
Faster Satisfiability Algorithms for Systems of

Polynomial Equations over Finite Fields

and ACC^0[p]

Suguru TAMAKI Kyoto University

Joint work with:

Daniel Lokshtanov, Ramamohan Paturi, Ryan Williams

Satisfiability Lower Bounds and Tight Results for Parameterized and Exponential-Time Algorithms

November 6, 2015, Simons Institute, Berkeley, CA

Systems of Polynomial Equations

have been studied for more than 300 years:

Resultant and Elimination Theory were used by

2

関孝和 1642-1708 Étienne Bézout 1730-1783

(Pictures from Wikipedia)

Our Problem: SysPolyEqs(𝑞)

Systems of Polynomial Equations over GF[𝑞]

Input:

GF[𝑞] polynomials 𝑝1, 𝑝2, … , 𝑝𝑚
in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛

e.g. 𝑞 = 3, 𝑝1 = 2𝑥1
2 𝑥2

2 𝑥3+ 𝑥3
2 𝑥4, 𝑝2 = 𝑥1𝑥2 + 𝑥2

2 + 1

Task:

find a satisfying assignment 𝑎 ∈ GF[𝑞]
𝑛

i.e. 𝑝1(𝑎) = 𝑝2(𝑎) = ⋯ = 𝑝𝑚(𝑎) = 0 holds

e.g. (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (2,2,1,1)

(#SysPolyEqs(𝑞) denotes the counting version)

3

Complexity of SysPolyEqs(𝑞)

∎ P if each polynomial has degree 1 (linear equations)

∎ NP-complete if each polynomial has degree ≤ 2

∎ Satisfying a 21−𝑑 − 21−2𝑑 + 𝜀 fraction of equations is

NP-hard on satisfiable instances when 𝑞 = 2, degree ≤ 𝑑
[Hastad’11]

∎ Best worst-case upper bound: 𝑞𝑛 × poly(input-size)

(even if 𝑞 = 2, degree ≤ 2)

Input:

GF[𝑞] polynomials 𝑝1, 𝑝2, … , 𝑝𝑚
in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛

Task:

find a satisfying assignment 𝑎 ∈ GF[𝑞]
𝑛

i.e. 𝑝1(𝑎) = 𝑝2(𝑎) = ⋯ = 𝑝𝑚(𝑎) = 0 holds
4

SysPolyEqs(𝑞) as Hardness Assumption

Crypto-systems assuming the hardness of:

1. Enumerating all satisfying assignments

∎ Hidden Fields Equations (HFE) [Patarin’96,…]

∎ Unbalanced Oil and Vinegar signature schemes (UOV) [Kipnis-

Patarin-Goubin’99,…]

∎ McEliece variants [Faugere-Otmani-Perret-Tillich’10,…]

∎ Polly cracker [Albrecht-Faugere-Farshim-Perret’11,…]

…

2. Finding one satisfying assignment

∎ QUAD [Berbain-Gilbert-Patarin’06,09,…]

∎ Matsumoto-Imai public key scheme [-’88,…]

…

5

SysPolyEqs(𝑞) as Hardness Assumption

Strong Exponential Time Hypothesis (𝑞𝑛 is necessary)

for SysPolyEqs(𝑞) on degree 2 instances implies:

∎ The current best algorithm for the Listing Triangles

problem is optimal [Björklund-Pagh-Vassilevska Williams-Zwick'14]

∎ Beating brute force for the GF(𝑞)-weight 𝑘-clique

problem is impossible [Vassilevska-Williams'09]

6

Previous Algorithms

∎ Groebner Basis: used in practice,

double exponential time in the worst case

∎ 2𝑛(1−𝜖) or polynomial time algorithms for SysPolyEqs(2)

on degree 2 instances are known if instances satisfy some

conditions e.g. [Yang-Chen'04,Bardet-Faugere-Salvy-

Spaenlehauer'13,Miura-Hashimoto-Takagi'13,…]

∎ 𝑞𝑛/2 length ``proof’’ for the unsatisfiability of

SysPolyEqs(𝑞) on degree 2 instances [Woods’98]

(i.e. co-nondeterministic algorithm for SAT)

7

Our Result 1
[randomized, search, bounded degree]

SysPolyEqs(𝑞) on degree 𝑘 instances can be solved

in randomized time 𝑞𝑛(1−1/𝑂(𝑞𝑘))

For 𝑞 = 𝑘 = 2, an important case for cryptography,

we get the bound ≤ 20.8765𝑛

Input:

GF[𝑞] polynomials 𝑝1, 𝑝2, … , 𝑝𝑚
in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛

Task:

find a satisfying assignment 𝑎 ∈ GF[𝑞]
𝑛

i.e. 𝑝1(𝑎) = 𝑝2(𝑎) = ⋯ = 𝑝𝑚(𝑎) = 0 holds
8

Our Result 2
[deterministic, counting, bounded degree, prime field]

For a prime 𝑞, #SysPolyEqs(𝑞) on degree 𝑘 instances can be

solved in deterministic time 𝑞𝑛(1−1/𝑂(𝑞𝑘))

Input:

GF[𝑞] polynomials 𝑝1, 𝑝2, … , 𝑝𝑚
in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛

Task:

find a satisfying assignment 𝑎 ∈ GF[𝑞]
𝑛

i.e. 𝑝1(𝑎) = 𝑝2(𝑎) = ⋯ = 𝑝𝑚(𝑎) = 0 holds
9

Our Result 3
[deterministic, counting, unbounded degree, GF(2)]

For 𝑠 =the total number of monomials, #SysPolyEqs(2) can

be solved in deterministic time 2𝑛(1−1/𝑂(log(𝑠/𝑛)))

Remark: exponentially faster than 2𝑛 if 𝑠 = 𝑂(𝑛)

Input:

GF[𝑞] polynomials 𝑝1, 𝑝2, … , 𝑝𝑚
in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛

Task:

find a satisfying assignment 𝑎 ∈ GF[𝑞]
𝑛

i.e. 𝑝1(𝑎) = 𝑝2(𝑎) = ⋯ = 𝑝𝑚(𝑎) = 0 holds

10

Our Result 4
[deterministic, counting, unbounded degree, GF(2)]

GenSysPolyEqs(2)

Input:

ΣΠΣ circuits (sum of products of linear forms)

𝑝1, 𝑝2, … , 𝑝𝑚 in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛
e.g. 𝑝1 = 𝑥1 + 𝑥2 + 1 𝑥2 + 𝑥3 + 𝑥1 + 𝑥4 𝑥2 + 1

Result:

For 𝑠 =the total number of products of linear forms,

#GenSysPolyEqs(2) can be solved in deterministic time

2𝑛(1−1/𝑂(log(𝑠/𝑛)))

Remark: exponentially faster than 2𝑛 if 𝑠 = 𝑂(𝑛)
11

Remark

(𝑘-)CNF SAT is a special case of SysPolyEqs(2)

(on degree 𝑘 instances)

e.g.

𝐶1 = ¬𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇒ 𝑝1= 𝑥1 1 + 𝑥2 1 + 𝑥3
𝐶2 = 𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥4 ⇒ 𝑝2= 1 + 𝑥1 𝑥2𝑥2
𝐶3 = 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ⇒ 𝑝3= 1 + 𝑥1 1 + 𝑥2 1 + 𝑥3

𝐶1 = 𝐶2 = 𝐶3 = 1 ⇔ 𝑝1 = 𝑝2 = 𝑝3 = 0

12

Optimality of Our Results

1. SysPolyEqs(2) on degree 𝑘 instances can be solved

in time 2𝑛(1−1/𝑂(𝑘))

1’. 𝑘-CNF SAT can be solved in time 2𝑛(1−1/𝑘)

[Paturi-Pudlak-Zane’97,…]

2. For 𝑠 =the total number of products of linear forms,

GenSysPolyEqs(2) can be solved in time 2𝑛(1−1/𝑂(log(𝑠/𝑛)))

2’. For 𝑠 =the number of clauses,

CNF SAT can be solved in time 2𝑛(1−1/(2 log(𝑠/𝑛)))

[Schuler’05,Calabro-Impagliazzo-Paturi’06,…]

13

Our Techniques

Polynomial Method in Circuit Complexity

(originally used for proving circuit size lower bounds)

We use (extensions of)

1. fast evaluation algorithms for polynomials [Yates’37,…]

2. approximation of polynomials by low degree

probabilistic polynomials [Razborov’87,Smolensky’87]

and its derandomization [Chan-Williams’16]

3. Schuler’s width reduction for CNF-SAT [Schuler’05,…]

14

Cf. Polynomial Method

AC0[𝑞]-circuit: bounded depth, unbounded-fan-in

Boolean circuit with AND/OR/NOT/mod 𝑞 gates

Circuits Lower Bounds by [Razborov’87,Smolensky’87]:

1. AC0[𝑞]-circuit can be well approximated

by a low-degree GF(𝑞) polynomial

2. majority, mod 𝑟 cannot be well approximated

by a low-degree GF(𝑞) polynomial

3. 1+2 ⇒ majority, mod 𝑟 ∉ AC0[𝑞]-circuit

Item 1 is useful in algorithm design

15

Algorithms via Polynomial Method

16

(In what follows, we focus on GF(2))

Our Tool 1

Lemma[Fast Evaluation [Yates’37,…]]

Let 𝑝: {0,1}𝑛→ 0,1 be a GF(2)-polynomial

represented as a sum of monomials, then,

the truth table of 𝑝 can be generated in time poly 𝑛 2𝑛

Note:

The number of monomials in 𝑝 can be 2𝑛

If we evaluate 𝑝(𝑥) for each 𝑥 ∈ {0,1}𝑛,

then it takes poly 𝑛 4𝑛

17

Basic Idea

Input: degree 𝑘 polynomials 𝑝1, 𝑝2, … , 𝑝𝑚

1. Define 𝑃: 0,1 𝑛 → 0,1 as

𝑃 ≔ (𝑝1+1)(𝑝2+1)⋯ (𝑝𝑚+1)

∎ 𝑝1 𝑥 = 𝑝2 𝑥 = ⋯ = 𝑝𝑚 𝑥 = 0 ⟺ 𝑃 𝑥 = 1

∎ 𝑃 might contain ≈ 2𝑛 monomials

when represented as a sum of monomials

2. Define 𝑅: 0,1 𝑛−𝑛′ → 0,1 for some 𝑛′ < 𝑛 as

𝑅 𝑦 ≔
𝑎∈ 0,1 𝑛′(𝑃 𝑦, 𝑎 + 1)

∎ ∃𝑥, 𝑃 𝑥 = 1 ⟺ ∃𝑦, 𝑅 𝑦 = 0

∎ Each 𝑃(𝑦, 𝑎) might contain ≈ 2𝑛−𝑛′ monomials
18

Basic Idea

Observation:

If we can write 𝑅 𝑦 as a sum of monomials in time 2𝑛−𝑛′,

we can also solve the problem in time poly 𝑛 2𝑛−𝑛′

by the Fast Evaluation Lemma

Note: straitfoward expansion needs 2𝑛−𝑛′ × 2𝑛′≈ 2𝑛

1. Define 𝑃: 0,1 𝑛 → 0,1 as

𝑃 ≔ (𝑝1+1)(𝑝2+1)⋯ (𝑝𝑚+1)

2. Define 𝑅: 0,1 𝑛−𝑛′ → 0,1 for some 𝑛′ < 𝑛 as

𝑅 𝑦 ≔
𝑎∈ 0,1 𝑛′(𝑃 𝑦, 𝑎 + 1)

∎ ∃𝑥, 𝑝1 𝑥 = 𝑝2 𝑥 = ⋯ = 𝑝𝑚 𝑥 = 0 ⟺ ∃𝑦, 𝑅 𝑦 = 0

∎ Each 𝑃(𝑦, 𝑎) might contain ≈ 2𝑛−𝑛′ monomials 19

Our Tool 2

Definition:

For 𝑠1, … , 𝑠𝑑 ∈ 0,1 𝑛,

define degree 𝑑 polynomial 𝑄{𝑠𝑖}: 0,1
𝑛 → 0,1 as

𝑄 𝑠𝑖 (𝑥) ≔ 𝑖=1
𝑑 (𝑠𝑖 , 𝑥) + 1 , where (𝑠𝑖 , 𝑥) ≔ 𝑗∈[𝑛](𝑠𝑖)𝑗𝑥𝑗

Intuition: 𝑄{𝑠𝑖} ≈ 𝑖∈ 𝑛 𝑥𝑖 + 1

Lemma[Probabilistic Polynomial [Razborov’87,Smolensky’87]]

Select random 𝑠1, … , 𝑠𝑑 uniformly and independently,

then, for every non-zero 𝑥 ∈ 0,1 𝑛,

Pr[𝑄 𝑠𝑖 𝑥 = 0] = 1 − 2−𝑑 (cf. Pr[𝑄 𝑠𝑖 0 = 1] = 1)

20

Our Algorithm for degree 𝑘

Input: degree-𝑘 polynomials 𝑝1, 𝑝2, … , 𝑝𝑚

1. Define 𝑃: 0,1 𝑛 → 0,1 as

𝑃 ≔ (𝑝1+1)(𝑝2+1)⋯ (𝑝𝑚+1)

2. Define 𝑅: 0,1 𝑛−𝑛′ → 0,1 for some 𝑛′ < 𝑛 as

𝑅 𝑦 ≔
𝑎∈ 0,1 𝑛′(𝑃 𝑦, 𝑎 + 1)

3. Replace each product by a probabilistic polynomial

and write 𝑅 as a sum of monomials 𝑝

4. Construct the truth table 𝑇 of 𝑝

if 𝑇 contains an entry with 0, the input has a solution

5. Repeat 3-4 and take the majority voting of 𝑇’s

21

Analysis of Our Algorithm

Input: degree-𝑘 polynomials 𝑝1, 𝑝2, … , 𝑝𝑚

1. Define 𝑃: 0,1 𝑛 → 0,1 as

𝑃 ≔ (𝑝1+1)(𝑝2+1)⋯ (𝑝𝑚+1)

2. Define 𝑅: 0,1 𝑛−𝑛′ → 0,1 for some 𝑛′ < 𝑛 as

𝑅 𝑦 ≔
𝑎∈ 0,1 𝑛′(𝑃 𝑦, 𝑎 + 1)

3. Replace each product by a probabilistic polynomial

and write 𝑅 as a sum of monomials 𝑝

Step 3 takes time poly 𝑛 2𝑛−𝑛′

if each product is replaced by a low degree polynomial

22

Our Result 1

SysPolyEqs(𝑞) on degree 𝑘 instances can be solved

in randomized time 𝑞𝑛(1−1/𝑂(𝑞𝑘))

For 𝑞 = 𝑘 = 2, an important case for cryptography,

we get the bound ≤ 20.8765𝑛

Input:

GF[𝑞] polynomials 𝑝1, 𝑝2, … , 𝑝𝑚
in formal variables 𝑥1, 𝑥2, … , 𝑥𝑛

Task:

find a satisfying assignment 𝑎 ∈ GF[𝑞]
𝑛

i.e. 𝑝1(𝑎) = 𝑝2(𝑎) = ⋯ = 𝑝𝑚(𝑎) = 0 holds
23

On Deterministic Algorithms

1. Derandomization of probabilistic polynomials due to

Razoborov-Smolensky [Chan-Williams’16]

∎ small biased space [Naor-Naor’90,…]

∎ modulus amplifying polynomial [Toda’89,Yao’90,Beigel-

Tarui’91]

2. Fast evaluation algorithms for non-multilinear integer

polynomials

∎ fast rectangular matrix multiplication
[Coppersmith’82,…,LeGall 12]

24

Our Algorithm for unbounded degree

Input: polynomials 𝑝1, 𝑝2, … , 𝑝𝑚

1. [Degree Reduction]

generate exponentially many instances

of SysPolyEqs(2) such that

(1) original input has a solution if and only if

at least one of generated instances has a solution

(2) generated instances have degree at most 𝑘

2. Apply the algorithm for degree 𝑘

25

Our Algorithm for unbounded degree

Degree Reduction:

while there is a monomial of degree > 𝑘

e.g. 𝑝1=𝑥1…𝑥𝑘𝑥𝑘+1…𝑥𝑛 +⋯

generate two instances as

I-1: 𝑥1…𝑥𝑘 = 1, i.e., 𝑥1 = ⋯ = 𝑥𝑘= 1

I-2: 𝑥1…𝑥𝑘 = 0 (added as a polynomial equation)

Note: Degree reduction can be generalized to handle

ΣΠΣ circuits (sum of products of linear forms)

by ``Simplification Rules’’ based on ``change of basis’’ in

Linear Algebra

26

Conclusion

27

Our Results

1. SysPolyEqs(𝑞) on degree 𝑘 instances can be solved

in randomized time 𝑞𝑛(1−1/𝑂(𝑞𝑘))

2. For 𝑞 = 𝑘 = 2, an important case for cryptography,

we get the bound ≤ 20.8765𝑛

3. For a prime 𝑞, #SysPolyEqs(𝑞) on degree 𝑘 instances can

be solved in deterministic time 𝑞𝑛(1−1/𝑂(𝑞𝑘))

4. For 𝑠 =the total number of products of linear forms,

#GenSysPolyEqs(2) can be solved in deterministic time

2𝑛(1−1/𝑂(log(𝑠/𝑛)))

Optimality: Improvement requires that for (𝑘-)CNF SAT

28

Future Directions

∎ Similar running time in polynomial space

∎ Degree Reduction for PolySysEqs(𝑞), 𝑞 ≠ 2

∎ Beating Brute Force for other problems

using the Polynomial Method

∎ Develop/Apply Fast Evaluation Algorithms

for more expressive classes than polynomials

Thank you for your attention!

29

