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Overview

1. The economic case for discrete-time trading

I Financial exchange design that is predominant around the
world � continuous limit order book � is economically �awed

I Flaw: treats time as a continuous variable (serial processing)
I Solution: treat time as a discrete variable, batch process using

an auction. �Frequent batch auctions�.
I Eric Budish, Peter Cramton and John Shim (�BCS�) 2015,

Quarterly Journal of Economics

2. The computational case for discrete-time trading

I Discrete time respects the limits of computers and
communications technology. Not in�nitely fast.

I Bene�ts for exchanges, algo traders, regulators
I Qualitative/informal argument in BCS 2015, would bene�t

greatly from Econ/CS research

3. Other Econ/CS Questions about the Design of Financial Exchanges

I Flash crashes
I Speed vs. Smarts Tradeo�
I Circuit Breakers
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Brief Description of the Continuous Limit Order Book

I Basic building block: limit order

I Speci�es a price, quantity, and buy/sell (bid/ask)
I �Buy 100 shares of XYZ at $100.00�

I Traders may submit limit orders to the market at any time
during the trading day

I Also may cancel or modify outstanding limit orders at any time
I Orders and cancelations are processed by the exchange

one-at-a-time in order of receipt (serial process)

I Set of outstanding orders is known as the limit order book

I Trade occurs whenever a new limit order is submitted that is
either (i) bid ≥ lowest ask; (ii) ask ≤ highest bid

I New limit order is interpreted as accepting (fully or partially)
one or more outstanding orders



BCS Model: Basics of Setup

I There is a security, x , that trades on a continuous limit-order book
market

I There is a publicly observable signal, y , of the value of security x . y
evolves as a Poisson jump process.

I Purposefully strong assumption:

I Fundamental value of x is perfectly correlated to the public
signal y

I x can always be costlessly liquidated at this fundamental value

I Players

I Investors: arrive stochastically, mechanically either buy or sell
x at market

I Trading Firms: N, all equally fast � zero latency

I Overall: �Best case� scenario for price discovery and liquidity
provision

I No asymmetric info, no inventory costs, investors mechanical,
trading �rms have zero latency



�Sniping�

I Given the model setup � no asymmetric information, no
inventory costs, etc. � one might conjecture that (Bertrand)
competition among the N trading �rms leads to e�ectively
in�nite liquidity for investors

I That is, trading �rms should o�er to buy or sell x at price y in
unlimited quantity at zero bid-ask spread

I But that is not what happens in the continuous limit order
book market, due to a phenomenon we call �sniping�



�Sniping�

I Suppose y jumps, e.g., from y to ȳ

I Trading �rms providing liquidity in the market for x send a
message to the continuous limit order book

I Withdraw old quotes based on y
I Replace with new quotes based on ȳ



�Sniping�

I However, at the exact same time, other trading �rms send a
message to the continuous market attempting to �snipe� the
stale quotes before they are adjusted

I Buy at the old quotes based on y, before these quotes are
withdrawn

I Since the continuous market processes messages in serial �
that is, one at a time � it is possible that a message to snipe a
stale quote will get processed before the message to adjust the
stale quote

I In fact, not only possible but probable

I For every 1 liquidity provider trying to get out of the way
I N − 1 other trading �rms trying to snipe him
I Hence, when there is a big jump, liquidity provider gets sniped

with probability N−1

N



BCS Model: 3 Key Takeaways about Continuous Markets

1. Mechanical arbitrage opportunities are �built in� to the market
design

I Symmetrically observed public information creates arbitrage
rents.

I This isn't supposed to happen in an e�cient market. (Fama,
1970)

I OK to make money from asymmetric information, but
symmetric information is supposed to get into prices for free.
Market failure.

2. Pro�ts from mechanical arbs come at the expense of liquidity
provision

I In a competitive market, sniping costs get passed on to
investors.

I Thinner markets, wider bid-ask spreads.

3. Sniping creates a never-ending race for speed

I Sniping: win race to pick o� stale quotes.
I Liquidity provision: get out of the way of the snipers!
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Mechanical Arbitrage Example: S&P 500 Index Arb
ES vs. SPY: 1 Day
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Mechanical Arbitrage Example: S&P 500 Index Arb
ES vs. SPY: 1 hour
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Mechanical Arbitrage Example: S&P 500 Index Arb
ES vs. SPY: 1 minute

13:51:00 13:51:15 13:51:30 13:51:45 13:52:00

1114

1116

1118

1120

In
de

x 
P

oi
nt

s 
(E

S
)

Time (CT)

 

 

1120

1122

1124

1126

In
de

x 
P

oi
nt

s 
(S

P
Y

)

ES Midpoint
SPY Midpoint



Mechanical Arbitrage Example: S&P 500 Index Arb
ES vs. SPY: 250 milliseconds
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Arb Durations over Time: 2005-2011

Median over time

01−2005 01−2006 01−2007 01−2008 01−2009 01−2010 01−2011 01−2012
0

50

100

150

200

250

Date

M
ed

ia
n 

A
rb

itr
ag

e 
D

ur
at

io
n 

(m
s)

Distribution by year

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n 

of
 A

rb
itr

ag
e 

O
pp

or
tu

ni
tie

s 
G

re
at

er
 T

ha
n 

T
hi

s 
D

ur
at

io
n

Duration of Arbitrage Opportunity (ms)

 

 
2005
2006
2007
2008
2009
2010
2011



Arb Per-Unit Pro�ts over Time: 2005-2011

Median over time
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Arb Frequency over Time: 2005-2011

Frequency over time
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Correlation Breakdown Over Time: 2005-2011
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Latency Arb and Arms Race are �Constants� of the Market

Design

To summarize:

I Competition does increase the speed requirements for
capturing arbs (�raises the bar�)

I Competition does not reduce the size or frequency of arb
opportunities

I Suggests we should think of latency arbitrage and the resulting
arms race as a �constant� of the current market design



Analogy to the US Treasury Market
30 year ultra future vs. 30 year cash

10 year future vs. 7 year cash



Other Highly Correlated Pairs
Partial List

E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  SPDR	  S&P	  500	  ETF	  (SPY)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  iShares	  S&P	  500	  ETF	  (IVV)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  Vanguard	  S&P	  500	  ETF	  (VOO)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  ProShares	  Ultra	  (2x)	  S&P	  500	  ETF	  (SSO)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  ProShares	  UltraPro	  (3x)	  S&P	  500	  ETF	  (UPRO)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  ProShares	  Short	  S&P	  500	  ETF	  (SH)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  ProShares	  Ultra	  (2x)	  Short	  S&P	  500	  ETF	  (SDS)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  ProShares	  UltraPro	  (3x)	  Short	  S&P	  500	  ETF	  (SPXU)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  500	  ConsJtuent	  Stocks	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  9	  Select	  Sector	  SPDR	  ETFs	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  E-‐mini	  Dow	  Futures	  (YM)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  E-‐mini	  Nasdaq	  100	  Futures	  (NQ)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  E-‐mini	  S&P	  MidCap	  400	  Futures	  (EMD)	  
E-‐mini	  S&P	  500	  Futures	  (ES)	  vs.	  Russell	  2000	  Index	  Mini	  Futures	  (TF)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  SPDR	  Dow	  Jones	  Industrial	  Average	  ETF	  (DIA)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  ProShares	  Ultra	  (2x)	  Dow	  30	  ETF	  (DDM)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  ProShares	  UltraPro	  (3x)	  Dow	  30	  ETF	  (UDOW)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  ProShares	  Short	  Dow	  30	  ETF	  (DOG)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  ProShares	  Ultra	  (2x)	  Short	  Dow	  30	  ETF	  (DXD)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  ProShares	  UltraPro	  (3x)	  Short	  Dow	  30	  ETF	  (SDOW)	  
E-‐mini	  Dow	  Futures	  (YM)	  vs.	  30	  ConsJtuent	  Stocks	  
E-‐mini	  Nasdaq	  100	  Futures	  (NQ)	  vs.	  ProShares	  QQQ	  Trust	  ETF	  (QQQ)	  
E-‐mini	  Nasdaq	  100	  Futures	  (NQ)	  vs.	  Technology	  Select	  Sector	  SPDR	  (XLK)	  
E-‐mini	  Nasdaq	  100	  Futures	  (NQ)	  vs.	  100	  ConsJtuent	  Stocks	  
Russell	  2000	  Index	  Mini	  Futures	  (TF)	  vs.	  iShares	  Russell	  2000	  ETF	  (IWM)	  
Euro	  Stoxx	  50	  Futures	  (FESX)	  vs.	  Xetra	  DAX	  Futures	  (FDAX)	  
Euro	  Stoxx	  50	  Futures	  (FESX)	  vs.	  CAC	  40	  Futures	  (FCE)	  
Euro	  Stoxx	  50	  Futures	  (FESX)	  vs.	  iShares	  MSCI	  EAFE	  Index	  Fund	  (EFA)	  
Nikkei	  225	  Futures	  (NIY)	  vs.	  MSCI	  Japan	  Index	  Fund	  (EWJ)	  
Financial	  Sector	  SPDR	  (XLF)	  vs.	  ConsJtuents	  
Financial	  Sector	  SPDR	  (XLF)	  vs.	  Direxion	  Daily	  Financial	  Bull	  3x	  (FAS)	  
Energy	  Sector	  SPDR	  (XLE)	  vs.	  ConsJtuents	  
Industrial	  Sector	  SPDR	  (XLI)	  vs.	  ConsJtuents	  
Cons.	  Staples	  Sector	  SPDR	  (XLP)	  vs.	  ConsJtuents	  
Materials	  Sector	  SPDR	  (XLB)	  vs.	  ConsJtuents	  
UJliJes	  Sector	  SPDR	  (XLU)	  vs.	  ConsJtuents	  
Technology	  Sector	  SPDR	  (XLK)	  vs.	  ConsJtuents	  
Health	  Care	  Sector	  SPDR	  (XLV)	  vs.	  ConsJtuents	  
Cons.	  DiscreJonary	  Sector	  SPDR	  (XLY)	  vs.	  ConsJtuents	  
SPDR	  Homebuilders	  ETF	  (XHB)	  vs.	  ConsJtuents	  
SPDR	  S&P	  500	  Retail	  ETF	  (XRT)	  vs.	  ConsJtuents	  
Euro	  FX	  Futures	  (6E)	  vs.	  Spot	  EURUSD	  
Japanese	  Yen	  Futures	  (6J)	  vs.	  Spot	  USDJPY	  
BriJsh	  Pound	  Futures	  (6B)	  vs.	  Spot	  GBPUSD	  
	  
	  
	  
	  
	  
	  

Australian	  Dollar	  Futures	  (6B)	  vs.	  Spot	  AUDUSD	  
Swiss	  Franc	  Futures	  (6S)	  vs.	  Spot	  USDCHF	  
Canadian	  Dollar	  Futures	  (6C)	  vs.	  Spot	  USDCAD	  
Gold	  Futures	  (GC)	  vs.	  miNY	  Gold	  Futures	  (QO)	  
Gold	  Futures	  (GC)	  vs.	  Spot	  Gold	  (XAUUSD)	  
Gold	  Futures	  (GC)	  vs.	  E-‐micro	  Gold	  Futures	  (MGC)	  
Gold	  Futures	  (GC)	  vs.	  SPDR	  Gold	  Trust	  (GLD)	  
Gold	  Futures	  (GC)	  vs.	  iShares	  Gold	  Trust	  (IAU)	  
miNY	  Gold	  Futures	  (QO)	  vs.	  E-‐micro	  Gold	  Futures	  (MGC)	  
miNY	  Gold	  Futures	  (QO)	  vs.	  Spot	  Gold	  (XAUUSD)	  
miNY	  Gold	  Futures	  (QO)	  vs.	  SPDR	  Gold	  Trust	  (GLD)	  
miNY	  Gold	  Futures	  (QO)	  vs.	  iShares	  Gold	  Trust	  (IAU)	  
E-‐micro	  Gold	  Futures	  (MGC)	  vs.	  SPDR	  Gold	  Trust	  (GLD)	  
E-‐micro	  Gold	  Futures	  (MGC)	  vs.	  iShares	  Gold	  Trust	  (IAU)	  
E-‐micro	  Gold	  Futures	  (MGC)	  vs.	  Spot	  Gold	  (XAUUSD)	  
Market	  Vectors	  Gold	  Miners	  (GDX)	  vs.	  Direxion	  Daily	  Gold	  Miners	  Bull	  3x	  (NUGT)	  
Silver	  Futures	  (SI)	  vs.	  miNY	  Silver	  Futures	  (QI)	  
Silver	  Futures	  (SI)	  vs.	  iShares	  Silver	  Trust	  (SLV)	  
Silver	  Futures	  (SI)	  vs.	  Spot	  Silver	  (XAGUSD)	  
miNY	  Silver	  Futures	  (QI)	  vs.	  iShares	  Silver	  Trust	  (SLV)	  
miNY	  Silver	  Futures	  (QI)	  vs.	  Spot	  Silver	  (XAGUSD)	  
PlaJnum	  Futures	  (PL)	  vs.	  Spot	  PlaJnum	  (XPTUSD)	  
Palladium	  Futures	  (PA)	  vs.	  Spot	  Palladium	  (XPDUSD)	  
Eurodollar	  Futures	  Front	  Month	  (ED)	  	  vs.	  (12	  back	  month	  contracts)	  
10	  Yr	  Treasury	  Note	  Futures	  (ZN)	  vs.	  5	  Yr	  Treasury	  Note	  Futures	  (ZF)	  
10	  Yr	  Treasury	  Note	  Futures	  (ZN)	  vs.	  30	  Yr	  Treasury	  Bond	  Futures	  (ZB)	  
10	  Yr	  Treasury	  Note	  Futures	  (ZN)	  vs.	  7-‐10	  Yr	  Treasury	  Note	  
2	  Yr	  Treasury	  Note	  Futures	  (ZT)	  vs.	  1-‐2	  Yr	  Treasury	  Note	  
2	  Yr	  Treasury	  Note	  Futures	  (ZT)	  vs.	  iShares	  Barclays	  1-‐3	  Yr	  Treasury	  Fund	  (SHY)	  
5	  Yr	  Treasury	  Note	  Futures	  (ZF)	  vs.	  4-‐5	  Yr	  Treasury	  Note	  
30	  Yr	  Treasury	  Bond	  Futures	  (ZB)	  vs.	  iShares	  Barclays	  20	  Yr	  Treasury	  Fund	  (TLT)	  
30	  Yr	  Treasury	  Bond	  Futures	  (ZB)	  vs.	  ProShares	  UltraShort	  20	  Yr	  Treasury	  Fund	  (TBT)	  
30	  Yr	  Treasury	  Bond	  Futures	  (ZB)	  vs.	  ProShares	  Short	  20	  Year	  Treasury	  Fund	  (TBF)	  
30	  Yr	  Treasury	  Bond	  Futures	  (ZB)	  vs.	  15+	  Yr	  Treasury	  Bond	  
Crude	  Oil	  Futures	  Front	  Month	  (CL)	  vs.	  (6	  back	  month	  contracts)	  
Crude	  Oil	  Futures	  (CL)	  vs.	  ICE	  Brent	  Crude	  (B)	  
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Frequent Batch Auctions: Overview

I High level: identical to the current market design but for two
key di�erences

I Time is treated as discrete, not continuous
I Orders are processed in batch, using an auction, not serially in

order of arrival



Frequent Batch Auctions: De�nition

I During the batch interval (eg 100ms) traders submits bids and asks

I Can be freely modi�ed, withdrawn, etc.
I If an order is not executed in the batch at time t, it

automatically carries over for t + 1, t + 2, . . . ,
I Just like standard limit orders

I At the end of each interval, the exchange �batches� all of the
outstanding orders, and computes market-level supply and demand
curves

I If supply and demand intersect, then all transactions occur at the
same market-clearing price (�uniform price�)

I Priority: still price-time, but treat time as discrete. Orders
submitted in the same batch interval have the same priority.
Pro-rata to break ties.

I Information policy: info is disseminated in discrete time. After each
auction, all orders active for the auction displayed publicly

I Activity during the interval is not displayed publicly (gaming)
I Discrete time analogue of current practice in a CLOB market
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Frequent Batch Auctions: 3 Cases

Case 1: Nothing happens during the batch interval

I Very common case: most instruments, most 100ms periods (or
shorter), there is zero trade

I All outstanding orders carry forward to next interval

I Analogous to displayed liquidity in a LOB market



Frequent Batch Auctions: 3 Cases

Case 2: Small amount of trade

I Example: an investor arrives wanting to buy a small amount at
market

I Demand will cross supply at the bottom of the supply curve

I Analogous to trading at the ask in a LOB market



Frequent Batch Auctions: 3 Cases

Case 3: Burst of activity in the interval

I Example: there is public news and many algos respond

I In this case, continuous and discrete are importantly di�erent

I Continuous: process burst of activity based on order of receipt:
competition on speed

I Discrete: process burst of activity using an auction:
competition on price

I Helps liquidity in 2 ways

1. Liquidity providers have until end of interval to adjust their
quotes to re�ect new info

I Being tiny bit slower than competition almost never matters

2. Liquidity providers are protected by the auction: get a market
consensus price based on new info

I No more sniping. Public information induces price
competition, not speed competition
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Equilibrium Costs and Bene�ts of Frequent Batch Auctions

I Bene�ts

I Enhanced liquidity
I Eliminate socially wasteful arms race

I Costs

I Investors must wait until the end of the batch interval to
transact

[see paper for formal equilibrium statements]



Overview

1. The economic case for discrete-time trading

I Financial exchange design that is predominant around the
world � continuous limit order book � is economically �awed

I Flaw: treats time as a continuous variable (serial processing)
I Solution: treat time as a discrete variable, batch process using

an auction. �Frequent batch auctions�.
I Eric Budish, Peter Cramton and John Shim (�BCS�) 2015,

Quarterly Journal of Economics

2. The computational case for discrete-time trading

I Discrete time respects the limits of computers and
communications technology. Not in�nitely fast.

I Bene�ts for exchanges, algo traders, regulators
I Qualitative/informal argument in BCS 2015, would

bene�t greatly from Econ/CS research

3. Other Econ/CS Questions about the Design of Financial Exchanges

I Flash crashes
I Speed vs. Smarts Tradeo�
I Circuit Breakers



Context: Computational Issues in Modern Financal Markets

I Flash Crashes

I 5/6/2010 equity market
I 10/15/2014 US treasury market
I numerous �mini� �ash crashes in individual stocks

I Exchange glitches / outages

I Nasdaq outage Aug 2013
I Facebook IPO glitch May 2012
I CME backlog during treasury �ash crash

I Knight capital coding error (-$440M in 45mins) -> brink of bankruptcy

I Policy controversies with computational component: Data feeds (Flash
Boys), Clock Synchronization



Computational Bene�ts of Discrete Time

I Overall claim/conjecture: discrete-time trading has signi�cant
computational simplicity bene�ts for markets relative to
continuous-time trading.

I I'll describe speci�c bene�ts for:

1. Exchanges
2. Algorithmic Traders
3. Regulators / Market observers

I Main intuition

I Continuous-time markets implicitly assume that computers and
communications technology are in�nitely fast.

I Computers and communications are fast but not in�nitely so.
I Discrete time respects the limits of computers and

communications.

I Caveat: argument is qualitative / informal. Would bene�t
from more formal treatment. (Whole point of this talk is to
encourage such work).



Computational Bene�ts of Discrete Time: Exchanges

I Continuous time: Exchange backlog

I Processing any single order is computationally trivial
I Disseminating any single message is computationally trivial
I Even trivial operations take strictly positive time
I Implication: during surges of activity, backlog and processing delay

(Ex: 10/15/2014)
I Algorithms left uncertain about state of the market and their own

orders, precisely during times of heavy activity

I Discrete time

I Batch auctions are also computationally trivial (O(n log n))
I Can set batch interval to be long relative to realistic worst case

processing time

I Research question: economic consequences of backlog



Computational Bene�ts of Discrete Time: Exchanges

- May 1,2013 WSJ

I Continuous time: message processing details economically
important

I CME: sends �trade updates� before �book updates�.
I Leads to practice of sentinel orders to privately learn about big

price moves before the market as a whole

I Discrete time: can disseminate all messages at economically
the same time.



Computational Bene�ts of Discrete Time: Exchanges

- Aug 22,2013 WSJ

I Continuous time: numerous exchange glitches

I Facebook IPO
I Nasdaq Outage
I Numerous smaller incidents

I Discrete time: exchange programming is simpler in many ways

I Another example: NASDAQ threads all activity across all
symbols through a single core to preserve exact sequence of
events. Unnecessary once time discrete

I Research question: is there a connection between
computational simplicity and these extreme events / glitches?



Computational Bene�ts of Discrete Time: Algorithms

�There are rules you need to follow to write fast code.
Don't touch the kernel. Don't touch main memory . . .
Don't branch.�

-HFT Interview in MacKenzie (2014)

I Basic contrast between continuous time and discrete time

I Continuous time: get one piece of data at a time, respond

I Fundamental tradeo�: speed versus smarts
I How comprehensively does the algo �think� about the

information before responding?

I Discrete time: get a batch of data from time t, make decisions
for time t + 1

I Still have tradeo� speed vs. smarts for thinking that takes
longer than one batch interval

I But �the �rst 100 milliseconds are free!� No cost in terms of
time priority.



Computational Bene�ts of Discrete Time: Algorithms
�It took him 52 seconds to realise what was happening,
something was terribly wrong, and he pressed the red button
... By then we had lost $3 million. ... in another twenty
seconds ... the trading �rm would have been bankrupt, and in
another �fty or so seconds, our clearing broker would have
been bankrupt ... �

-HFT Interview in MacKenzie (2014)

I Research questions

1. How to model speed vs. smarts: seems hard.
2. Are there negative externalities from prioritizing speed >

smarts?
I Dumb/fast decisions will cost the algo money, is there a

broader harm?

3. How is the accuracy of prices a�ected by the speed vs. smarts
tradeo�?

I Prominent HFT's �strobe light� metaphor as argument for
continuous > discrete



Computational Bene�ts of Discrete Time: Regulator

[T]he importance of data is further complicated by the
many sources of data that must be aggregated . . .
Varied data conventions, di�ering methods of
communication, the sheer volume of quotes, orders, and
trades produced each second, and even inherent time lags
based on the laws of physics add yet more complexity.

-SEC/CFTC Flash Crash Report

I Paper Trail (aka audit trail)

I Continuous time: have to adjust the paper trail for

I Relativity
I Exchange latency
I Exchange clock noise

I Non-trivial to �gure out: did event A happen before, after or
same time as event B?

I Discrete time: this becomes trivial



Computational Bene�ts of Discrete Time: Regulator

[T]he importance of data is further complicated by the
many sources of data that must be aggregated . . .
Varied data conventions, di�ering methods of
communication, the sheer volume of quotes, orders, and
trades produced each second, and even inherent time lags
based on the laws of physics add yet more complexity.

-SEC/CFTC Flash Crash Report

I Research question: bene�ts of a clean paper trail

I My own intuition: bene�ts could be large.
I Analogy: value of a website simplifying its user interface can

be large.
I But: also case that this is just simplifying presentation of

information that �sophisticated market participants already
know�.

I Aside: it would be great to have better theory on why UI
design is so important.



Computational Bene�ts of Discrete Time: Regulator
[W]e've been focusing on . . . situations that . . . give elite
groups of traders access to market-moving information at the
expense of the rest of the market. This is what we call Insider
Trading 2.0, and it's one of the greatest threats to public
con�dence in the markets.

-Eric Schneiderman, New York Attorney General

I Symmetric dissemination of public information
I Continuous time

I Technologically infeasible to disseminate info such that all
market participants who wish to receive it at the same time

I Ex 1: Securities Information Processor (SIP) vs. Direct Feed
controversy (Hendershott et al, 2013; Flash Boys)

I Ex 2: SEC's dissemination of public �lings via EDGAR website
(Rogers, Skinner, Zechman)

I Moreover: even if it was technologically possible to
disseminate info to all at exactly the same time, theory model
says that, economically, still asymmetric

I Discrete time: technologically trivial



Overview
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I Speed vs. Smarts Tradeo�
I Circuit Breakers



Flash Crashes

I Q1: what causes a �ash crash?

I Rational outcome given optimizing algos? Mistakes?
I Relationship to speed vs. smarts discussion earlier?
I Note: important to study both the major �ash crashes

(5/6/2010, 10/15/2014) and also the �mini� �ash crashes that
occur much more regularly in individual stocks



Flash Crashes

I Q2: what are the economic consequences of a �ash crash?

I does it matter if prices are wrong for a short period of time?
I is there a potential for a dangerous �feedback loop� if �ash

crash occurs at end of trading day (close to 4pm) rather than
in middle of day?

I do extreme events like �ash crashes a�ect investors' con�dence
/ participation in the market? a�ect the cost of capital?



Flash Crashes

I Q3: are there exchange designs or other rules that could make
exchanges less vulnerable to �ash crashes?

I FBA speci�cally (speculative):

I No sniping -> more liquidity -> less likely that a large order
wipes out the order book

I Discrete time -> more smarts vs. speed -> more likely that
algos will not simply �turn o�� in extreme events but rather
will (smartly) take advantage of them



Circuit Breakers

I Idea: if there's an extreme market move take a �pause� before
resuming trade

I Example: SEC's Limit Up Limit Down mechanism

I Q1: is the basic rationale correct?

I If it takes time to think in duress, why not allow time to think
in quiet times too?

I If argument is in quiet times there is no reason to restrict trade
(mutually voluntary), �ne, why restrict trades in duress?

I Q2: design details

I Related assets. Ex: stocks and ETFs on 8/24/2015
I In context of FBA: if auction clears far from last price, triggers

circuit breaker, do those trades go through or not?



Conclusion

I Recap

I Heart of BCS paper is economic case for frequent batch
auctions

I Eliminate rents from public information (sniping)
I Enhances liquidity, stops socially wasteful arms race

I BCS also make a computational case for frequent batch
auctions

I Arguments informal: no theorems, no data. Included because
of importance of the topic

I Lots of open research questions
I Would naturally bene�t from mix of Econ / CS tools

I Plea

I More generally, there are lots of open questions about the
design of �nancial exchanges.

I Huge, important, markets.
I Many questions will bene�t from market design tools and

approaches. Well worth paying the �xed cost to learn the
relevant institutional details.
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