find!

But, they still want
it to be faster!

Problem-Specific Speedups

* Incremental repacking

— Local augmenting

e Can the previous assignment be augmented by fixing all stations that
don’t neighbor the new station to their previous values?

— Starting local search solvers with the previous assignment

* Problem simplification
— Graph decomposition

e Separately solve each component of the (induced) interference graph
* Showing that any component is UNSAT suffices for the whole problem

— Unconstrained station removal

e Drop stations that, for every assignment of other stations,
can always take a feasible value

e Doing this first can cause even more graph decomposition

(Underconstrained) Appearances / Total Appearances

1.0

0.8

0.6

0.4

0.2

0.0

Unconstrained Stations

— Appearances
—— Best Heuristic
First Heuristic

44%

8%

10 20 30 40 o0 60
Station Degree

Algorithm Portfolios

Often different solvers perform well
on different problem instances

ldea: build an algorithm portfolio,
consisting of different algorithms
that can work together to solve a
problem

SATzilla: state-of-the-art portfolio
developed by my group (2003-present)

— machine learning to choose algorithm
on a per-instance basis

Iteratively configure constituent solvers (“Hydra”)

— Keep asking “which solver will offer the greatest marginal
contribution to the existing portfolio?”

Performance of the Algorithm Portfolio

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

100

100

10°

Runtime (s)

10

- Parallel Portfolio

DCCA+
Clasp-H2
Clasp-H1
DCCA-preSAT

10

Caching

We’'d be willing to leverage enormous amounts of
offline computation to make a faster solver

Opportunity: we know the constraint graph in advance
Obstacle: 2™ possible repacking problems
Reason for optimism: not all occur in practice

— The order in which stations exit the auction and hence have to
be repacked is induced by valuations + auction mechanism

— Valuations depend on the population served by a station, and
hence are nonuniform

So, would it work to cache previous solutions?

We tried and... No. Almost no cache hits

— cache built on a training set of 200k problems

— evaluated on test set of 10k problems

Supersets and Subsets

Observation: if station set S is repackable,
so is every stationsetS' © S

— Useful because there are exponentially many such sets S’
— Likewise, if S is not repackable, neitherisany S’ 2 S

ldea: when we encounter a new station set S, look for
any satisfiable superset or any unsatisfiable subset

Problem: we can’t query this cache with a hash function
— An exponential number of keys could match a given query

Solution: build a traditional cache that we can hash into,
and a secondary cache for subset/superset queries

Secondary Cache (satisfiable instances)

e Start with all station sets from

the primary cache

Secondary Cache (satisfiable instances)

e Start with all station sets from

e Secondary cache is defined by

the primary cache

0 1 2 3 1
some ordering o [. . . . @J

©@

. JOX _
00
000
_JOJ _
Ol I

Secondary Cache (satisfiable instances)

e Start with all station sets from

e Secondary cache is defined by

the primary cache

0 1 2 3 1
some ordering o [. . . . @J

— Represent every station set as a
bit string ordered by o

. JOX _
00
000
_JOJ _
Ol I

Secondary Cache (satisfiable instances)

e Start with all station sets from
the primary cache

e Secondary cache is defined by e
some ordering o [. . . . @J

— Represent every station set as a
bit string ordered by o 1 0 0 0 1

(17)

Secondary Cache (satisfiable instances)

e Start with all station sets from
the primary cache

e Secondary cache is defined by
some ordering o

— Represent every station set as a
bit string ordered by o

— Sort station sets in descending
order, interpreted as integers

0000

(17)

(22)

(30)

(21)

(26)

Secondary Cache (satisfiable instances)

e Start with all station sets from
the primary cache

e Secondary cache is defined by e
some ordering o {. . . . @J

— Represent every station set as a

bit string ordered by o 0 1 1 1 1 (30
— Sort station sets in descending
order, interpreted as integers 0 1 0 1 1 (26)

0 1 1 0 1 (22

1 0 1 0 1 (21

1 0 0 0 1 17

Secondary Cache (satisfiable instances)

e Start with all station sets from
the primary cache

e Secondary cache is defined by e
some ordering o {. . . . @J

— Represent every station set as a
bit string ordered by o 0 1 1 1 1

(30)
— Sort station sets in descending
order, interpreted as integers 0 1 0 1 1 (26)
— Very compact: 200k entries, each
2k stations/bits, takes 50 MB o 1 1 0 1 (22
e So: we can afford multiple
secondary caches, each with a 1 0 1 0 1 (21)

different (random) ordering

1 0 0 0 1 17

Superset Queries

Does the cache contain any
superset of the query S

Get a superset of:

oC
0000

(30)

(26)

(22)

(21)

(17)

Superset Queries

Does the cache contain any Get a superset of:
superset of the query S? O 1 o0 0 1 s

0000

0 1 1 1 1 (30)

0 1 0 1 1 (26)

0 1 1 0 1 (22

1 0 1 0 1 (21

1 0 0 0 1 (17

Superset Queries

Does the cache contain any Get a superset of:

superset of the query §? 0 1 0 0 1 ()

e Perform binary search to find
the index corresponding to S

0 1 2 3 4
— |Ifit’s there: direct hit {. . . . @J

* If not, look for a superset
— This will be an entry “larger” than S,
and thus ordered earlier 0 1 1 1 1 (30

0 1 0 1 1 (26)

0 1 1 0 1 (22

Superset Queries

Does the cache contain any Get a superset of:

superset of the query §? 0 1 0 0 1 ()

e Perform binary search to find
the index corresponding to S

0 1 2 3 4
— Ifit’s there: direct hit {. . . . @J
* If not, look for a superset
— This will be an entry “larger” than S,

and thus ordered earlier 0 1 1 1 1 (30

— Work linearly through the list

e Efficient test for a superset:
“Is the cached bit string bitwise 0 1 0 1 1
logically implied by the query?”

Superset Queries

Does the cache contain any Get a superset of:

superset of the query §? 0 1 0 0 1 ()

e Perform binary search to find
the index corresponding to S

0 1 2 3 4
— |Ifit’s there: direct hit {. . . . @J

* If not, look for a superset
— This will be an entry “larger” than S,
and thus ordered earlier 0 1 1 1 1 (30

— Work linearly through the list
e Efficient test for a superset:

“Is the cached bit string bitwise 0 1 0 1 1 (26)
logically implied by the query?”
e Speed things up with multiple 0 1 1 0 1 | (22)

secondary caches:

e lookup S in all of them 1 0 1 0 1 | (21

e Use the secondary cache with the -f—
smallest number of entries > S 1 0 0 0 1 (17

e 200k cache entries =2
average query time 30 ms 1 1 0 0 0 @0

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

100

Cache Performance

100

0

10
Runtime (s)

—— Parallel Portfolio

Cache

10

Containment Cache Analysis

1,000

L R Y

100

- e Tyl o ul- -

$; 3
ool os 5 3
. - e ﬁv
: an F Sy §F, GSE 9
& @ Eageane
LR a | ey *
-e @ w ¥ e &
¥ g O o & B &

e AN e

o
—i

(S) panes awli|

s 9 o ¥
* s 1 N0 . W g TR
:”.uuqi -4 g : ¥ -

1,000

100

10

v el -

Hits

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

0.2

0.1

0.0

100

Putting It All Together

99.0% in 0.2s

100

0

10
Runtime (s)

e SATFC 2.0

DCCA+

Clasp-H2

Clasp-H1

Cache & DCCA-preSAT
DCCA-preSAT

Cache

10

Fraction of Instances

1.0

0.9

0.8

0.7

0.6

Putting It All Together

99.0% in 0.2s

99.6% in 60s

.....
o

10°
Runtime (s)

P S R AR A AR AR AR AR AR AR AR AR R R AR AR R

... H

- .

o, TR

e SATFC 2.0
DCCA+

- Clasp-H2

- Clasp-H1

- Cache & DCCA-preSAT
------ DCCA-preSAT
------ Cache
SAT
UNSAT
TIMEOUT

10

Fraction of Instances

Putting It All Together

== SATFC 1.0
e SATFC 2.0
Py DCCA+
—— Clasp-H2
- Clasp-H1
Cache & DCCA-preSAT
------ DCCA-preSAT
------ Cache
EEE SAT
B UNSAT
TIMEOUT

10° 10
Runtime (s)

10

Performance on Further Simulations

e 80 auctions
— 5,924 -43,721 instances per auction

e 1,109,707 instances total

— all not solvable by directly augmenting the previous solution
— about 20% of the problems encountered in full simulations

e data generated Oct 22 — Nov 6 using the FCC’s “smoothed
ladder” simulator and varying simulation assumptions:
— stations’ valuations
— which stations opt to participate

— how much spectrum is being cleared
e 84 MHz: pack into channels 14 — 36
e 126 MHz: pack into channels 14 - 29

— the timeout given to SATFC (1 min; 5 min)

SATFC Performance on New Data (no cache)

1.0

Fraction of Instances
o o o o o o
E-N (@) (@)] -~ (o] [{o]

<
w

0.2

0.1

0.0 =
107 Tii 10° 10" 10°
Runtime (s)

SATFC Performance on New Data (no cache)

1.0

W SAT ——
0o HEE UNSAT =
' TIMEOUT » —
0.8

o
~
»

= 06 ’ ‘ i Fi
8 ! Vi
[72] J [
= 1 i
5 09 / f
= :

il y

© 04 /

® 0.

L

=
w

b
N

©
—

o
o

107 10° 10" 10?
Runtime (s)

—
Q
o]

Solved Percentages (no cache)

20

15

Count
=)

0]

0.83 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1.00
Fraction of Instances

Similarity between auction simulations

For each auction (row), train a cache based on every auction that
does not share at least 20% of the same problems; evaluate

Cache Performance (leave-one-out analysis)

0.8

0.7

Fraction of Instances
o © o c © o
- N w SN [4)] (o))

Q
o

0.2 04 0.6 0.8 1.0
Fraction of Auctions

o
o

Conclusions

e Spectrum reallocation is a socially important problem
that poses interesting new challenges for auction theory

e The FCC has proposed the use of descending auctions
to buy back spectrum from TV broadcasters
— advantage: “obviously” strategyproof
— disadvantage: millions of NP-complete problems must be
solved in real time; auction revenue suffers when they can’t be
e We showed how this repacking problem can be
solved at national scale, via:
— algorithm configuration; algorithm portfolios
— problem-specific speedups; problem simplifications
— containment caching

e likely of independent interest: any setting where many problems must
be solved, derived from subsets of a given constraint set

	Spectrum Repacking in the Incentive Auction
	FCC’s “Incentive Auction”
	Anticipated Revenue: Tens of Billions
	Auction Tentatively Set for Next Year
	The FCC’s “Incentive Auction”
	Feasibility Testing
	Experimental Setup
	Feasibility Testing via MIP Encoding
	SAT Encoding
	Feasibility Testing via SAT Encoding
	Feasibility Testing via SAT Encoding
	Algorithm Configuration
	Sequential Model-based Algorithm Configuration (SMAC)
	Best Configured Solver
	Problem-Specific Speedups
	SATFC 1.0 (officially released by the FCC in Nov 2014)
	We Made the News! 
	Problem-Specific Speedups
	Unconstrained Stations
	Algorithm Portfolios
	Performance of the Algorithm Portfolio
	Caching
	Supersets and Subsets
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Secondary Cache (satisfiable instances)
	Superset Queries
	Superset Queries
	Superset Queries
	Superset Queries
	Superset Queries
	Cache Performance
	Containment Cache Analysis
	Putting It All Together
	Putting It All Together
	Putting It All Together
	Performance on Further Simulations
	SATFC Performance on New Data (no cache)
	SATFC Performance on New Data (no cache)
	Solved Percentages (no cache)
	Similarity between auction simulations
	Cache Performance (leave-one-out analysis)
	Conclusions

