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Fine-Grained Hardness

@ For many problems progress has stalled:

o Edit Distance in (n?) [WagnerFischer74]

e 3-SUM in Q(n?)

e CKT-SAT in Q(2") 5

e 3-Points-On-a-Line in Q(n?)
@ Proving these lower bounds seems out of reach
@ Goal: Explain bounds from common principle
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@ Conditional lower bounds are an attempt to tackle the
problem

@ Relate hard problems by reductions that respect resources
@ Goal 1: Explain hardness of as many problems as possible
@ Goal 2: Explain hardness using a common principle
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Important Conjectures: 3-Sum

@ 3-suM: Given nintegers ay,...,an € [-M, M| find i,j, k
suchthata; +a; +ax =0

@ Simple algorithm: O(n?)

@ Fastest known algorithms: O(n?/ polylog n) [BDP0S,
GP14]

@ 3-SUM conjecture: There is no O(n?~¢) algorithm for
3-Sum



Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v



Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®)



Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®)
@ Fastest known algorithms: O(n®/2V'°97) [W14]



Important Conjectures: All-Pairs Shortest Path

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®)
@ Fastest known algorithms: O(n®/2V'°97) [W14]

@ All-pairs shortest path conjecture: There is no O(n®—¢)
algorithm for APSP
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Important Conjectures: Strong Exponential Time

Hypothesis

@ k-SAT: Given a k-CNF, find a satisfying assignment
@ Brute force: O(2")
@ Fastest known algorithm: O(2('=%©)") [PPSZ98]

@ Strong Exponential Time Hypothesis: For every s > 0,

there is a k such that k-SAT cannot be solved in time
o(1-s)n
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Max Flow
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@ Formalized in [VWW10]
@ Fine-grained reduction from (L4, T1) to (Lp, T>)
@ Turing reduction that respects resources
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Proof Idea

Lemma (Basic Idea)

Every SETH-hard problem has property X. 3-sum and APSP
do not have property X.
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NSETH

Nondeterministic Strong Exponential Time Hypothesis

For every s > 0, there is a k such that k-SAT cannot be solved
in co-nondeterministic time 2(1-9)"
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Property X

Det. | Nondet. | Co-Nondet. | X |  Example

T Ti-< T yes CNF-SAT

T T Ti—= yes DNF-TAUT

T T T yes | Exact-Max-SAT
T T1—= Tl—= no 3-suMm
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Property X

Assuming NSETH, any problem that is SETH-hard with time T
under deterministic reductions either

@ Cannot be solved in nondeterministic time T(1-9)
@ Cannot be solved in co-nondeterministic time T(1—S)
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@ —NSETH implies interesting circuit lower bounds

@ Problems with fast nondeterministic and
co-nondeterministic algorithms (—X)

@ First-order graph properties
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—SETH and —NSETH Imply Circuit Lower Bounds

The work of [JVM13] uses a two-part strategy to show
—-SETH = Circuit Lower Bounds:

@ A tight implication from C-CKT-SAT algorithms to C lower
bounds
@ Decomposition of C-circuits into \/ CNF form
““NSETH = Circuit Lower Bounds” is implicit in [JVM13],

following from their technical contributions and the proofs of
[Williams 2013].
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@ ETH is false: for every € > 0, 3-SAT is in time 2¢"

@ SETH is false: there is a § < 1 such that for every k, k-SAT
is in time 297

@ NETH is false: for every e > 0,3-TAUT is in
nondeterministic time 2"

@ NSETH is false: there is a § < 1 such that for every
k, k-TAUT is in nondeterministic time 27
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Reducing C-CKT-SAT to k-SAT?

For C:

@ Linear-size circuits
@ Linear-size series-parallel circuits

There are decompositions: VC € C, we have C =\/ CNFy.
Execute the faster k-SAT algorithm on each “leaf” of the
decomposition.
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@ The following problems have fast nondeterministic and
co-nondeterministic algorithms:

Max-Flow (O(m))

Min-Cost Max Flow (O(m))

3-suM (O(n?/2))

All-Pairs Shortest Path (O(n?99))
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Maximum Flow Problem

2/2

3/3

'Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Max_flow.svg#/media/File:Max-flow:svg
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Maximum Flow Problem

@ Is there a flow of value at least k
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Maximum Flow Problem

@ Is there a flow of value at least k
@ Fastest known algorithm: O(mn) [Orlin13]

° b(m) approximation algorithms for undirected case
[KLOS14]

@ Can we prove a Q(mn) lower bound under SETH?
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Min-Cost Maximum Flow Problem

@ Edges have a capacity and a cost per unit flow

@ Is there a flow of value more than k or of value k and cost
at most ¢?

e Fastest algorithm: O(m?) [Orlin88]

@ Special cases: Max-Flow, Min-Cost Perfect Bipartite
Matching
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Min-Cost Maximum Flow Problem

@ Simple O(m) nondeterministic algorithm

@ O(m) co-nondeterministic algorithm based on Klein’s cycle
canceling algorithm:
e There is a flow of the same value and smaller cost if and
only if there is a negative cost cycle in the residual graph
e Co-Nondeterministic O(m) algorithm for negative cycles

24/50
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Certifying Negative Cycles

@ Co-nondeterministic algorithm follows from properties
Bellman-Ford algorithm

@ Potential: p: V — R such that for all
(u,v) € Ep(u) + I(u, v) = p(v)

@ There is a negative weight cycle if and only if there is no
potential

25/50



Min-Cost Maximum Flow Problem

@ Nondeterministically guess the min-cost max flow
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Min-Cost Maximum Flow Problem

@ Nondeterministically guess the min-cost max flow

@ Certify that it is a max flow by guessing a cut

@ Certify that it is minimum cost by guessing a potential
@ Time complexity: O(m)
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Min-Cost Maximum Flow Problem

@ Min-Cost Max-Flow is not SETH-hard at time O(m'*)
under deterministic reductions (assuming NSETH)
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@ Disproving this statement implies new lower bounds for
linear size circuits
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Co-Nondeterministic List and Count Algorithm

@ Embed original problem into one that is much easier, but
may have some false positive solutions

@ Nondeterministically list all false positives
@ Check that all of them are indeed false positives

@ Count number of solutions and check that given list is
complete

28/50
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3-Sum problem

@ 3-Sum: Given nintegers ay,...,an € [-M,M] find i,j, k
such that a; + a; + ax = 0
@ M = poly(n)

@ Simple algorithm: O(n?)
@ FFT based counting algorithm: O(M)
@ Fast nondeterministic algorithm

29/50



List and Count Algorithm for 3-sum

@ Nondeterministically pick a prime p such that there are t
solutions modulo p
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List and Count Algorithm for 3-sum

@ Nondeterministically pick a prime p such that there are t
solutions modulo p

@ Nondeterministically guess t triples (ig, jg, Kq)-

@ Check that
vq < t : alig] + aljg] + alkq] = 0(mod p),
but
alig) + aljo] + alkq] # 0.

@ Count number of solutions of 3-suM(mod p) and check
that it is equal to t.
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@ Nondeterministically listing all the false positive can be
done in linear time: O(t)
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@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting all the false positive can be done by FFT-based
algorithm in time O(p)

@ One can always pick t,p = O(n®/?)
The running time is O(n®/2)
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@ Consider the first /2 primes, < O(n/?)
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3-SUM modulo p

@ Consider the first /2 primes, < O(n/?)
@ a; + a; + ax has at most log(3M) = O(log n) prime factors

@ On average, a prime p has O (”Sr'g%”)) = O(n?/?) false
positives

@ There is a prime p < O(n®/2) such that t < O(n*/?)
solutions
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@ 3-SUM is not SETH-hard at time O(n®/2+¢) under
deterministic reductions (assuming NSETH)
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@ 3-SUM is not SETH-hard at time O(n®/2+¢) under
deterministic reductions (assuming NSETH)

@ Disproving this statement implies new lower bounds for
linear size series-parallel circuits
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@ Better co-nondeterministic for 3-sum will give nontrivial
co-nondeterministic for SUBSET SuM. This will prove that
SUBSET SUM is not SETH -hard at time O(2"/2) under
deterministic reductions (assuming NSETH).
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@ Better co-nondeterministic for 3-sum will give nontrivial
co-nondeterministic for SUBSET SuM. This will prove that
SUBSET SUM is not SETH -hard at time O(2"/2) under
deterministic reductions (assuming NSETH).

@ Nice coincidence: decision tree complexity of 3-SUM is
also O(n%/?).
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All-Pairs Shortest Path Problem

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v
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All-Pairs Shortest Path Problem

@ APSP: Given a weighted directed graph, find the distance
of every pair u, v

@ Dynamic Programming: O(n®) [FloydWarshall62]

@ We give a co-nondeterministic algorithm for Zero-Weight
Triangle
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Zero-Weight Triangle

Vector Orthogonality
Edit Distance

3 Points on Line
Polygon Containment

‘ Zero Weight Triangle ‘

Single-Source Flow
Triangle Collection

Negative Triangle
Graph Diameter
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Zero-Weight Triangle

@ ZWT: Given a weighted graph with all weights € [-M, M|,
find a triangle of total weight equal to 0.
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Zero-Weight Triangle

@ ZWT: Given a weighted graph with all weights € [-M, M|,
find a triangle of total weight equal to 0.

@ Trivial algorithm : O(n®)
@ ZWT modulo p in time O(pn“)

37/50



List and Count Algorithm for ZWT

@ Nondeterministically pick t and a prime p
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List and Count Algorithm for ZWT

@ Nondeterministically pick t and a prime p
@ Nondeterministically guess t triples (x;, yj, z;) of vertices
@ Check that
Vi <t: WIijl + W[j, k] + WJj,i] = 0(mod p),
but
WIi,j] + WU K] + Wi 1] # 0.
@ Count number of solutions of ZWT (mod p) and check that
it is equal to t.
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Counting Solutions

@ Define matrix A with A[i,j] = xWliJl modp
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@ Define matrix A with A[i, ] = xWlisl modp
@ Compute A% in time O(pn*)

39/50



Counting Solutions

@ Define matrix A with A[i, j] = xWli/l mod p
@ Compute A% in time O(pn~)
@ For all entries A%[/, i] sum the coefficients of x°, xP, x2P
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@ Same argument as for 3-SUM gives t < (N)(”;)

@ Nondeterministically listing all the false positive can be
done in linear time: O(t)

@ Counting takes time O(pn®)

@ Pick p = n%31

@ The running time is O(n?%9)

@ It immediately yields O(n??) for APSP [VWO09]

@ Nondeterministic reduction yields O(n?%°) for APSP
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All-Pairs Shortest Path

@ All-Pairs Shortest Path is not SETH-hard at time O(n?9+¢)
under deterministic reductions (assuming NSETH)
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All-Pairs Shortest Path

@ All-Pairs Shortest Path is not SETH-hard at time O(n?9+¢)
under deterministic reductions (assuming NSETH)

@ Disproving this statement implies new lower bounds for
linear size circuits
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Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

42/50



Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:
e Orthogonal Vectors (O(n?))
(Fv1)@Bva) (V1) [(v1[1] = 0) V (v2[i] = O)]

42/50



Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:
e Orthogonal Vectors (O(n?))
(3v1)(Bva) (V1) [(v1[1] = 0) V (vo[i] = O)]
e Graph k-Dominating Set (O(n*))

(3v) . Bui) (Wi 1) [VIZ) E Vi)

42/50



Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

e Orthogonal Vectors (O(n?))
(3v1)(3va) (Vi) [(wa[1] = 0) V (veli] = O)]
e Graph k-Dominating Set (O(n*))

(3v) . Bui) (Wi 1) [VIZ) E Vi)
@ Problems with other quantifier structures:

42/50



Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

e Orthogonal Vectors (O(n?))
(3wv1)(3va) (Vi) [(v1[1] = 0) V (v2[i] = O)]
e Graph k-Dominating Set (O(n*))
(3v) . Bui) (Wi 1) [VIZ) E Vi)
@ Problems with other quantifier structures:
e k-Clique (Solvable in time O(n<k/3))

(31) - (3vi) [ Ay E(i )]

42/50



Quantifier Structures of Hard Problems

@ Many SETH-hard problems have similar quantifier
structures:

e Orthogonal Vectors (O(n?))
(3wv1)(3va) (Vi) [(v1[1] = 0) V (v2[i] = O)]

e Graph k-Dominating Set (O(n*))
(3v) . Bui) (Wi 1) [VIZ) E Vi)

@ Problems with other quantifier structures:

e k-Clique (Solvable in time O(n<k/3))
(31) - (3vi) [ Ay E(i )]

e Hitting Set (not known to be SETH-hard)
EH)(VS)(3x) [(ue H)A(ue S)]
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Quantifier Structures of Hard Problems

@ First-order formula ¢ with k quantifiers

© = (Ix1)(Qaxz) . .. (Quxk)V

Each Q; € {3,V}.
@ Model checking problem on graphs

e Input: Sparse graph G, given by its edge list of size m.
e Output: Whether G |= .
e Can be done in O(mk—1)

@ Our results:
e All SETH-hard problems have

Q=== 1=3, =V

o If NSETH holds, there is no reduction from this quantifier
structure to other quantifier structures.
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Quantifier Structures of Hard Problems

o = (3x1)(Qox2) ... (Quxx)V

Quantifier | Result Hardness
structure
3.3 If solvable in O(m*~7=¢) co- | SETH-hard
nondeterministic  time,  then
NSETH is false.
All k quanti- | solvable in O(m*—15) time Easy
fiers are J's
More than | faster co-nondeterministic algo- | Not SETH-
one V’s rithms hard under
NSETH
Exactly one | faster co-nondeterministic algo- | Not SETH-
v, but not at | rithms hard under
Qx NSETH
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Example: Hitting Set

@ Decide if 3SVT Ix(x € SAx € T)
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Example: Hitting Set

Decide if 3SVT Ix (x €e SAx € T)

Exactly one V quantifier, but not at Q.
O(m) nondeterministic algorithm

e Guess S, enumerate T, guess x.
O(m) co-nondeterministic algorithm

o Decide if VS3AT Vx (x ¢ SV x ¢ T) nondeterministically
e Foreach S, guess T, for each (x € S), checkif (x € T)
e If none element x in Sis also in T, accept.

e Otherwise, reject.

Hitting Set <rgr Orthogonal Vectors [AVWW16]
Orthogonal Vectors £rggr Hitting Set, under NSETH.
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Randomized Reductions

x e Ly

[~
Nondeterministic
bits

0/1
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Randomized Reductions

@ The argument does not extend to randomized reductions
@ Argument only gives a fast Merlin-Arthur algorithm for SAT
@ MASETH?

@ There is a O(2"/2) MA algorithm for CNF-SAT [Williams]

@ Zero-error reductions are ok
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Randomized Reductions
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Randomized Reductions

@ Idea: Consider a stronger hypothesis that rules out
randomized reductions

Non-Uniform Nondeterministic Strong Exponential Time

Hypothesis

For every s > 0, there is a k such that k-SAT does not have
2(1-9)" size nondeterministic circuits
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@ Introduced Nondeterministic Strong Exponential Time
Hypothesis

@ If NSETH is false, then new circuit lower bounds follow
@ If NSETH is true, then non-reducibility results follow

@ If there is a deterministic fine-grained reduction from vector
orthogonality to hitting set, then we have new lower
bounds for linear size circuits
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Open Questions

@ Deal with randomized reductions

@ Find exponential time problems not hard under SETH
@ Adapt the framework to dynamic problems

@ Consequences of NETH

@ Every APSP-hard problem has property X, CNFSAT and
3-sSum do not
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Thank You!



