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Systems of Polynomial Equations

have been studied for more than 300 years:
Resultant and Elimination Theory were used by

(Pictures from Wikipedia)



Our Problem: SysPolyEqs(q)

Systems of Polynomial Equations over GF[g]

Input:

GF[q] polynomials py1,p5, ..., Pm

in formal variables x4, x5, ..., x,,

e.g.q =3,p; = 2x7 x5 X3+ X% x4, Py = X%, + x5 + 1
Task:

find a satisfying assignment a € GF[q]"

l.e. p1(a) =py(a) = =p,(a) =0 holds

e.qg. (xq,x9,x3,x4) = (2,2,1,1)
(#SysPolyEqgs(q) denotes the counting version)



Complexity of SysPolyEqs(q)

m P if each polynomial has degree 1 (linear equations)

m NP-complete if each polynomial has degree < 2

m Satisfying a 217¢ — 21724 4 ¢ fraction of equations is
NP-hard on satisfiable instances when g = 2, degree < d
[Hastad'11]

m Best worst-case upper bound: g™ X poly(input-size)

(even if g = 2, degree < 2)

Input:
GF[q] polynomials p4, 02, ..., Pm
in formal variables x4, x5, ..., x,
Task:
find a satisfying assignment a € GF[q]"

l.e. p1(a) =py(a) = =p,(a) = 0 holds



SysPolyEqgs(q) as Hardness Assumption

Crypto-systems assuming the hardness of:

1. Enumerating all satisfying assignments
m Hidden Fields Equations (HFE) [Patarin'96,...]

m Unbalanced Oil and Vinegar signature schemes (UOV) [Kipnis-
Patarin-Goubin'99,...]

m McEliece variants [Faugere-Otmani-Perret-Tillich'10,...]
m Polly cracker [Albrecht-Faugere-Farshim-Perret'11,...]

2. Finding one satisfying assignment
m QUAD [Berbain-Gilbert-Patarin'06,09,...]
m Matsumoto-Imai public key scheme [-'88,...]



SysPolyEqgs(q) as Hardness Assumption

Strong Exponential Time Hypothesis (g™ is necessary)
for SysPolyEqs(g) on degree 2 instances implies:

m The current best algorithm for the Listing Triangles
problem is optimal [Bjérklund-Pagh-Vassilevska Williams-Zwick'14]

m Beating brute force for the GF(g)-weight k-clique
problem is impossible [Vassilevska-Williams'09]



Previous Algorithms

m Groebner Basis: used in practice,
double exponential time in the worst case

m 2"(1=€) or polynomial time algorithms for SysPolyEqs(2)
on degree 2 instances are known if instances satisfy some

conditions e.g. [Yang-Chen'04,Bardet-Faugere-Salvy-
Spaenlehauer'l13,Miura-Hashimoto-Takagi'l3,...]

m ¢"/? length “proof” for the unsatisfiability of
SysPolyEqgs(q) on degree 2 instances [Woods'98]

(i.e. co-nondeterministic algorithm for SAT)



Our Result 1

[randomized, search, bounded degree]

SysPolyEqgs(q) on degree k instances can be solved
in randomized time g™(1=1/0(ak))

For g = k = 2, an important case for cryptography,
we get the bound < 2087651

Input:

GF[q] polynomials p;, 02, ..., Pm
in formal variables x4, x», ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p;(a) = py(a) =+ =py(a) =0 holds



Our Result 2

[deterministic, counting, bounded degree, prime field]

For a prime g, #SysPolyEqgs(q) on degree k instances can be
solved in deterministic time g"(1~1/0(ak)

Input:

GF[q] polynomials py,ps, ..., Pm
in formal variables x4, x,, ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p;(a) = py(a) =+ =pyn(a) =0 holds



Our Result 3

[deterministic, counting, unbounded degree, GF(2)]
For s =the total number of monomials, #SysPolyEqgs(2) can

be solved in deterministic time 27(1—1/0og(s/n)))

Remark: exponentially faster than 2™ if s = 0(n)

Input:

GF[q] polynomials p4, 02, ..., Pm
in formal variables x4, x5, ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p1(a) =py(a) = =p,(a) = 0 holds
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Our Result 4

[deterministic, counting, unbounded degree, GF(2)]

GenSysPolyEqs(2)

Input:
21X circuits (sum of products of linear forms)
D1,P32, -, Pm IN formal variables x4, x,, ..., x,,
eg.p1 = +x,+D)(xy +x3) + (7 +x4)x, +1

Result:

For s =the total number of products of linear forms,

#GenSysPolyEqgs(2) can be solved in deterministic time
on(1-1/0(log(s/n)))

Remark: exponentially faster than 2™ if s = 0(n)
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(k-)CNF SAT is a special case of SysPolyEqs(2)
(on degree k instances)

e.g.
Cy = (mx1 VX Vxz) = pr=x1(1 + %) (1 + x3)

C2 — (Xl VvV —1X3 V _IX4) = Do = (1 + xl)xeZ

C3 = (2 Va3 Vay) = ps=(1+x)(1+x)(1+x3)

(1=CG=0G=1p =p,=p3=0
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Optimality of Our Results

1. SysPolyEqs(2) on degree k instances can be solved
in time 27(1=1/0(k)

1'. k-CNF SAT can be solved in time 2(1~1/k)
[Paturi-Pudlak-Zane'97,...]

2. For s =the total number of products of linear forms,
GenSysPolyEqgs(2) can be solved in time 27(1~1/0(log(s/n)))

2'. For s =the number of clauses,
CNF SAT can be solved in time 2n(1—1/(2log(s/n)))
[Schuler'05,Calabro-Impagliazzo-Paturi’06,...]
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Our Techniques

Polynomial Method in Circuit Complexity
(originally used for proving circuit size lower bounds)

We use (extensions of)
1. fast evaluation algorithms for polynomials [Yates'37,...]

2. approximation of polynomials by low degree
probabilistic polynomials [Razborov'87,Smolensky'87]

and its derandomization [Chan-Williams'16]

3. Schuler’s width reduction for CNF-SAT [Schuler’'05,...]
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Cf. Polynomial Method

ACO[q]-circuit: bounded depth, unbounded-fan-in
Boolean circuit with AND/OR/NOT/mod g gates

Circuits Lower Bounds by [Razborov'87,Smolensky’'87]:
1. AC%[g]-circuit can be well approximated
by a low-degree GF(q) polynomial
2. majority, mod r cannot be well approximated
by a low-degree GF(q) polynomial

3. 1+2 = majority, mod r € AC°[q]-circuit

[tem 1 is useful in algorithm design
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Algorithms via Polynomial Method

(In what follows, we focus on GF(2))
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Our Tool 1

Lemmal[Fast Evaluation [Yates'37,...]]
Let p: {0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of monomials, then,
the truth table of p can be generated in time poly(n)2"

Note:
The number of monomials in p can be 2"

If we evaluate p(x) for each x € {0,1}",
then it takes poly(n)4"
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Basic Idea

Input: degree k polynomials py,p,, ..., Pm

1. Define P:{0,1}"* - {0,1} as
P = (p1 +1)(p2+1) -+ (pm+1)
mp(x) =pa(x) = =ppx) =0 Px) =1
m P might contain = 2™ monomials
when represented as a sum of monomials

2. Define R: {0,1}"‘"' — {0,1} for some n’ < n as
R(y) =1l e 1w (P,@) + 1)

mdx,P(x) =1 3y,R(y) =0
m Each P(y,a) might contain = 2" monomials
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Basic Idea

Observation:

If we can write R(y) as a sum of monomials in time 2™,
we can also solve the problem in time poly(n)2™*™™

by the Fast Evaluation Lemma

Note: straitfoward expansion needs 2™ x 2"~ 2"

1. Define P: {0,1}" - {0,1} as
P:= (p1 +1)(p2+1) - (pm+1)

2. Define R:{0,1}*™ - {0,1} for some n’ < n as
R(y) = HaE{O,l}n, (P(y, Cl) + 1)

m3x, p1(x) =p,(x) = =prx) =0 3y,R(y) =0
m Each P(y,a) might contain = 2" monomials 19



Our Tool 2

Definition:
For sq,...,s4 € {0,1}",
define degree d polynomial Q;:{0,1}" — {0,1} as

Qusp(x) = [T, ((s1, x) + 1), where (s;,%) = X e (51)%;
Intuition: Q{Si} ~ Hie[n](xi + 1)

Lemmal[Probabilistic Polynomial [Razborov'87,Smolensky'87]]
Select random sy, ..., s4 uniformly and independently,
then, for every non-zero x € {0,1}",

Pr[Q{Si}(x) =0]=1- 274 (ct. Pr[Q{Si}(O) =1]=1)
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Our Algorithm for degree k

Input: degree-k polynomials py, 15, ..., Pm

1. Define P:{0,1}"* - {0,1} as
P = (p1 +1)(p2+1) - (o +1)

2. Define R: {0,1}"‘"' — {0,1} for some n’ < n as
R(y) = HaE{O,l}n’ (P(y, Cl) + 1)

3. Replace each product by a probabilistic polynomial
and write R as a sum of monomials p

4. Construct the truth table T of p

if T contains an entry with O, the input has a solution
5. Repeat 3-4 and take the majority voting of T's
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Analysis of Our Algorithm

Input: degree-k polynomials py,p,, ..., Pm

1. Define P:{0,1}"* - {0,1} as
P = (p1 +1)(p2+1) - (o +1)

2. Define R: {0,1}"‘"' — {0,1} for some n’ < n as
R(y) =1l e 1w (Pr,@) + 1)

3. Replace each product by a probabilistic polynomial
and write R as a sum of monomials p

Step 3 takes time poly(n)2™"™™
if each product is replaced by a low degree polynomial
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Our Result 1

SysPolyEqgs(q) on degree k instances can be solved
in randomized time g™(1=1/0(ak))

For g = k = 2, an important case for cryptography,
we get the bound < 2087651

Input:

GF[q] polynomials p;, 02, ..., Pm
in formal variables x4, x», ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p;(a) = py(a) =+ =py(a) =0 holds

23



On Deterministic Algorithms

1. Derandomization of probabilistic polynomials due to
Razoborov-Smolensky [Chan-Williams'16]

m small biased space [Naor-Naor'90,...]

m modulus amplifying polynomial [Toda’89,Yao'90,Beigel-
Tarui'91]

2. Fast evaluation algorithms for non-multilinear integer
polynomials

m fast rectangular matrix multiplication
[Coppersmith’'82,...,LeGall 12]
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Our Algorithm for unbounded degree

Input: polynomials py, 05, ..., Pm

1. [Degree Reduction]
generate exponentially many instances
of SysPolyEqgs(2) such that

(1) original input has a solution if and only if
at least one of generated instances has a solution

(2) generated instances have degree at most k

2. Apply the algorithm for degree k
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Our Algorithm for unbounded degree

Degree Reduction:
while there is a monomial of degree > k
€.9. P1=X1 s X Xfggq e X +
generate two Instances as
IF-lix, oxp =1, 1e,x; = =x3,=1
I-2: x1 ...x;, = 0 (added as a polynomial equation)

Note: Degree reduction can be generalized to handle
ZIIZ circuits (sum of products of linear forms)

by “Simplification Rules” based on "change of basis” in
Linear Algebra
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Conclusion
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Our Results

1. SysPolyEqgs(q) on degree k instances can be solved
in randomized time g™(1=1/0(ak))

2. For g = k = 2, an important case for cryptography,
we get the bound < 2087651

3. For a prime g, #SysPolyEqgs(q) on degree k instances can
be solved in deterministic time g(1~1/0(ak)

4. For s =the total number of products of linear forms,

#GenSysPolyEqgs(2) can be solved in deterministic time
2n(1-1/0(log(s/n)))

Optimality: Improvement requires that for (k-)CNF SAT
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Future Directions

m Similar running time in polynomial space

m Degree Reduction for PolySysEqs(q), g # 2

m Beating Brute Force for other problems
using the Polynomial Method

m Develop/Apply Fast Evaluation Algorithms
for more expressive classes than polynomials

Thank you for your attention!
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