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Growth in on-line systems where users have long visible lifetimes
and set long-range goals.

@ Reputation, promotion, status, individual achievement.

How should we model individual decision-making in these settings
with long-range planning?
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Structural framework for analysis: state space of activities.
@ User lifetimes correspond to trajectories through state space.

@ Effort incurs cost, leads to rewards.

On-line domain: badges and related incentives as reward systems.
@ Social-psychological dimensions [Antin-Churchill 2011]
@ Game-theoretic [Deterding et al 2011, Easley-Ghosh 2013]
@ Contest/auction-based [Cavallo-Jain 12, Chawla-Hartline-Sivan 12]



Model the interaction of incentives and long-range planning
in state spaces representing actions on site.
(1) Cumulative rewards: milestones for effort
[Anderson-Huttenlocher-Kleinberg-Leskovec ]
@ A basic model of an individual working toward long-range rewards.
@ Exploration of the model on StackOverflow

@ Experiments with MOOC forums on Coursera
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in state spaces representing actions on site.
(1) Cumulative rewards: milestones for effort
[Anderson-Huttenlocher-Kleinberg-Leskovec ]
@ A basic model of an individual working toward long-range rewards.
@ Exploration of the model on StackOverflow

@ Experiments with MOOC forums on Coursera

(2) Incentives and planning with time-inconsistent behavior
[Kleinberg-Oren ]
@ Start from principles in behavioral economics
[Strotz 1955, Pollak 1968, Akerlof 1991, Laibson 1997]

@ Develop a graph-theoretic model to represent planning as
path-finding with a behavioral bias.



First Domain for Analysis: Stack Overflow
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Connected components in a graph with 100 million nodes

Move apps to the cloud Windows Azure
without rewriting code.
Once you get it, you'll get it.

. 1am trying to get the list of connected components in a graph with 100 million nodes. For smaller
graphs, | usually use the connected_components function of the Networkx module in Python which does
1 exactly that. However, loading a graph with 100 million nodes (and their edges) into memory with this
W module would require ca. 110GB of memory, which | don't have. An alternative would be ta use a graph
database which has a connected components function but | haven't found any in Python. It would seem
that Dex (API: Java, .NET, C++) has this functionality but I'm not 100% sure. Ideally I'm looking for a
solution in Python. Many thanks.

python graph
share | improve this question asked Jun 1312 at 13:48
user1453508
2784
1 Answer acive  oldest | votes

. SciPy has a connected components algorithm. It expects as input the adjacency matrix of your graph in
one of its sparse matrix formats and handles both the directed and undirected cases.

~gr Building a sparse adjacency matrix from a sequence of (i, j) pairs adj_list where i and j
are (zero-based) indices of nodes can be done with



Basic Model

A population of users and
a site designer.

@ Designer wants
certain frequency of
activites.

@ Designer creates
badges, which have
value to users.
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Our Model

@ Action types A1, Az, ..., A, 6
(ask, answer, vote, off-site, ...)

@ User's state is n-dimensional.
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@ User exits system with probability !
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action type 1
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to optimize utility U(xa).
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@ Action types A1, Az, ..., A, 6
(ask, answer, vote, off-site, ...)

@ User's state is n-dimensional.

action type 2

@ User has preferred distribution p
over action types. 2

@ User exits system with probability !

6 > 0 each step. 12 3 4 5 6 7 8 9 10 1 12
action type 1

@ Each badge b is a monotone subset of the state space;
reward Vj, is conferred when the user enters this subset.

@ User can pick distribution x # p to get badge more quickly;
comes at a cost g(x, p).

@ User optimization: Choose xa = (X, ...,x7) in each state a
to optimize utility U(xa).

Z Vp — (Xaap)+ 1_5 ZX Xa+ei)

b won
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A One-Dimensional Version
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Example: Badge at 25 actions of type 1.

@ Canonical behavior: user “steers” in A; direction;
then resets after receiving the badge.



Evaluating Qualitative Predictions

Civic Duty Electorate
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Questions related to badge-based incentives:

@ The Badge Placement Problem:
Given a desired mixture of actions, how should one define badges to
(approximately) induce these actions?

@ How do badges derive their value?
Social / Motivational / Transactional?



An Experiment on Coursera

Connorelly #2814 1 1-2months ago %

Badge ladder:

Badge Series (2 earned)
BRONZE SILVER GOLD DIAMOND
The Reader

To earn the next badge (Silver), you must read 30
threads from your classmates.

aﬂ
The Supporter a a a
To earn the next badge (Siiver), you must vote on 15
posts that you find interesting or useful.
The Contributor a a
To earn the next badge (Bronzs), you must post 3

replies that your classmates find interesting.

The Conversation Starter a a a a
To eam the next badge (Bronze), you must start 3 ] L] ]
threads that your classmates find interesting.

Top Posts a a a a

To eam the next badge (Bronze), you must wite a post
that gets 5 upvotes from your classmates.



Planning and Time-Inconsistency

Tacoma Public School System

Our models thus far:
@ Plans are multi-step.

@ Agents chooses optimal sequence given costs and benefits.

What could go wrong?
@ Costs and benefits are unknown, and/or genuinely changing over time.

@ Time-inconsistency.



Planning and Time-Inconsistency

GYM MEMBERSHIP
ONLY £19.95

Getyour gym only
membership for just £19.95
a month and no contract.
Now there’s a better way to
keep fit.

Join online today >>

Our models thus far:
@ Plans are multi-step.

@ Agents chooses optimal sequence given costs and benefits.

What could go wrong?
@ Costs and benefits are unknown, and/or genuinely changing over time.

@ Time-inconsistency.



Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next n days.

@ One-time effort cost ¢ to ship it.

@ Loss-of-use cost x each day hasn't been shipped.
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Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next n days.

@ One-time effort cost ¢ to ship it.

@ Loss-of-use cost x each day hasn't been shipped.

An optimization problem:
@ If shipped on day t, cost is ¢ + tx.

@ Goal: min c + tx.
1<t<n

o Optimized at t =1,

In Akerlof’s story, he was the agent, and he procrastinated:
@ Each day he planned that he'd do it tomorrow.

o Effect: waiting until day n, when it must be shipped, and
doing it then, at a significantly higher cumulative cost.
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A model based on present bias [Akerlof 91; cf. Strotz 55, Pollak 68]

@ Costs incurred today are more salient: raised by factor b > 1.

On day t:
@ Remaining cost if sent today is bc.
@ Remaining cost if sent tomorrow is bx + c.
@ Tomorrow is preferable if (b —1)c > bx.



Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next n days.

@ One-time effort cost ¢ to ship it.
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@ Loss-of-use cost x each day hasn't been shipped.

A model based on present bias [Akerlof 91; cf. Strotz 55, Pollak 68]

@ Costs incurred today are more salient: raised by factor b > 1.

On day t:
@ Remaining cost if sent today is bc.
@ Remaining cost if sent tomorrow is bx + c.
@ Tomorrow is preferable if (b —1)c > bx.

General framework: quasi-hyperbolic discounting [Laibson 1997]
@ Cost/reward c realized t units in future has present value 8§‘c
@ Special case: 6 =1, b= "1, and agent is naive about bias.

@ Can model procrastination, task abandonment [O'Donoghue-Rabin08],
and benefits of choice reduction [Ariely and Wertenbroch 02,
Kaur-Kremer-Mullainathan 10]



Cost Ratio

Join online today >>

Cost ratio:

Cost incurred by present-biased agent
Minimum cost achievable

Across all stories in which present bias has an effect,
what's the worst cost ratio?

max _ cost ratio(S).
stories S
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A Graph-Theoretic Framework
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Use graphs as basic structure to represent scenarios.
@ Agent plans to follow cheapest path from s to t.

@ From a given node, immediately outgoing edges have costs
multplied by b > 1.
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Use graphs as basic structure to represent scenarios.
@ Agent plans to follow cheapest path from s to t.

@ From a given node, immediately outgoing edges have costs
multplied by b > 1.



A Graph-Theoretic Framework
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Use graphs as basic structure to represent scenarios.
@ Agent plans to follow cheapest path from s to t.

@ From a given node, immediately outgoing edges have costs
multplied by b > 1.



Example: Akerlof’s Story as a Graph
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Node v; = reaching day i without sending the package.



Paths with Rewards
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Variation: agent only continues on path if cost < reward at t.
@ Can model abandonment: agent stops partway through a
completed path.

@ Can model benefits of choice reduction: deleting nodes can
sometimes make graph become traversable.
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Variation: agent only continues on path if cost < reward at t.
@ Can model abandonment: agent stops partway through a
completed path.

@ Can model benefits of choice reduction: deleting nodes can
sometimes make graph become traversable.
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Variation: agent only continues on path if cost < reward at t.
@ Can model abandonment: agent stops partway through a
completed path.

@ Can model benefits of choice reduction: deleting nodes can
sometimes make graph become traversable.



A More Elaborate Example

<D, Cro ()
D, D, @D, G

Coy——Cr——C——(D

Three-week short course with two projects.
@ Reward of 16 from finishing the course.
@ Effort cost in a given week: 1 from doing no project, 4 from doing one,
9 from doing both.
@ v;; = the state in which / weeks of the course are done and
the student has completed j projects.
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A More Elaborate Example

Three-week short course with two projects.
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@ Effort cost in a given week: 1 from doing no project, 4 from doing one,
9 from doing both.
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© Analyzing present-biased behavior via shortest-path problems.
@ Characterizing instances with high cost ratios.

© Algorithmic problem: optimal choice reduction to help
present-biased agents complete tasks.

@ Heterogeneity: populations with diverse values of b.



A Bad Example for the Cost Ratio

Cost ratio can be roughly b”, and this is essentially tight.
(n = #nodes.)

Can we characterize the instances with exponential cost ratio?

@ Goal, informally stated: Must any instance with large cost
ratio contain Akerlof’s story as a sub-structure?



Characterizing Bad Instances via Graph Minors

Graph H is a minor of graph G if
we can contract connected subsets of G into “super-nodes”
so as to produce a copy of H.

@ In the example: G has a K4-minor.
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Characterizing Bad Instances via Graph Minors

The k-fan Fj: the graph consisting of a
k-node path, and one more node that
all others link to.

For every A > 1 there exists € > 0 such that

if the cost ratio is > \”,

then the underlying undirected graph of the instance
contains an Fy-minor for k = en.

In subsequent work, tight bound by Tang et al 2015.



Sketch of the Proof

@ The agent traverses a path P as it tries to reach t.

@ Let the rank of a node on P be the logarithm of its dist. to t.

@ Show that every time the rank increases by 1, we can
construct a new path to t that avoids the traversed path P.
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Choice Reduction

Choice reduction problem: Given G, not traversable by an agent,
is there a subgraph of G that is traversable?

@ Our initial idea: if there is a traversable subgraph in G,
then there is a traversable subgraph that is a path.

@ But this is not the case.
Results:
@ A characterization of the structure of minimal traversable subgraphs.
@ NP-completeness [Feige 2014, Tang et al 2015]
@ Open: Approximation by slightly increasing reward and deleting nodes?
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Questions
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Number of A actions

Number of A; actions

Reward systems are a key part of the design space.

Where does the value reside in rewards for long-range planning?

Social, motivational, transactional, ... ?

Sophisticated agents: aware of their own time-inconsistency
[O’'Donoghue-Rabin 1999]

How to incorporate sophisticated agents in graph-theoretic model?
[Kleinberg-Oren-Raghavan, 2015]

Multi-player settings: interactions between agents with varying levels of

bias and sophistication.

Connect these ideas back to models and data for badge design.

[Easley-Ghosh13, Anderson et al 13, Immorlica et al 15]



