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Fine-Grained Hardness

For many problems progress has stalled:

Edit Distance in Ω̃(n2) [WagnerFischer74]
3-SUM in Ω̃(n2)
CKT-SAT in Ω̃(2n)
3-Points-On-a-Line in Ω̃(n2)

Proving these lower bounds seems out of reach
Goal: Explain bounds from common principle
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Conditional Lower Bounds

Conditional lower bounds are an attempt to tackle the
problem

Relate hard problems by reductions that respect resources
Goal 1: Explain hardness of as many problems as possible
Goal 2: Explain hardness using a common principle
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Important Conjectures: 3-Sum

3-SUM: Given n integers a1, . . . ,an ∈ [−M,M] find i , j , k
such that ai + aj + ak = 0

Simple algorithm: Õ(n2)

Fastest known algorithms: O(n2/polylog n) [BDP08,
GP14]
3-SUM conjecture: There is no O(n2−ε) algorithm for
3-Sum
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Important Conjectures: All-Pairs Shortest Path

APSP: Given a weighted directed graph, find the distance
of every pair u, v

Dynamic Programming: O(n3)

Fastest known algorithms: O(n3/2
√

log n) [W14]
All-pairs shortest path conjecture: There is no O(n3−ε)
algorithm for APSP
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Important Conjectures: Strong Exponential Time
Hypothesis

k -SAT: Given a k -CNF, find a satisfying assignment

Brute force: Õ(2n)

Fastest known algorithm: O(2(1− c
k )n) [PPSZ98]

Strong Exponential Time Hypothesis: For every s > 0,
there is a k such that k -SAT cannot be solved in time
2(1−s)n
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Conditional Lower Bounds
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Fine-Grained Reductions

Formalized in [VWW10]

Fine-grained reduction from (L1,T1) to (L2,T2)

Turing reduction that respects resources
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Proof Idea

Lemma (Basic Idea)
Every SETH-hard problem has property X. 3-SUM and APSP
do not have property X.
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NSETH

Nondeterministic Strong Exponential Time Hypothesis
For every s > 0, there is a k such that k -SAT cannot be solved
in co-nondeterministic time 2(1−s)n
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Property X

Det. Nondet. Co-Nondet. X Example
T T 1−ε T yes CNF-SAT
T T T 1−ε yes DNF-TAUT
T T T yes Exact-Max-SAT
T T 1−ε T 1−ε no 3-SUM
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Property X

Lemma
Assuming NSETH, any problem that is SETH-hard with time T
under deterministic reductions either

Cannot be solved in nondeterministic time T (1−s)

Cannot be solved in co-nondeterministic time T (1−s)
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Outline

¬NSETH implies interesting circuit lower bounds

Problems with fast nondeterministic and
co-nondeterministic algorithms (¬X )
First-order graph properties
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¬SETH and ¬NSETH Imply Circuit Lower Bounds

The work of [JVM13] uses a two-part strategy to show
¬SETH =⇒ Circuit Lower Bounds:

1 A tight implication from C-CKT-SAT algorithms to C lower
bounds

2 Decomposition of C-circuits into
∨

CNF form

“¬NSETH =⇒ Circuit Lower Bounds” is implicit in [JVM13],
following from their technical contributions and the proofs of
[Williams 2013].
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¬SETH and ¬NSETH are Algorithmic

ETH is false: for every ε > 0,3-SAT is in time 2εn

SETH is false: there is a δ < 1 such that for every k , k -SAT

is in time 2δn

NETH is false: for every ε > 0,3-TAUT is in
nondeterministic time 2εn

NSETH is false: there is a δ < 1 such that for every
k , k -TAUT is in nondeterministic time 2δn
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Reducing C-CKT-SAT to k -SAT?

For C:

Linear-size circuits
Linear-size series-parallel circuits

There are decompositions: ∀C ∈ C, we have C =
∨

CNFk .
Execute the faster k -SAT algorithm on each “leaf” of the
decomposition.
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Outline

The following problems have fast nondeterministic and
co-nondeterministic algorithms:

Max-Flow (O(m))
Min-Cost Max Flow (O(m))
3-SUM (Õ(n3/2))
All-Pairs Shortest Path (Õ(n2.69))

19 / 50
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19 / 50



Outline

The following problems have fast nondeterministic and
co-nondeterministic algorithms:

Max-Flow (O(m))
Min-Cost Max Flow (O(m))

3-SUM (Õ(n3/2))
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Maximum Flow Problem
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Maximum Flow Problem

Is there a flow of value at least k

Fastest known algorithm: Õ(mn) [Orlin13]
Õ(m) approximation algorithms for undirected case
[KLOS14]
Can we prove a Ω̃(mn) lower bound under SETH?
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Maximum Flow Problem

There is a O(m) nondeterministic algorithm

There is a O(m) co-nondeterministic algorithm
(Min-cut/Max-flow theorem)
Max-Flow is not SETH-hard at time O(m1+ε) under
deterministic reductions (assuming NSETH)
Disproving this statement implies new lower bounds for
linear size circuits
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Min-Cost Maximum Flow Problem

Edges have a capacity and a cost per unit flow

Is there a flow of value more than k or of value k and cost
at most c?
Fastest algorithm: Õ(m2) [Orlin88]
Special cases: Max-Flow, Min-Cost Perfect Bipartite
Matching
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Min-Cost Maximum Flow Problem

Simple O(m) nondeterministic algorithm

O(m) co-nondeterministic algorithm based on Klein’s cycle
canceling algorithm:

There is a flow of the same value and smaller cost if and
only if there is a negative cost cycle in the residual graph
Co-Nondeterministic O(m) algorithm for negative cycles
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Certifying Negative Cycles

Co-nondeterministic algorithm follows from properties
Bellman-Ford algorithm

Potential: p : V → R such that for all
(u, v) ∈ Ep(u) + l(u, v) ≥ p(v)

There is a negative weight cycle if and only if there is no
potential
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Min-Cost Maximum Flow Problem

Nondeterministically guess the min-cost max flow

Certify that it is a max flow by guessing a cut
Certify that it is minimum cost by guessing a potential
Time complexity: O(m)
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Min-Cost Maximum Flow Problem

Min-Cost Max-Flow is not SETH-hard at time O(m1+ε)
under deterministic reductions (assuming NSETH)

Disproving this statement implies new lower bounds for
linear size circuits
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Co-Nondeterministic List and Count Algorithm

Embed original problem into one that is much easier, but
may have some false positive solutions

Nondeterministically list all false positives
Check that all of them are indeed false positives
Count number of solutions and check that given list is
complete
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3-Sum problem

3-Sum: Given n integers a1, . . . ,an ∈ [−M,M] find i , j , k
such that ai + aj + ak = 0

M = poly(n)

Simple algorithm: Õ(n2)

FFT based counting algorithm: Õ(M)

Fast nondeterministic algorithm
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List and Count Algorithm for 3-SUM

Nondeterministically pick a prime p such that there are t
solutions modulo p

Nondeterministically guess t triples (iq, jq, kq).
Check that
∀q ≤ t : a[iq] + a[jq] + a[kq] = 0(mod p),
but
a[iq] + a[jq] + a[kq] 6= 0.
Count number of solutions of 3-SUM(mod p) and check
that it is equal to t .
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Analysis

Nondeterministically listing all the false positive can be
done in linear time: Õ(t)

Counting all the false positive can be done by FFT-based
algorithm in time Õ(p)

One can always pick t ,p = Õ(n3/2)
The running time is Õ(n3/2)
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3-SUM modulo p

Consider the first n3/2 primes, ≤ Õ(n3/2)

ai + aj + ak has at most log(3M) = O(log n) prime factors

On average, a prime p has O
(

n3 log(n)
n3/2

)
= Õ(n3/2) false

positives
There is a prime p ≤ Õ(n3/2) such that t ≤ Õ(n3/2)
solutions
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There is a prime p ≤ Õ(n3/2) such that t ≤ Õ(n3/2)
solutions

32 / 50



3-SUM

3-SUM is not SETH-hard at time O(n3/2+ε) under
deterministic reductions (assuming NSETH)

Disproving this statement implies new lower bounds for
linear size series-parallel circuits
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3-SUM

Better co-nondeterministic for 3-SUM will give nontrivial
co-nondeterministic for SUBSET SUM. This will prove that
SUBSET SUM is not SETH -hard at time O(2n/2) under
deterministic reductions (assuming NSETH).

Nice coincidence: decision tree complexity of 3-SUM is
also Õ(n3/2).
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All-Pairs Shortest Path Problem

APSP: Given a weighted directed graph, find the distance
of every pair u, v

Dynamic Programming: O(n3) [FloydWarshall62]
We give a co-nondeterministic algorithm for Zero-Weight
Triangle
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Zero-Weight Triangle

SETH

3-SUM

APSP
Vector Orthogonality

Edit Distance
...

3 Points on Line
Polygon Containment

...

Negative Triangle
Graph Diameter

...

Zero Weight Triangle

Single-Source Flow
Triangle Collection

...

36 / 50



Zero-Weight Triangle

ZWT: Given a weighted graph with all weights ∈ [−M,M],
find a triangle of total weight equal to 0.

Trivial algorithm : O(n3)

ZWT modulo p in time Õ(pnω)
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List and Count Algorithm for ZWT

Nondeterministically pick t and a prime p

Nondeterministically guess t triples (xi , yi , zi) of vertices
Check that
∀i ≤ t : W [i , j] + W [j , k ] + W [j , i] = 0(mod p),
but
W [i , j] + W [j , k ] + W [j , i] 6= 0.
Count number of solutions of ZWT (mod p) and check that
it is equal to t .
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Counting Solutions

Define matrix A with A[i , j] = xW [i,j] mod p

Compute A3 in time Õ(pnω)

For all entries A3[i , i] sum the coefficients of x0, xp, x2p
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Analysis

Same argument as for 3-SUM gives t ≤ Õ(n3

p )

Nondeterministically listing all the false positive can be
done in linear time: Õ(t)
Counting takes time Õ(pnω)

Pick p = n0.31

The running time is O(n2.69)

It immediately yields O(n2.9) for APSP [VW09]
Nondeterministic reduction yields O(n2.69) for APSP
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Counting takes time Õ(pnω)
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Counting takes time Õ(pnω)
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All-Pairs Shortest Path

All-Pairs Shortest Path is not SETH-hard at time O(n2.69+ε)
under deterministic reductions (assuming NSETH)

Disproving this statement implies new lower bounds for
linear size circuits
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Quantifier Structures of Hard Problems

Many SETH-hard problems have similar quantifier
structures:

Orthogonal Vectors (O(n2))
(∃v1)(∃v2)(∀i) [(v1[i] = 0) ∨ (v2[i] = 0)]
Graph k -Dominating Set (O(nk ))
(∃v1) . . . (∃vk )(∀vk+1)

[∨k
i=1 E(vi , vk+1)

]
Problems with other quantifier structures:

k -Clique (Solvable in time O(nωk/3))
(∃v1) . . . (∃vk )

[∧
i 6=j E(vi , vj )

]
Hitting Set (not known to be SETH-hard)
(∃H)(∀S)(∃x) [(u ∈ H) ∧ (u ∈ S)]
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Quantifier Structures of Hard Problems

First-order formula ϕ with k quantifiers

ϕ = (∃x1)(Q2x2) . . . (Qkxk )ψ

Each Qi ∈ {∃, ∀}.

Model checking problem on graphs

Input: Sparse graph G, given by its edge list of size m.
Output: Whether G |= ϕ.
Can be done in O(mk−1)

Our results:

All SETH-hard problems have

Q1 = Q2 = · · · = Qk−1 = ∃,Qk = ∀

If NSETH holds, there is no reduction from this quantifier
structure to other quantifier structures.
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Quantifier Structures of Hard Problems

ϕ = (∃x1)(Q2x2) . . . (Qkxk )ψ

Quantifier
structure

Result Hardness

∃ . . . ∃∀ If solvable in O(mk−1−ε) co-
nondeterministic time, then
NSETH is false.

SETH-hard

All k quanti-
fiers are ∃’s

solvable in O(mk−1.5) time Easy

More than
one ∀’s

faster co-nondeterministic algo-
rithms

Not SETH-
hard under
NSETH

Exactly one
∀, but not at
Qk

faster co-nondeterministic algo-
rithms

Not SETH-
hard under
NSETH
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Example: Hitting Set

Decide if ∃S ∀T ∃x (x ∈ S ∧ x ∈ T )

Exactly one ∀ quantifier, but not at Qk .
O(m) nondeterministic algorithm

Guess S, enumerate T , guess x .

O(m) co-nondeterministic algorithm

Decide if ∀S ∃T ∀x (x /∈ S ∨ x /∈ T ) nondeterministically
For each S, guess T , for each (x ∈ S), check if (x ∈ T )
If none element x in S is also in T , accept.
Otherwise, reject.

Hitting Set ≤FGR Orthogonal Vectors [AVWW16]
Orthogonal Vectors 6≤FGR Hitting Set, under NSETH.
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Randomized Reductions
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Randomized Reductions

The argument does not extend to randomized reductions

Argument only gives a fast Merlin-Arthur algorithm for SAT
MASETH?
There is a Õ(2n/2) MA algorithm for CNF-SAT [Williams]
Zero-error reductions are ok
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Randomized Reductions

Idea: Consider a stronger hypothesis that rules out
randomized reductions

Non-Uniform Nondeterministic Strong Exponential Time
Hypothesis
For every s > 0, there is a k such that k -SAT does not have
2(1−s)n size nondeterministic circuits
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Summary

Introduced Nondeterministic Strong Exponential Time
Hypothesis

If NSETH is false, then new circuit lower bounds follow
If NSETH is true, then non-reducibility results follow
If there is a deterministic fine-grained reduction from vector
orthogonality to hitting set, then we have new lower
bounds for linear size circuits
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Open Questions

Deal with randomized reductions

Find exponential time problems not hard under SETH

Adapt the framework to dynamic problems
Consequences of NETH

Every APSP-hard problem has property X, CNFSAT and
3-SUM do not
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Thank You!
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