## Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^O[p]

Suguru TAMAKI Kyoto University
Joint work with:
Daniel Lokshtanov, Ramamohan Paturi, Ryan Williams

## Systems of Polynomial Equations

have been studied for more than 300 years：
Resultant and Elimination Theory were used by


関 孝和 1642－1708
Étienne Bézout 1730－1783
（Pictures from Wikipedia）

## Our Problem: SysPolyEqs(q)

## Systems of Polynomial Equations over GF[q]

## Input:

GF[q] polynomials $p_{1}, p_{2}, \ldots, p_{m}$
in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
e.g. $q=3, p_{1}=2 x_{1}^{2} x_{2}^{2} x_{3}+x_{3}^{2} x_{4}, p_{2}=x_{1} x_{2}+x_{2}^{2}+1$

Task:
find a satisfying assignment $a \in \operatorname{GF}[q]^{n}$
i.e. $p_{1}(a)=p_{2}(a)=\cdots=p_{m}(a)=0$ holds
e.g. $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,2,1,1)$
(\#SysPolyEqs $(q)$ denotes the counting version)

## Complexity of SysPolyEqs(q)

■ P if each polynomial has degree 1 (linear equations)
■ NP-complete if each polynomial has degree $\leq 2$

- Satisfying a $2^{1-d}-2^{1-2 d}+\varepsilon$ fraction of equations is NP-hard on satisfiable instances when $q=2$, degree $\leq d$ [Hastad'11]
■ Best worst-case upper bound: $q^{n} \times$ poly(input-size) (even if $q=2$, degree $\leq 2$ )

Input:
GF[q] polynomials $p_{1}, p_{2}, \ldots, p_{m}$
in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
Task:
find a satisfying assignment $a \in \operatorname{GF}[q]^{n}$
i.e. $p_{1}(a)=p_{2}(a)=\cdots=p_{m}(a)=0$ holds

## SysPolyEqs(q) as Hardness Assumption

Crypto-systems assuming the hardness of:

1. Enumerating all satisfying assignments

- Hidden Fields Equations (HFE) [Patarin'96,...]
- Unbalanced Oil and Vinegar signature schemes (UOV) [Kipnis-Patarin-Goubin'99,...]
- McEliece variants [Faugere-Otmani-Perret-Tillich'10,...]
- Polly cracker [Albrecht-Faugere-Farshim-Perret'11,...]

2. Finding one satisfying assignment

- QUAD [Berbain-Gilbert-Patarin'06,09,...]
- Matsumoto-Imai public key scheme [-'88,...]


## SysPolyEqs(q) as Hardness Assumption

Strong Exponential Time Hypothesis ( $q^{n}$ is necessary) for SysPolyEqs $(q)$ on degree 2 instances implies:

- The current best algorithm for the Listing Triangles problem is optimal [Björklund-Pagh-Vassilevska Williams-Zwick'14]

■ Beating brute force for the $\mathrm{GF}(q)$-weight $k$-clique problem is impossible [Vassilevska-Williams'09]

## Previous Algorithms

■ Groebner Basis: used in practice, double exponential time in the worst case

■ $2^{n(1-\epsilon)}$ or polynomial time algorithms for SysPolyEqs(2) on degree 2 instances are known if instances satisfy some conditions e.g. [Yang-Chen'04,Bardet-Faugere-Salvy-Spaenlehauer'13,Miura-Hashimoto-Takagi'13,...]

■ $q^{n / 2}$ length "proof" for the unsatisfiability of SysPolyEqs $(q)$ on degree 2 instances [Woods'98] (i.e. co-nondeterministic algorithm for SAT)

## Our Result 1

 [randomized, search, bounded degree]SysPolyEqs ( $q$ ) on degree $k$ instances can be solved in randomized time $q^{n(1-1 / o(q k))}$

For $q=k=2$, an important case for cryptography, we get the bound $\leq 2^{0.8765 n}$

Input:
GF[ $q$ ] polynomials $p_{1}, p_{2}, \ldots, p_{m}$
in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
Task:
find a satisfying assignment $a \in \operatorname{GF}[q]^{n}$
i.e. $p_{1}(a)=p_{2}(a)=\cdots=p_{m}(a)=0$ holds

## Our Result 2

[deterministic, counting, bounded degree, prime field]
For a prime $q$, \#SysPolyEqs $(q)$ on degree $k$ instances can be solved in deterministic time $q^{n(1-1 / O(q k))}$

Input:
GF[ $q$ ] polynomials $p_{1}, p_{2}, \ldots, p_{m}$ in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
Task:
find a satisfying assignment $a \in \operatorname{GF}[q]^{n}$
i.e. $p_{1}(a)=p_{2}(a)=\cdots=p_{m}(a)=0$ holds

## Our Result 3

[deterministic, counting, unbounded degree, GF(2)]
For $s=$ the total number of monomials, \#SysPolyEqs(2) can be solved in deterministic time $2^{n(1-1 / O(\log (s / n)))}$

Remark: exponentially faster than $2^{n}$ if $s=O(n)$

Input:
GF[q] polynomials $p_{1}, p_{2}, \ldots, p_{m}$
in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
Task:
find a satisfying assignment $a \in \operatorname{GF}[q]^{n}$
i.e. $p_{1}(a)=p_{2}(a)=\cdots=p_{m}(a)=0$ holds

## Our Result 4

[deterministic, counting, unbounded degree, GF(2)]
GenSysPolyEqs(2)
Input:
$\Sigma \Pi \Sigma$ circuits (sum of products of linear forms)
$p_{1}, p_{2}, \ldots, p_{m}$ in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
e.g. $p_{1}=\left(x_{1}+x_{2}+1\right)\left(x_{2}+x_{3}\right)+\left(x_{1}+x_{4}\right) x_{2}+1$

Result:
For $s=$ the total number of products of linear forms, \#GenSysPolyEqs(2) can be solved in deterministic time $2^{n(1-1 / O(\log (s / n)))}$

Remark: exponentially faster than $2^{n}$ if $s=O(n)$

## Remark

( $k-$ )CNF SAT is a special case of SysPolyEqs(2)
(on degree $k$ instances)
e.g.
$C_{1}=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \Rightarrow p_{1}=x_{1}\left(1+x_{2}\right)\left(1+x_{3}\right)$
$C_{2}=\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \Rightarrow p_{2}=\left(1+x_{1}\right) x_{2} x_{2}$
$C_{3}=\left(x_{2} \vee x_{3} \vee x_{4}\right) \Rightarrow p_{3}=\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)$
$C_{1}=C_{2}=C_{3}=1 \Leftrightarrow p_{1}=p_{2}=p_{3}=0$

## Optimality of Our Results

1. SysPolyEqs(2) on degree $k$ instances can be solved in time $2^{n(1-1 / O(k))}$
$1^{\prime}$. $k$-CNF SAT can be solved in time $2^{n(1-1 / k)}$
[Paturi-Pudlak-Zane'97,...]
2. For $s=$ the total number of products of linear forms, GenSysPolyEqs(2) can be solved in time $2^{n(1-1 / O(\log (s / n)))}$

2'. For $s=$ the number of clauses,
CNF SAT can be solved in time $2^{n(1-1 /(2 \log (s / n)))}$
[Schuler'05,Calabro-Impagliazzo-Paturi'06,...]

## Our Techniques

Polynomial Method in Circuit Complexity (originally used for proving circuit size lower bounds)

We use (extensions of)

1. fast evaluation algorithms for polynomials [Yates'37,...]
2. approximation of polynomials by low degree
probabilistic polynomials [Razborov'87,Smolensky'87] and its derandomization [Chan-Williams'16]
3. Schuler's width reduction for CNF-SAT [Schuler'05,...]

## Cf. Polynomial Method

$\mathrm{AC}^{0}[q]$-circuit: bounded depth, unbounded-fan-in Boolean circuit with AND/OR/NOT/mod $q$ gates

Circuits Lower Bounds by [Razborov'87,Smolensky'87]:

1. $\mathrm{AC}^{0}[q]$-circuit can be well approximated by a low-degree GF(q) polynomial
2. majority, mod $r$ cannot be well approximated by a low-degree GF(q) polynomial
3. $1+2 \Rightarrow$ majority, $\bmod r \notin \mathrm{AC}^{0}[q]$-circuit

Item 1 is useful in algorithm design

## Algorithms via Polynomial Method

(In what follows, we focus on GF(2))

## Our Tool 1

Lemma[Fast Evaluation [Yates'37,...]]
Let $p:\{0,1\}^{n} \rightarrow\{0,1\}$ be a $G F(2)$-polynomial
represented as a sum of monomials, then, the truth table of $p$ can be generated in time poly $(n) 2^{n}$

Note:
The number of monomials in $p$ can be $2^{n}$
If we evaluate $p(x)$ for each $x \in\{0,1\}^{n}$, then it takes poly $(n) 4^{n}$

## Basic Idea

Input: degree $k$ polynomials $p_{1}, p_{2}, \ldots, p_{m}$

1. Define $P:\{0,1\}^{n} \rightarrow\{0,1\}$ as

$$
P:=\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{m}+1\right)
$$

- $p_{1}(x)=p_{2}(x)=\cdots=p_{m}(x)=0 \Leftrightarrow P(x)=1$
- $P$ might contain $\approx 2^{n}$ monomials
when represented as a sum of monomials

2. Define $R:\{0,1\}^{n-n^{\prime}} \rightarrow\{0,1\}$ for some $n^{\prime}<n$ as

$$
R(y):=\prod_{a \in\{0,1\}^{n^{\prime}}}(P(y, a)+1)
$$

- $\exists x, P(x)=1 \Leftrightarrow \exists y, R(y)=0$
- Each $P(y, a)$ might contain $\approx 2^{n-n \prime}$ monomials


## Basic Idea

Observation:
If we can write $R(y)$ as a sum of monomials in time $2^{n-n \prime}$, we can also solve the problem in time poly $(n) 2^{n-n \prime}$ by the Fast Evaluation Lemma

Note: straitfoward expansion needs $2^{n-n \prime} \times 2^{n \prime} \approx 2^{n}$

1. Define $P:\{0,1\}^{n} \rightarrow\{0,1\}$ as

$$
P:=\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{m}+1\right)
$$

2. Define $R:\{0,1\}^{n-n^{\prime}} \rightarrow\{0,1\}$ for some $n^{\prime}<n$ as $R(y):=\prod_{a \in\{0,1\}^{n^{\prime}}}(P(y, a)+1)$
$\square \exists x, p_{1}(x)=p_{2}(x)=\cdots=p_{m}(x)=0 \Leftrightarrow \exists y, R(y)=0$
■ Each $P(y, a)$ might contain $\approx 2^{n-n^{\prime}}$ monomials

## Our Tool 2

## Definition:

For $s_{1}, \ldots, s_{d} \in\{0,1\}^{n}$,
define degree $d$ polynomial $Q_{\left\{s_{i j}\right\}}:\{0,1\}^{n} \rightarrow\{0,1\}$ as

$$
Q_{\left\{\left\{_{i}\right\}\right.}(x):=\prod_{i=1}^{d}\left(\left(s_{i}, x\right)+1\right), \text { where }\left(s_{i}, x\right):=\sum_{j \in[n]}\left(s_{i}\right)_{j} x_{j}
$$

Intuition: $Q_{\left\{s_{i}\right\}} \approx \prod_{i \in[n]}\left(x_{i}+1\right)$
Lemma[Probabilistic Polynomial [Razborov'87,Smolensky'87]]
Select random $s_{1}, \ldots, s_{d}$ uniformly and independently, then, for every non-zero $x \in\{0,1\}^{n}$,

$$
\operatorname{Pr}\left[Q_{\left\{s_{i}\right\}}(x)=0\right]=1-2^{-d} \quad\left(\operatorname{cf} . \operatorname{Pr}\left[Q_{\left\{s_{i}\right\}}(0)=1\right]=1\right)
$$

## Our Algorithm for degree $k$

Input: degree- $k$ polynomials $p_{1}, p_{2}, \ldots, p_{m}$

1. Define $P:\{0,1\}^{n} \rightarrow\{0,1\}$ as

$$
P:=\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{m}+1\right)
$$

2. Define $R:\{0,1\}^{n-n^{\prime}} \rightarrow\{0,1\}$ for some $n^{\prime}<n$ as

$$
R(y):=\prod_{a \in\{0,1\} n^{\prime}}(P(y, a)+1)
$$

3. Replace each product by a probabilistic polynomial and write $R$ as a sum of monomials $p$
4. Construct the truth table $T$ of $p$
if $T$ contains an entry with 0 , the input has a solution
5. Repeat 3-4 and take the majority voting of T's

## Analysis of Our Algorithm

Input: degree- $k$ polynomials $p_{1}, p_{2}, \ldots, p_{m}$

1. Define $P:\{0,1\}^{n} \rightarrow\{0,1\}$ as

$$
P:=\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{m}+1\right)
$$

2. Define $R:\{0,1\}^{n-n^{\prime}} \rightarrow\{0,1\}$ for some $n^{\prime}<n$ as

$$
R(y):=\prod_{a \in\{0,1\}^{\prime}}(P(y, a)+1)
$$

3. Replace each product by a probabilistic polynomial and write $R$ as a sum of monomials $p$

Step 3 takes time poly $(n) 2^{n-n \prime}$
if each product is replaced by a low degree polynomial

## Our Result 1

SysPolyEqs ( $q$ ) on degree $k$ instances can be solved in randomized time $q^{n(1-1 / o(q k))}$

For $q=k=2$, an important case for cryptography, we get the bound $\leq 2^{0.8765 n}$

Input:
GF[ $q$ ] polynomials $p_{1}, p_{2}, \ldots, p_{m}$
in formal variables $x_{1}, x_{2}, \ldots, x_{n}$
Task:
find a satisfying assignment $a \in \operatorname{GF}[q]^{n}$
i.e. $p_{1}(a)=p_{2}(a)=\cdots=p_{m}(a)=0$ holds

## On Deterministic Algorithms

1. Derandomization of probabilistic polynomials due to Razoborov-Smolensky [Chan-Williams'16]
■ small biased space [Naor-Naor'90,...]
■ modulus amplifying polynomial [Toda'89,Yao'90,BeigelTarui'91]
2. Fast evaluation algorithms for non-multilinear integer polynomials

- fast rectangular matrix multiplication
[Coppersmith'82,...,LeGall 12]


## Our Algorithm for unbounded degree

Input: polynomials $p_{1}, p_{2}, \ldots, p_{m}$

1. [Degree Reduction] generate exponentially many instances of SysPolyEqs(2) such that
(1) original input has a solution if and only if at least one of generated instances has a solution
(2) generated instances have degree at most $k$
2. Apply the algorithm for degree $k$

## Our Algorithm for unbounded degree

Degree Reduction:
while there is a monomial of degree $>k$
e.g. $p_{1}=x_{1} \ldots x_{k} x_{k+1} \ldots x_{n}+\ldots$
generate two instances as
I-1: $x_{1} \ldots x_{k}=1$, i.e., $x_{1}=\cdots=x_{k}=1$
I-2: $x_{1} \ldots x_{k}=0$ (added as a polynomial equation)

Note: Degree reduction can be generalized to handle $\Sigma \Pi \Sigma$ circuits (sum of products of linear forms) by "Simplification Rules" based on "change of basis" in Linear Algebra

## Conclusion

## Our Results

1. SysPolyEqs $(q)$ on degree $k$ instances can be solved in randomized time $q^{n(1-1 / o(q k))}$
2. For $q=k=2$, an important case for cryptography, we get the bound $\leq 2^{0.8765 n}$
3. For a prime $q$, \#SysPolyEqs $(q)$ on degree $k$ instances can be solved in deterministic time $q^{n(1-1 / o(q k))}$
4. For $s=$ the total number of products of linear forms, \#GenSysPolyEqs(2) can be solved in deterministic time $2^{n(1-1 / O(\log (s / n)))}$

Optimality: Improvement requires that for ( $k-$ )CNF SAT

## Future Directions

- Similar running time in polynomial space
- Degree Reduction for PolySysEqs( $q$ ), $q \neq 2$
- Beating Brute Force for other problems using the Polynomial Method
■ Develop/Apply Fast Evaluation Algorithms for more expressive classes than polynomials

Thank you for your attention!

