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1983-2013: A Remarkable Journey

* Theoretical Computer Science

Interaction, Randomization, Locality

* Impact on Technology and Science

The Computational Lens



The Cryptographic Lens

=

On Theoretical Computer Science

=

On Science and Technology



Historically

Shannon
“A Mathematical Theory of Communication”(1948)
“A Communication Theory of Secrecy Systems” (1945)

Turing
Inventor of the Universal computing machine
Theory and Practice: Breaking the enigma

War Time Research



Modern Cryptography
is not (just) about fighting the bad guys

* Enabler of ‘Surprising Abilities” which often seem
paradoxical in the physical world

e Catalyst notions and techniques led to a series of
‘intellectual’ leaps in TOC

* Future enable taking advantage of enormous data

availability and global connectivity while keeping
“civil liberties” and “economic stability” in check.



“Paradoxical” Abilities 1983-

Exchanging Secret Messages without Ever Meeting
Simultaneous Contract Signing Over the Phone

Generating exponentially long pseudo random strings
indistinguishable from random

Proving a theorem without revealing the proof
Playing any digital game without referees
Private Information Retrieval

Arbitrary Computations on Encrypted Data



Unifying Theme:
The Presence of the Adversary
* Integral Part of the Definition of the Problem
 Determines the Quality of Acceptable Solutions

* The Key to Analysis of Complex Systems




The Power of the Adversary ‘

 Make no assumptions on the Adversary strategy

 Worst Case: Do not assume Adversary is Random

» But will assume Computationally Bounded

— Realistic
— Great power: Enlarges the range of Application



“Axiom 1”:
Computationally Indistinguishablity
If the “Adversary” cannot tell apart two different

probability distributions then they are the “same”.

K-BIT STRINGS
sample
K-BIT STRINGS

Encryption, Pseudo Randomness, Simultaneity, Correctness

Any Poly Time Algorithm
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Computationally Indistinguishable
Encryption

Probability distributions = encryptions of messages.

@) w
sample
< /“/
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Any Poly-time Eavesdropper

Encryption Hiding All Partial Information is Possible [GM82]



Computationally Indistinguishable

Randomness

Probability Distributions = exponentially long strings
which adversary can randomly access

RANDOM @
sample

Pseudo (&5
RANDOM e

Pseudo Randomness Generation is Possible [BM82,Y82,GGM84]

Any Poly Time Statistical Test



“Axiom 2”: If you can simulate, might as
well stay at home

The “insiders view” gives adversary zero knowledge if he can
generate computationally indistinguishable “simulated view”
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Catalytic Developments 1983-

. Pseudo
ero '
Random Hard Core Oblivious Techniques
Knowledge Generators , for Average
Proofs Bit Proofs Transfer g
& Functions Case Hardness
Probabilistic De-randomization  List Decoding of Private Random Self
Proof Systems of randomized Hadamard Codes Information Reducability
| complexity classes | Retrieval
Hardness of ‘ Efficient List I
Approximation : Algorithms f
Delegating are un learnable Reed-Solomon ecoaanie &
. codes Codes
Computation | |
to the Cloud Impossibility | _ p ;
| of Lower Explicit Codes which L/nf:ar rate 'codes rope.’r y
Quantum Bounds by achieve the list with sub-linear Testing
Interactive Natural Proofs decoding bound decoding

Experiments




Classical Proofs
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Exdiffigientierifiab) esProlotble

Prover Claim Verifier
o= Checks proof
6 Solu*pi(@a,p(h.,,xn Accept if
" satisfiable
Hard Working Polynomial Time in
claim size

After interaction, Verifier knows:

Is there any
other way?

1) Equation is solvable

2) A particular solution



| will not give you
the solution, but |
will prove to you

that | could if | felt
like it.

Randomness

Interaction



Claim:y =x? mod N is solvable

Consider the two equations \

(1) z=r* mod n

(2) zy=r’y mod n

If | solved both for you, you would
be 100% certain that the claim is
true since V?2Y — \/g

4
So, | will only give you a solution

to one of the equations. 27?7

Qau choose which! /

which solution to see

[ Chooses at random (i .
Accepts claim
he gets the

nght solutions

Prob,..(Verifier catches mistake)= 1-( 1/2 )




Zero Knowledge Interactive Proofs (ZK-IP)

[GMRS85]
"x in L?"
Prover Verifier
< — ql
é al X Randomized

4 q2 Polynomial time

- Accepts or Rejects
claim

COMP]| ETENESS: if x =1 Rabh will nlwave arcent

This is what a proof ultimately is!

ZERO KNOWLEDGE



Many Uses of Zero Knowledge

Lots of Applications to cryptography..
Due to generality

Theorem|[GoldreichMicaliWigderson86]:
If One Way Functions exist,
Any NP statement has a ZK interactive proof

/Zero Knowledge and Nuclear Disarmament
[BarakGlasserGoldstonel1]



Catalyst

Decoupled “Correctness” from “Knowledge of
the proof”

Ask new questions about nature of proof

Questions have been asked and answered in
last 25+ years leading up to current research on
cloud computing



Classically: Can Efficiently Verify

EQ(x,...X,)
NP / 3 solution
Co-NP ? O solutions
#P ? 2109-13 solutions
PSPACE  / vav..3

Can you prove more via interactive proofs?



Interactively Provable=IP
[FortnowKarloffLundNissan89, Shamir89]

v

N ety
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#P Accept/
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PSPACE ‘/
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Other Ways to define probabilistic proof systems?



The Arrival of the Second Prover (MIP)

[BenorGoldwasserKilianWigderson88]

Co-N P/ ; g

Thebyamauld two be better than one?
Ml8rhekelZ&rmolsistendyge Proofs

F pr &t cengeinditiginbifydeviate



The Power of the Second Prover (MIP)

NP

Co-NP /
s
PSPACEY
NEXPTIME

[BabaiFortnow
Lund90]

P claim

claim: 3 solution for > 99% of the equations
) X1 HX,+X5=1 X1 +X,+X,=0
X, +Xs+X=1 X;+X,+X,=0
 XHXetXg=1 X3 +Xg+Xg=0 .
LU PP tneorem. I\JI" deLEIHEHLb cCdan

\)/e‘ihﬁééleb? REINEEEdStant number of bits

Requests from P1: Solution to equation, i.e X;,X,,X-

I{Reqhests rom EZ:VaIue of variable in equation
dal heacning consequences to SNoOwINg

Rardness @harpsRxipaton.




In a Parallel Universe

Quantum Provers

SERCELR P

correctness Quantum Verifier

Classical Veriﬁewr

1t tion P .
ﬁ%ﬁ%ﬁe@gj ﬁon a | % \
|1 &5BIdd) \Kevilff€r3 | \
[AharonovBenorEban10; P, / _
Accept/reject

Theoerm[ReichardtUngerVaziranil3]:
A Classical Verifier Can Verify the Computation of Two
Entangled but Non-Communicating BQP Algorithms



The Evolution of Computing




The Evolution of Computing




A Migration of Data

Hjhfifh jjjh jh jhihj
Hijhfifh jjjh jh jhihj

Hijhfifh jjih jh jhihj
Hjhfifh jjih jh jhjhj
Hjhfifh jjih jh jhihj




A Migration of Computation




Brave New World...Enormous Potential
in Globalization of Knowledge

Can we do it all o
Without relinquish of control



Challenge 1.:

Verify correctness of remote storage/computation

Program: f Client
N \

Why trust the server?



Challenge: to delegate P time computation so that
Prover’s task not much harder than computing

on

Relatively very
efficient « efficient

N \

f(x)=y
+
‘Proof that f(x)=y

1)Compute Program f
2) Prove Results

S

Interactive Proof for L={(x,y) s.t. f(x)=y}

Accept or

IP=PSPACE= any space S algorithm, can be “delegated” to
2°PoV(S) time prover and verified by poly(S) time verifier




Active Research Area

[ input x ]

N

S S s

f(x)

Program f

Prooh——,

-

Interactive Proof
[GoldwasserKalaiRothlum08]

Computational
Soundness.Assume FHE.
[KalaiRazRothblum13]

Computational Soundness.
Stronger Ass.
[BitanksiCanettiCiessaTrom13]

Interactive Proof For
€-proximity
[RothbVadanWigderson13]

Computation

CKT SIZE S,
depth D

TIME(T)
Turing Machine

NTIME(T)
RAM

CKT SIZE S,
depth D

Prover Time

poly(S)

Poly(T,k)

Poly(T,k)

Poly(e71, S)

Verifier Time

Quasi |x|+ D
D ROUNDS

Quasi |x|+poly((log T),k)
1 ROUND
Public Key model

Quasi | x| +poly((log T,k)
1 ROUND
Public Key Model

Sublinear |x| + €71
D rounds

[BCCGTV13] RAM model analogues
= Implementations for C-programs delegation




Challenge 2:
Compute on Encrypted Data

Program: f Input Data: x
\

: Encyx)
= y, Encfte))

Privacy =l= Functionality?

Client

v




Fully Homomorphic Encryption (FHE)

[RivestAdelmanDertuzous78, Gentry09,
BrakerskiVaikuntanathanl11]

Input Data: x
. E[x,] E[]..E[x ] P

Evaluator f ﬁ]ﬁ}

<€

Client

~ E[f (XXX, )]

>

Hailed tool for computing on encrypted
data



But, is it enough?

How FHE works:

Input Data: x
\ A\ E[x,] E[x,]...E[x,]

FHE.Evaluato S ﬁ}i}

S

Client

E[f (Xy,%5,-.0%, )]

>

FHE is not enough when the evaluator needs
to decrypt the computation results.

When would we want to do that?



Example 1: Decrypt for Classification

Sender

;i;;i) Zﬂfmnaﬁﬂ)

Eval of
spam filter

Spam filter

A

—> Spam?

Receiver

Elemail

=P Need to decrypt “spam filter” result but nothing

else!l



Example 2: Decrypt for Maintaining both our
Civil Liberties & Safety

Snap Suspect Data Base Law and
Order
e | en
comparison suspect is
to suspect in photo
face >
O\/

=» Need to know if suspect appears in the scene but
nothing else!



Example 3: Conduct Medical study on
Confidential Medical Information

Laboratory Drug Company Make new
gene therapy

YR EKY ] eao N

algorithm Tally (- Hhv

checking for
gene
presence

E(medical file) positive
>

7 |

=P Need to know if result of the blood test are positive
for X, not entire profile !



Filterable Decryption = Functional Encryption
[...BonehSahaiWaters11, O’Neill11] ‘%,

Allow server to compute partial information f(x) from E(x)
but nothing else:

N \ Skf
: —_—
Using Skf Master
Server can
E[X] Key
compute f(x) .“

heavis bodelisiean simulate server’s view given f(x) even
For inner pro\gbt&%ﬁwsc%%ﬂg[@@\/@& SSW09];

More generally if you allow a ciphertext E[x] size which as
large as f’s circuit size [GVW12]




Succinct Filterable Decryption
[GoldwasserKalaiPopaVinodZeldovich13]

Theorem:

Succinct Filterable Decryption that supports

any polynomial time functions assuming the
Sub-Exponential Hardness of Learning with Errors

Succinct:
F is circuit of depthd =
ciphertexts growing in d

Corollary: can address all of the aforementioned examples
and ...much more

Corollary: Add function privacy & get "obfuscation variant”



The Cryptographic Lens

Our Physical world intuition should not
constrain out expectation for
what is possible for “Digital Privacy “

Sy

How can today’s Cryptographic methods and
fine control of information affect complexity
theory of tomorrow?



