The **Cryptographic** Lens: visions

Shafi Goldwasser MIT Weizmann

1983

FOREWORD

2 15th Annual , April 25-27, Computability

on January 5, pers. The panticipated that

consideration, nsoring organicontributed to

1983-2013: A Remarkable Journey

Theoretical Computer Science

Interaction, Randomization, Locality

Impact on Technology and Science

The Computational Lens

The Cryptographic Lens

On Theoretical Computer Science

On Science and Technology

Historically

Shannon

"A Mathematical Theory of Communication" (1948)

"A Communication Theory of Secrecy Systems" (1945)

Turing

Inventor of the Universal computing machine Theory and Practice: Breaking the enigma

War Time Research

Modern Cryptography is not (just) about fighting the bad guys

- Enabler of `Surprising Abilities" which often seem paradoxical in the physical world
- Catalyst notions and techniques led to a series of `intellectual' leaps in TOC
- Future enable taking advantage of enormous data availability and global connectivity while keeping "civil liberties" and "economic stability" in check.

"Paradoxical" Abilities 1983-

- Exchanging Secret Messages without Ever Meeting
- Simultaneous Contract Signing Over the Phone
- Generating exponentially long pseudo random strings indistinguishable from random
- Proving a theorem without revealing the proof
- Playing any digital game without referees
- Private Information Retrieval
- Arbitrary Computations on Encrypted Data

Unifying Theme: The Presence of the Adversary

- Integral Part of the Definition of the Problem
- Determines the Quality of Acceptable Solutions
- The Key to Analysis of Complex Systems

The Power of the Adversary

Make no assumptions on the Adversary strategy

Worst Case: Do not assume Adversary is Random

But will assume Computationally Bounded

- Realistic
- Great power: Enlarges the range of Application

"Axiom 1": Computationally Indistinguishablity

If the "Adversary" cannot tell apart two different probability distributions then they are the "same".

Encryption, Pseudo Randomness, Simultaneity, Correctness

Computationally Indistinguishable Encryption

Probability distributions = encryptions of messages.

Encryption Hiding All Partial Information is Possible [GM82]

Computationally Indistinguishable Randomness

Probability Distributions = exponentially long strings which adversary can randomly access

Pseudo Randomness Generation is Possible [BM82,Y82,GGM84]

"Axiom 2": If you can simulate, might as well stay at home

The "insiders view" gives adversary zero knowledge if he can generate computationally indistinguishable "simulated view"

Catalytic Developments 1983-

Classical Proofs

• •

Prime-Number Thm

Exauffipientil Q(//erifi,axb) es Psodo feble

Prover

Claim

Verifier

Solution x1,...,xn

Checks proof

Accept if satisfiable

Hard Working

Polynomial Time in claim size

After interaction, Verifier knows:

- 1) Equation is solvable
- 2) A particular solution

Is there any other way?

I will not give you the solution, but I will prove to you that I could if I felt like it.

Randomness

Interaction

Claim: $y = x^2 \mod N$ is solvable

Consider the two equations

- (1) $z=r^2 \mod n$
- (2) $zy=r^2y \mod n$

If I solved both for you, you would be 100% certain that the claim is true since $\frac{\sqrt{zy}}{\sqrt{z}} = \sqrt{y}$

So, I will only give you a solution to one of the equations.

You choose which!

Chooses at random

which solution to see

Accepts claim he gets the right solutions

 $Prob_{coins}(Verifier catches mistake) \ge 1-(1/2)^k$

Zero Knowledge Interactive Proofs (ZK-IP) [GMR85]

COMPLETENESS: if $x \in I$ Rob will always accept

This is what a proof ultimately is!

ZERO KNOWLEDGE

Many Uses of Zero Knowledge

Lots of Applications to cryptography.. Due to generality

Theorem[GoldreichMicaliWigderson86]:
If One Way Functions exist,
Any NP statement has a ZK interactive proof

Zero Knowledge and Nuclear Disarmament [BarakGlasserGoldstone11]

Catalyst

Decoupled "Correctness" from "Knowledge of the proof"

Ask new questions about nature of proof

Questions have been asked and answered in last 25+ years leading up to current research on cloud computing

Classically: Can Efficiently Verify

	•	$EQ(x_1,,x_n)$
NP		∃solution
Co-NP	?	0 solutions
#P	?	2 ¹⁰⁰ -13 solutions
PSPACE	?	∀∃∀∃

Can you prove more via interactive proofs?

Interactively Provable= IP

[FortnowKarloffLundNissan89, Shamir89]

Other Ways to define probabilistic proof systems?

The Arrival of the Second Prover (MIP)

[BenorGoldwasserKilianWigderson88]

The byence uld two be better than one?

MCarhabeZkrcoksistendge Proofs

For overse concern the concern that it is a second to the concern that it is a second that it is a second to the concern that it is a second to the concern

The Power of the Second Prover (MIP)

[BabaiFortnow Lund90]

claim: \exists solution for > 99% of the equations

$$x_1 + x_2 + x_3 = 1$$
 $x_1 + x_4 + x_7 = 0$

$$x_4 + x_5 + x_6 = 1$$
 $x_1 + x_4 + x_7 = 0$

$$x_7 + x_8 + x_9 = 1$$
 $x_3 + x_6 + x_9 = 0$

x₃+x₆+x₉=0 : NP statements can

Verifie & by reading a uniform of bits Requests from P1: Solution to equation, i.e x_1, x_2, x_7

Requests from P2: Value of variable in equation Far Reaching Consequences to showing

Hardness of approximation.

In a Parallel Universe

Theoerm[ReichardtUngerVazirani13]:

A Classical Verifier Can Verify the Computation of Two Entangled but Non-Communicating BQP Algorithms

The Evolution of Computing

The Evolution of Computing

A Migration of Data

A Migration of Computation

Brave New World...Enormous Potential in Globalization of Knowledge

Challenge 1:

Verify correctness of remote storage/computation

Why trust the server?

Challenge: to delegate P time computation so that Prover's task not much harder than computing

on

Interactive Proof for $L_f = \{(x,y) \text{ s.t. } f(x) = y\}$

IP=PSPACE⇒ any space S algorithm, can be "delegated" to 2^{poly(S)} time prover and verified by poly(S) time verifier

Active Research Area

Model	Computation	Prover Time	Verifier Time
Interactive Proof [GoldwasserKalaiRothlum08]	CKT SIZE S, depth D	poly(S)	Quasi x + D D ROUNDS
Computational Soundness.Assume FHE. [KalaiRazRothblum13]	TIME(T) Turing Machine	Poly(T,k)	Quasi x +poly((log T),k) 1 ROUND Public Key model
Computational Soundness. Stronger Ass. [BitanksiCanettiCiessaTrom13]	NTIME(T) RAM	Poly(T,k)	Quasi x +poly((log T,k) 1 ROUND Public Key Model
Interactive Proof For ε-proximity [RothbVadanWigderson13]	CKT SIZE S, depth D	Poly(ε^{-1} , S)	Sublinear $ x + \varepsilon^{-1}$ D rounds

[BCCGTV13] RAM model analogues
⇒Implementations for C-programs delegation

Challenge 2: Compute on Encrypted Data

Privacy + Functionality?

Fully Homomorphic Encryption (FHE)

[RivestAdelmanDertuzous78, **Gentry09**, BrakerskiVaikuntanathan11]

Hailed tool for computing on encrypted data

But, is it enough?

How FHE works:

FHE is not enough when the evaluator needs to decrypt the computation results.

When would we want to do that?

Example 1: Decrypt for Classification

Need to decrypt "spam filter" result but nothing else!

Example 2: Decrypt for Maintaining both our Civil Liberties & Safety

Need to know if suspect appears in the scene but nothing else!

Example 3: Conduct Medical study on Confidential Medical Information

Need to know if result of the blood test are positive for X, not entire profile!

Filterable Decryption = Functional Encryption

[...BonehSahaiWaters11, O'Neill11]

Allow server to compute partial information f(x) from E(x) but nothing else:

Equitivode in simulate server's view given f(x) even without seeing E[x], on simulate server's view given f(x) even for inner product functions [KSW'08, SSW09];

More generally if you allow a ciphertext E[x] size which as large as f's circuit size [GVW12]

Succinct Filterable Decryption [GoldwasserKalaiPopaVinodZeldovich13]

Theorem:

Succinct Filterable Decryption that supports any polynomial time functions assuming the Sub-Exponential Hardness of Learning with Errors

Succinct:

F is circuit of **depth d** \Rightarrow ciphertexts growing in **d**

Corollary: can address all of the aforementioned examples and ...much more

Corollary: Add function privacy & get ``obfuscation variant''

The Cryptographic Lens

Our Physical world intuition should not constrain out expectation for what is possible for "Digital Privacy"

How can today's Cryptographic methods and fine control of information affect complexity theory of tomorrow?