Nondeterministic extensions of the Strong

Exponential Time Hypothesis and
consequences for non-reducibility

Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan
Mikhailin, Ramamohan Paturi, Stefan Schneider

ucsD

2015

1/50

Fine-Grained Hardness

@ For many problems progress has stalled:

Fine-Grained Hardness

@ For many problems progress has stalled:
e Edit Distance in Q(n?) [WagnerFischer74]

Fine-Grained Hardness

@ For many problems progress has stalled:

o Edit Distance in (n?) [WagnerFischer74]
e 3-suMin Q(n?)

Fine-Grained Hardness

@ For many problems progress has stalled:
e Edit Distance in Q(n?) [WagnerFischer74]
e 3-suMmin Q(m?)
o CKT-SAT in Q(2")

Fine-Grained Hardness

@ For many problems progress has stalled:
Edit Distance in Q(n?) [WagnerFischer74]
3-suM in Q(r?)

CKT-SAT in Q(2")

3-Points-On-a-Line in Q(n?)

Fine-Grained Hardness

@ For many problems progress has stalled:
e Edit Distance in Q(n?) [WagnerFischer74]
e 3-suMmin Q(m?)
o CKT-SAT in Q(2")
e 3-Points-On-a-Line in Q(r?)

@ Proving these lower bounds seems out of reach

Fine-Grained Hardness

@ For many problems progress has stalled:

o Edit Distance in (n?) [WagnerFischer74]

e 3-SUM in Q(n?)

e CKT-SAT in Q(2") 5

e 3-Points-On-a-Line in Q(n?)
@ Proving these lower bounds seems out of reach
@ Goal: Explain bounds from common principle

Conditional Lower Bounds

@ Conditional lower bounds are an attempt to tackle the
problem

Conditional Lower Bounds

@ Conditional lower bounds are an attempt to tackle the
problem

@ Relate hard problems by reductions that respect resources

Conditional Lower Bounds

@ Conditional lower bounds are an attempt to tackle the
problem

@ Relate hard problems by reductions that respect resources
@ Goal 1: Explain hardness of as many problems as possible

Conditional Lower Bounds

@ Conditional lower bounds are an attempt to tackle the
problem

@ Relate hard problems by reductions that respect resources
@ Goal 1: Explain hardness of as many problems as possible
@ Goal 2: Explain hardness using a common principle

Important Conjectures: 3-Sum

@ 3-suM: Given nintegers ay,...,an € [-M, M| find i,j, k
suchthata; +a; +ax =0

Important Conjectures: 3-Sum

@ 3-suM: Given nintegers ay,...,an € [-M, M| find i,j, k
suchthata; +a; +ax =0

@ Simple algorithm: O(n?)

Important Conjectures: 3-Sum

@ 3-suM: Given nintegers ay,...,an € [-M, M| find i,j, k
suchthata; +a; +ax =0

@ Simple algorithm: O(n?)

@ Fastest known algorithms: O(n?/ polylog n) [BDP0S,
GP14]

Important Conjectures: 3-Sum

@ 3-suM: Given nintegers ay,...,an € [-M, M| find i,j, k
suchthata; +a; +ax =0

@ Simple algorithm: O(n?)

@ Fastest known algorithms: O(n?/ polylog n) [BDP0S,
GP14]

@ 3-SUM conjecture: There is no O(n?~¢) algorithm for
3-Sum

Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®)

Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®)
@ Fastest known algorithms: O(n®/2V'°97) [W14]

Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®)
@ Fastest known algorithms: O(n®/2V'°97) [W14]

@ All-pairs shortest path conjecture: There is no O(n®—¢)
algorithm for APSP

Important Conjectures: Strong Exponential Time

Hypothesis

@ k-SAT: Given a k-CNF, find a satisfying assignment

Important Conjectures: Strong Exponential Time

Hypothesis

@ k-SAT: Given a k-CNF, find a satisfying assignment
@ Brute force: O(2")

Important Conjectures: Strong Exponential Time

Hypothesis

@ k-SAT: Given a k-CNF, find a satisfying assignment
@ Brute force: O(2")
@ Fastest known algorithm: O(2('=%©)") [PPSZ98]

Important Conjectures: Strong Exponential Time

Hypothesis

@ k-SAT: Given a k-CNF, find a satisfying assignment
@ Brute force: O(2")
@ Fastest known algorithm: O(2('=%©)") [PPSZ98]

@ Strong Exponential Time Hypothesis: For every s > 0,

there is a k such that k-SAT cannot be solved in time
o(1-s)n

Conditional Lower Bounds

3-SUM

Conditional Lower Bounds

3-SUM

Vector Orthogonality

Edit Distance

Conditional Lower Bounds

3 Points on Line
Polygon Containment

Vector Orthogonality

Edit Distance

Conditional Lower Bounds

3 Points on Line
Polygon Containment

Vector Orthogonality Negative Triangle

Edit Distance Graph Diameter

Conditional Lower Bounds

3 Points on Line
Polygon Containment

3 -SUM

Vector Orthogonality Negative Triangle

Edit Distance <—m APSP Graph Diameter

‘ Zero Weight Triangle ‘

Conditional Lower Bounds

Vector Orthogonality
Edit Distance

3 Points on Line
Polygon Containment

‘ Zero Weight Triangle ‘

Single-Source Flow
Triangle Collection

Negative Triangle
Graph Diameter

Conditional Lower Bounds

] Other Problems \

3 Points on Line
Polygon Containment

Vector Orthogonallty
Edit Distance

SETH

Negative Triangle
Graph Diameter

‘ Zero Weight Triangle ‘

/

Single-Source Flow
Triangle Collection

Conditional Lower Bounds

3 Points on Line
Polygon Containment

] Other Problems \

Vector Orthogonality
Edit Distance

Negative Triangle
Graph Diameter

‘ Zero Weight Triangle ‘

Single-Source Flow
Triangle Collection

Conditional Lower Bounds

] Other Problems \

3 Points on Line
Polygon Containment

N

Vector Orthogonality
Edit Distance

3 -SUM

Negative Triangle

APSP Graph Diameter

‘ Zero Weight Triangle ‘

/

Single-Source Flow
Triangle Collection

Conditional Lower Bounds

Max Flow
Min-Cost Max-Flow
Hitting Set
First-Order Properties

3 Points on Line
Polygon Containment

Vector Orthogonality
Edit Distance

3 -SUM

‘ Zero Weight Triangle ‘

/

Single-Source Flow
Triangle Collection

Negative Triangle
Graph Diameter

'APSP|

Fine-Grained Reductions

@ Formalized in [VWW10]

Fine-Grained Reductions

@ Formalized in [VWW10]
@ Fine-grained reduction from (L4, T1) to (Lp, T>)

Fine-Grained Reductions

@ Formalized in [VWW10]
@ Fine-grained reduction from (L4, T1) to (Lp, T>)
@ Turing reduction that respects resources

Fine-Grained Reduction

Ly

0/1

Fine-Grained Reduction

0/1

Fine-Grained Reduction

0/1

Fine-Grained Reduction

0/1

Fine-Grained Reduction

0/1

Fine-Grained Reduction

0/1

Fine-Grained Reduction

0/1

Fine-Grained Reduction

0/1

Proof Idea

Lemma (Basic Idea)

Every SETH-hard problem has property X. 3-sum and APSP
do not have property X.

10/50

NSETH

Nondeterministic Strong Exponential Time Hypothesis

For every s > 0, there is a k such that k-SAT cannot be solved
in co-nondeterministic time 2(1-9)"

11/50

Property X

Det. | Nondet. | Co-Nondet. | X | Example

T Ti-< T yes CNF-SAT

T T Ti—= yes DNF-TAUT

T T T yes | Exact-Max-SAT
T T1—= Tl—= no 3-suMm

12/50

Property X

Assuming NSETH, any problem that is SETH-hard with time T
under deterministic reductions either

@ Cannot be solved in nondeterministic time T(1-9)
@ Cannot be solved in co-nondeterministic time T(1—S)

13/50

Property X

x e Ly

0/1

14/50

Property X

X e L4

[~
Nondeterministic
bits

0/1

14/50

Property X

X e L4

[~
Nondeterministic
bits

0/1

14/50

Property X
X Q L1

[~
Nondeterministic
bits

0/1

14/50

@ —NSETH implies interesting circuit lower bounds

15/50

@ —NSETH implies interesting circuit lower bounds

@ Problems with fast nondeterministic and
co-nondeterministic algorithms (—X)

15/50

@ —NSETH implies interesting circuit lower bounds

@ Problems with fast nondeterministic and
co-nondeterministic algorithms (—X)

@ First-order graph properties

15/50

—SETH and —NSETH Imply Circuit Lower Bounds

The work of [JVM13] uses a two-part strategy to show
—-SETH = Circuit Lower Bounds:

@ A tight implication from C-CKT-SAT algorithms to C lower
bounds
@ Decomposition of C-circuits into \/ CNF form
““NSETH = Circuit Lower Bounds” is implicit in [JVM13],

following from their technical contributions and the proofs of
[Williams 2013].

16/50

—SETH and -NSETH are Algorithmic

@ ETH is false: for every € > 0, 3-SAT is in time 2¢"

17/50

—SETH and -NSETH are Algorithmic

@ ETH is false: for every € > 0, 3-SAT is in time 2¢"

@ SETH is false: there is a § < 1 such that for every k, k-SAT
is in time 297

17/50

—SETH and -NSETH are Algorithmic

@ ETH is false: for every € > 0, 3-SAT is in time 2¢"

@ SETH is false: there is a § < 1 such that for every k, k-SAT
is in time 297

@ NETH is false: for every e > 0,3-TAUT is in
nondeterministic time 2"

17/50

—SETH and -NSETH are Algorithmic

@ ETH is false: for every € > 0, 3-SAT is in time 2¢"

@ SETH is false: there is a § < 1 such that for every k, k-SAT
is in time 297

@ NETH is false: for every e > 0,3-TAUT is in
nondeterministic time 2"

@ NSETH is false: there is a § < 1 such that for every
k, k-TAUT is in nondeterministic time 27

17/50

Reducing C-CKT-SAT to k-SAT?

For C:

@ Linear-size circuits
@ Linear-size series-parallel circuits

There are decompositions: VC € C, we have C =\/ CNFy.
Execute the faster k-SAT algorithm on each “leaf” of the
decomposition.

18/50

@ The following problems have fast nondeterministic and
co-nondeterministic algorithms:

19/50

@ The following problems have fast nondeterministic and
co-nondeterministic algorithms:

o Max-Flow (O(m))

19/50

@ The following problems have fast nondeterministic and
co-nondeterministic algorithms:
o Max-Flow (O(m))
e Min-Cost Max Flow (O(m))

19/50

@ The following problems have fast nondeterministic and
co-nondeterministic algorithms:
o Max-Flow (O(m))
e Min-Cost Max Flow (O(m))
e 3-suM (O(n?/2))

19/50

@ The following problems have fast nondeterministic and
co-nondeterministic algorithms:

Max-Flow (O(m))

Min-Cost Max Flow (O(m))

3-suM (O(n?/2))

All-Pairs Shortest Path (O(n?99))

19/50

Maximum Flow Problem

2/2

3/3

'Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Max_flow.svg#/media/File:Max-flow:svg
20/50

Maximum Flow Problem

@ Is there a flow of value at least k

21/50

Maximum Flow Problem

@ Is there a flow of value at least k
@ Fastest known algorithm: O(mn) [Orlin13]

21/50

Maximum Flow Problem

@ Is there a flow of value at least k
@ Fastest known algorithm: O(mn) [Orlin13]

° b(m) approximation algorithms for undirected case
[KLOS14]

21/50

Maximum Flow Problem

@ Is there a flow of value at least k
@ Fastest known algorithm: O(mn) [Orlin13]

° b(m) approximation algorithms for undirected case
[KLOS14]

@ Can we prove a Q(mn) lower bound under SETH?

21/50

Maximum Flow Problem

@ There is a O(m) nondeterministic algorithm

22/50

Maximum Flow Problem

@ There is a O(m) nondeterministic algorithm

@ There is a O(m) co-nondeterministic algorithm
(Min-cut/Max-flow theorem)

22/50

Maximum Flow Problem

@ There is a O(m) nondeterministic algorithm

@ There is a O(m) co-nondeterministic algorithm
(Min-cut/Max-flow theorem)

@ Max-Flow is not SETH-hard at time O(m'*<) under
deterministic reductions (assuming NSETH)

22/50

Maximum Flow Problem

@ There is a O(m) nondeterministic algorithm

@ There is a O(m) co-nondeterministic algorithm
(Min-cut/Max-flow theorem)

@ Max-Flow is not SETH-hard at time O(m'*<) under
deterministic reductions (assuming NSETH)

@ Disproving this statement implies new lower bounds for
linear size circuits

22/50

Min-Cost Maximum Flow Problem

@ Edges have a capacity and a cost per unit flow

23/50

Min-Cost Maximum Flow Problem

@ Edges have a capacity and a cost per unit flow

@ Is there a flow of value more than k or of value k and cost
at most ¢?

23/50

Min-Cost Maximum Flow Problem

@ Edges have a capacity and a cost per unit flow

@ Is there a flow of value more than k or of value k and cost
at most ¢?

e Fastest algorithm: O(m?) [Orlin88]

23/50

Min-Cost Maximum Flow Problem

@ Edges have a capacity and a cost per unit flow

@ Is there a flow of value more than k or of value k and cost
at most ¢?

e Fastest algorithm: O(m?) [Orlin88]

@ Special cases: Max-Flow, Min-Cost Perfect Bipartite
Matching

23/50

Min-Cost Maximum Flow Problem

@ Simple O(m) nondeterministic algorithm

24/50

Min-Cost Maximum Flow Problem

@ Simple O(m) nondeterministic algorithm

@ O(m) co-nondeterministic algorithm based on Klein’s cycle
canceling algorithm:

24/50

Min-Cost Maximum Flow Problem

@ Simple O(m) nondeterministic algorithm

@ O(m) co-nondeterministic algorithm based on Klein’s cycle
canceling algorithm:

e There is a flow of the same value and smaller cost if and
only if there is a negative cost cycle in the residual graph

24/50

Min-Cost Maximum Flow Problem

@ Simple O(m) nondeterministic algorithm

@ O(m) co-nondeterministic algorithm based on Klein’s cycle
canceling algorithm:
e There is a flow of the same value and smaller cost if and
only if there is a negative cost cycle in the residual graph
e Co-Nondeterministic O(m) algorithm for negative cycles

24/50

Certifying Negative Cycles

@ Co-nondeterministic algorithm follows from properties
Bellman-Ford algorithm

25/50

Certifying Negative Cycles

@ Co-nondeterministic algorithm follows from properties
Bellman-Ford algorithm

@ Potential: p: V — R such that for all
(u,v) € Ep(u) + I(u, v) = p(v)

25/50

Certifying Negative Cycles

@ Co-nondeterministic algorithm follows from properties
Bellman-Ford algorithm

@ Potential: p: V — R such that for all
(u,v) € Ep(u) + I(u, v) = p(v)

@ There is a negative weight cycle if and only if there is no
potential

25/50

Min-Cost Maximum Flow Problem

@ Nondeterministically guess the min-cost max flow

26/50

Min-Cost Maximum Flow Problem

@ Nondeterministically guess the min-cost max flow
@ Certify that it is a max flow by guessing a cut

26/50

Min-Cost Maximum Flow Problem

@ Nondeterministically guess the min-cost max flow
@ Certify that it is a max flow by guessing a cut
@ Certify that it is minimum cost by guessing a potential

26/50

Min-Cost Maximum Flow Problem

@ Nondeterministically guess the min-cost max flow

@ Certify that it is a max flow by guessing a cut

@ Certify that it is minimum cost by guessing a potential
@ Time complexity: O(m)

26/50

Min-Cost Maximum Flow Problem

@ Min-Cost Max-Flow is not SETH-hard at time O(m'*)
under deterministic reductions (assuming NSETH)

27/50

Min-Cost Maximum Flow Problem

@ Min-Cost Max-Flow is not SETH-hard at time O(m'*)
under deterministic reductions (assuming NSETH)

@ Disproving this statement implies new lower bounds for
linear size circuits

27/50

Co-Nondeterministic List and Count Algorithm

@ Embed original problem into one that is much easier, but
may have some false positive solutions

28/50

Co-Nondeterministic List and Count Algorithm

@ Embed original problem into one that is much easier, but
may have some false positive solutions

@ Nondeterministically list all false positives

28/50

Co-Nondeterministic List and Count Algorithm

@ Embed original problem into one that is much easier, but
may have some false positive solutions

@ Nondeterministically list all false positives
@ Check that all of them are indeed false positives

28/50

Co-Nondeterministic List and Count Algorithm

@ Embed original problem into one that is much easier, but
may have some false positive solutions

@ Nondeterministically list all false positives
@ Check that all of them are indeed false positives

@ Count number of solutions and check that given list is
complete

28/50

3-Sum problem

@ 3-Sum: Given nintegers ay,...,an € [-M,M] find i,j, k
such that a; + a; + ax = 0

29/50

3-Sum problem

@ 3-Sum: Given nintegers ay,...,an € [-M,M] find i,j, k
such that a; + a; + ax = 0
@ M = poly(n)

29/50

3-Sum problem

@ 3-Sum: Given nintegers ay,...,an € [-M,M] find i,j, k
such that a; + a; + ax = 0
@ M = poly(n)

@ Simple algorithm: O(n?)

29/50

3-Sum problem

@ 3-Sum: Given nintegers ay,...,an € [-M,M] find i,j, k
such that a; + a; + ax = 0
@ M = poly(n)

@ Simple algorithm: O(n?)
@ FFT based counting algorithm: O(M)

29/50

3-Sum problem

@ 3-Sum: Given nintegers ay,...,an € [-M,M] find i,j, k
such that a; + a; + ax = 0
@ M = poly(n)

@ Simple algorithm: O(n?)
@ FFT based counting algorithm: O(M)
@ Fast nondeterministic algorithm

29/50

List and Count Algorithm for 3-sum

@ Nondeterministically pick a prime p such that there are t
solutions modulo p

30/50

List and Count Algorithm for 3-sum

@ Nondeterministically pick a prime p such that there are t
solutions modulo p

@ Nondeterministically guess t triples (ig, jg, Kq)-

30/50

List and Count Algorithm for 3-sum

@ Nondeterministically pick a prime p such that there are t
solutions modulo p
@ Nondeterministically guess t triples (ig, jg, Kq)-
@ Check that
Vg < t: alig] + aljg] + alkg] = 0(mod p),
but
alig] + aljg] + alkq] # 0.

30/50

List and Count Algorithm for 3-sum

@ Nondeterministically pick a prime p such that there are t
solutions modulo p

@ Nondeterministically guess t triples (ig, jg, Kq)-

@ Check that
vq < t : alig] + aljg] + alkq] = 0(mod p),
but
alig) + aljo] + alkq] # 0.

@ Count number of solutions of 3-suM(mod p) and check
that it is equal to t.

30/50

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

31/50

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting all the false positive can be done by FFT-based
algorithm in time O(p)

31/50

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting all the false positive can be done by FFT-based
algorithm in time O(p)

@ One can always pick t,p = O(n®/?)
The running time is O(n®/2)

31/50

3-SUM modulo p

@ Consider the first /2 primes, < O(n/?)

32/50

3-SUM modulo p

@ Consider the first /2 primes, < O(n/?)
@ a; + a; + ax has at most log(3M) = O(log n) prime factors

32/50

3-SUM modulo p

@ Consider the first /2 primes, < O(n/?)
@ a; + a; + ax has at most log(3M) = O(log n) prime factors

@ On average, a prime p has O (”sr'g%”)) = O(n?/?) false
positives

32/50

3-SUM modulo p

@ Consider the first /2 primes, < O(n/?)
@ a; + a; + ax has at most log(3M) = O(log n) prime factors

@ On average, a prime p has O (”Sr'g%”)) = O(n?/?) false
positives

@ There is a prime p < O(n®/2) such that t < O(n*/?)
solutions

32/50

@ 3-SUM is not SETH-hard at time O(n®/2+¢) under
deterministic reductions (assuming NSETH)

33/50

@ 3-SUM is not SETH-hard at time O(n®/2+¢) under
deterministic reductions (assuming NSETH)

@ Disproving this statement implies new lower bounds for
linear size series-parallel circuits

33/50

@ Better co-nondeterministic for 3-sum will give nontrivial
co-nondeterministic for SUBSET SuM. This will prove that
SUBSET SUM is not SETH -hard at time O(2"/2) under
deterministic reductions (assuming NSETH).

34/50

@ Better co-nondeterministic for 3-sum will give nontrivial
co-nondeterministic for SUBSET SuM. This will prove that
SUBSET SUM is not SETH -hard at time O(2"/2) under
deterministic reductions (assuming NSETH).

@ Nice coincidence: decision tree complexity of 3-SUM is
also O(n%/?).

34/50

All-Pairs Shortest Path Problem

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

35/50

All-Pairs Shortest Path Problem

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®) [FloydWarshall62]

35/50

All-Pairs Shortest Path Problem

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®) [FloydWarshall62]

@ We give a co-nondeterministic algorithm for Zero-Weight
Triangle

35/50

Zero-Weight Triangle

Vector Orthogonality
Edit Distance

3 Points on Line
Polygon Containment

‘ Zero Weight Triangle ‘

Single-Source Flow
Triangle Collection

Negative Triangle
Graph Diameter

36/50

Zero-Weight Triangle

@ ZWT: Given a weighted graph with all weights € [-M, M|,
find a triangle of total weight equal to 0.

37/50

Zero-Weight Triangle

@ ZWT: Given a weighted graph with all weights € [-M, M|,
find a triangle of total weight equal to 0.

@ Trivial algorithm : O(n®)

37/50

Zero-Weight Triangle

@ ZWT: Given a weighted graph with all weights € [-M, M|,
find a triangle of total weight equal to 0.

@ Trivial algorithm : O(n®)
@ ZWT modulo p in time O(pn“)

37/50

List and Count Algorithm for ZWT

@ Nondeterministically pick t and a prime p

38/50

List and Count Algorithm for ZWT

@ Nondeterministically pick t and a prime p
@ Nondeterministically guess t triples (x;, yj, z;) of vertices

38/50

List and Count Algorithm for ZWT

@ Nondeterministically pick t and a prime p
@ Nondeterministically guess t triples (x;, yj, z;) of vertices

@ Check that
Vi <t:WIijl+ W[, k] + WJ[j, i] = 0(mod p),
but
WIi] + W K] + W, 1] # 0.

38/50

List and Count Algorithm for ZWT

@ Nondeterministically pick t and a prime p
@ Nondeterministically guess t triples (x;, yj, z;) of vertices
@ Check that
Vi <t: WIijl + W[j, k] + WJj,i] = 0(mod p),
but
WIi,j] + WU K] + Wi 1] # 0.
@ Count number of solutions of ZWT (mod p) and check that
it is equal to t.

38/50

Counting Solutions

@ Define matrix A with A[i,j] = xWliJl modp

39/50

Counting Solutions

@ Define matrix A with A[i,] = xWlisl modp
@ Compute A% in time O(pn*)

39/50

Counting Solutions

@ Define matrix A with A[i, j] = xWli/l mod p
@ Compute A% in time O(pn~)
@ For all entries A%[/, i] sum the coefficients of x°, xP, x2P

39/50

@ Same argument as for 3-suM gives t < (N)(”;)

40/50

@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

40/50

@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting takes time O(pn®)

40/50

@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting takes time O(pn®)
@ Pick p = n%31

40/50

@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting takes time O(pn®)
@ Pick p = n%31
@ The running time is O(n?%9)

40/50

@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting takes time O(pn®)

@ Pick p = n%31

@ The running time is O(n?%9)

@ It immediately yields O(n??) for APSP [VWO09]

40/50

@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting takes time O(pn®)

@ Pick p = n%31

@ The running time is O(n?%9)

@ It immediately yields O(n??) for APSP [VWO09]

@ Nondeterministic reduction yields O(n?%°) for APSP

40/50

All-Pairs Shortest Path

@ All-Pairs Shortest Path is not SETH-hard at time O(n?9+¢)
under deterministic reductions (assuming NSETH)

41/50

All-Pairs Shortest Path

@ All-Pairs Shortest Path is not SETH-hard at time O(n?9+¢)
under deterministic reductions (assuming NSETH)

@ Disproving this statement implies new lower bounds for
linear size circuits

41/50

Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

42/50

Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:
e Orthogonal Vectors (O(n?))
(Fv1)@Bva) (V1) [(v1[1] = 0) V (v2[i] = O)]

42/50

Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:
e Orthogonal Vectors (O(n?))
(3v1)(Bva) (V1) [(v1[1] = 0) V (vo[i] = O)]
e Graph k-Dominating Set (O(n*))

(3v) . Bui) (Wi 1) [VIZ) E Vi)

42/50

Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

e Orthogonal Vectors (O(n?))
(3v1)(3va) (Vi) [(wa[1] = 0) V (veli] = O)]
e Graph k-Dominating Set (O(n*))

(3v) . Bui) (Wi 1) [VIZ) E Vi)
@ Problems with other quantifier structures:

42/50

Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

e Orthogonal Vectors (O(n?))
(3wv1)(3va) (Vi) [(v1[1] = 0) V (v2[i] = O)]
e Graph k-Dominating Set (O(n*))
(3v) . Bui) (Wi 1) [VIZ) E Vi)
@ Problems with other quantifier structures:
e k-Clique (Solvable in time O(n<k/3))

(31) - (3vi) [Ay E(i)]

42/50

Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

e Orthogonal Vectors (O(n?))
(3wv1)(3va) (Vi) [(v1[1] = 0) V (v2[i] = O)]

e Graph k-Dominating Set (O(n*))
(3v) . Bui) (Wi 1) [VIZ) E Vi)

@ Problems with other quantifier structures:

e k-Clique (Solvable in time O(n<k/3))
(31) - (3vi) [Ay E(i)]

e Hitting Set (not known to be SETH-hard)
EH)(VS)(3x) [(ue H)A(ue S)]

42/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

¢ = (3x1)(Qexz) . .. (Quxk)¥
Each Q; € {3,V}.

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs
e Input: Sparse graph G, given by its edge list of size m.

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

e Input: Sparse graph G, given by its edge list of size m.
e Output: Whether G |= .

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

e Input: Sparse graph G, given by its edge list of size m.
e Output: Whether G |= .
e Can be done in O(mk—1)

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

e Input: Sparse graph G, given by its edge list of size m.
e Output: Whether G |= .
e Can be done in O(mk—1)

@ Our results:

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

e Input: Sparse graph G, given by its edge list of size m.
e Output: Whether G |= .
e Can be done in O(mk—1)

@ Our results:
e All SETH-hard problems have

Q=== 1=3, =V

43/50

Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

e Input: Sparse graph G, given by its edge list of size m.
e Output: Whether G |= .
e Can be done in O(mk—1)

@ Our results:
e All SETH-hard problems have

Q=== 1=3, =V

o If NSETH holds, there is no reduction from this quantifier
structure to other quantifier structures.

43/50

Quantifier Structures of Hard Problems

o = (3x1)(Qox2) ... (Quxx)V

Quantifier | Result Hardness
structure
3.3 If solvable in O(m*~7=¢) co- | SETH-hard
nondeterministic time, then
NSETH is false.
All k quanti- | solvable in O(m*—15) time Easy
fiers are J's
More than | faster co-nondeterministic algo- | Not SETH-
one V’s rithms hard under
NSETH
Exactly one | faster co-nondeterministic algo- | Not SETH-
v, but not at | rithms hard under
Qx NSETH

44/50

Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x e SAXx € T)
@ Exactly one V quantifier, but not at Q.

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)

@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)

@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm
o Guess S, enumerate T, guess x.

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)

@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm

e Guess S, enumerate T, guess x.
@ O(m) co-nondeterministic algorithm

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x e SAXx € T)
@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm
e Guess S, enumerate T, guess x.
@ O(m) co-nondeterministic algorithm
o Decide if VS3AT Vx (x ¢ SV x ¢ T) nondeterministically

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x e SAXx € T)
@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm
e Guess S, enumerate T, guess x.
@ O(m) co-nondeterministic algorithm

o Decide if VS3AT Vx (x ¢ SV x ¢ T) nondeterministically
e For each S, guess T, for each (x € S), checkif (x € T)

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)

@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm

e Guess S, enumerate T, guess x.
@ O(m) co-nondeterministic algorithm

o Decide if VS3AT Vx (x ¢ SV x ¢ T) nondeterministically
e Foreach S, guess T, for each (x € S), checkif (x € T)
e If none element x in Sis also in T, accept.

45/50

Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)

@ Exactly one V quantifier, but not at Q.
@ O(m) nondeterministic algorithm

e Guess S, enumerate T, guess x.
@ O(m) co-nondeterministic algorithm

Decide if vS3TVx (x ¢ SV x ¢ T) nondeterministically
For each S, guess T, for each (x € S), check if (x € T)
If none element x in Sis also in T, accept.

Otherwise, reject.

45/50

Example: Hitting Set

Decide if 3SVT Ix (x €e SAx € T)

Exactly one V quantifier, but not at Q.
O(m) nondeterministic algorithm

e Guess S, enumerate T, guess x.
O(m) co-nondeterministic algorithm

o Decide if VS3AT Vx (x ¢ SV x ¢ T) nondeterministically
e Foreach S, guess T, for each (x € S), checkif (x € T)
e If none element x in Sis also in T, accept.

e Otherwise, reject.

Hitting Set <rgr Orthogonal Vectors [AVWW16]

45/50

Example: Hitting Set

Decide if 3SVT Ix (x €e SAx € T)

Exactly one V quantifier, but not at Q.
O(m) nondeterministic algorithm

e Guess S, enumerate T, guess x.
O(m) co-nondeterministic algorithm

o Decide if VS3AT Vx (x ¢ SV x ¢ T) nondeterministically
e Foreach S, guess T, for each (x € S), checkif (x € T)
e If none element x in Sis also in T, accept.

e Otherwise, reject.

Hitting Set <rgr Orthogonal Vectors [AVWW16]
Orthogonal Vectors £rggr Hitting Set, under NSETH.

45/50

Randomized Reductions

x e Ly

[~
Nondeterministic
bits

0/1

46/50

Randomized Reductions

@ The argument does not extend to randomized reductions

47/50

Randomized Reductions

@ The argument does not extend to randomized reductions
@ Argument only gives a fast Merlin-Arthur algorithm for SAT

47/50

Randomized Reductions

@ The argument does not extend to randomized reductions
@ Argument only gives a fast Merlin-Arthur algorithm for SAT
@ MASETH?

47/50

Randomized Reductions

@ The argument does not extend to randomized reductions
@ Argument only gives a fast Merlin-Arthur algorithm for SAT
@ MASETH?

@ There is a O(2"/2) MA algorithm for CNF-SAT [Williams]

47/50

Randomized Reductions

@ The argument does not extend to randomized reductions
@ Argument only gives a fast Merlin-Arthur algorithm for SAT
@ MASETH?

@ There is a O(2"/2) MA algorithm for CNF-SAT [Williams]

@ Zero-error reductions are ok

47/50

Randomized Reductions

@ Idea: Consider a stronger hypothesis that rules out
randomized reductions

48/50

Randomized Reductions

@ Idea: Consider a stronger hypothesis that rules out
randomized reductions

Non-Uniform Nondeterministic Strong Exponential Time

Hypothesis

For every s > 0, there is a k such that k-SAT does not have
2(1-9)" size nondeterministic circuits

48/50

@ Introduced Nondeterministic Strong Exponential Time
Hypothesis

49/50

@ Introduced Nondeterministic Strong Exponential Time
Hypothesis

@ |f NSETH is false, then new circuit lower bounds follow

49/50

@ Introduced Nondeterministic Strong Exponential Time
Hypothesis

@ If NSETH is false, then new circuit lower bounds follow
@ If NSETH is true, then non-reducibility results follow

49/50

@ Introduced Nondeterministic Strong Exponential Time
Hypothesis

@ If NSETH is false, then new circuit lower bounds follow
@ If NSETH is true, then non-reducibility results follow

@ If there is a deterministic fine-grained reduction from vector
orthogonality to hitting set, then we have new lower
bounds for linear size circuits

49/50

Open Questions

@ Deal with randomized reductions

50/50

Open Questions

@ Deal with randomized reductions
@ Find exponential time problems not hard under SETH

50/50

Open Questions

@ Deal with randomized reductions
@ Find exponential time problems not hard under SETH
@ Adapt the framework to dynamic problems

50/50

Open Questions

@ Deal with randomized reductions

@ Find exponential time problems not hard under SETH
@ Adapt the framework to dynamic problems

@ Consequences of NETH

50/50

Open Questions

@ Deal with randomized reductions

@ Find exponential time problems not hard under SETH
@ Adapt the framework to dynamic problems

@ Consequences of NETH

@ Every APSP-hard problem has property X, CNFSAT and
3-sSum do not

50/50

Thank You!

