Faster Satisfiability Algorithms for Systems of

Polynomial Equations over Finite Fields

and-ACCAOp]

Suguru TAMAKI Kyoto University
Joint work with:

Daniel Lokshtanov, Ramamohan Paturi, Ryan Williams

Satisfiability Lower Bounds and Tight Results for Parameterized and Exponential-Time Algorithms
November 6, 2015, Simons Institute, Berkeley, CA



Systems of Polynomial Equations

have been studied for more than 300 years:
Resultant and Elimination Theory were used by

(Pictures from Wikipedia)



Our Problem: SysPolyEqs(q)

Systems of Polynomial Equations over GF[g]

Input:

GF[q] polynomials py1,p5, ..., Pm

in formal variables x4, x5, ..., x,,

e.g.q =3,p; = 2x7 x5 X3+ X% x4, Py = X%, + x5 + 1
Task:

find a satisfying assignment a € GF[q]"

l.e. p1(a) =py(a) = =p,(a) =0 holds

e.qg. (xq,x9,x3,x4) = (2,2,1,1)
(#SysPolyEqgs(q) denotes the counting version)



Complexity of SysPolyEqs(q)

m P if each polynomial has degree 1 (linear equations)

m NP-complete if each polynomial has degree < 2

m Satisfying a 217¢ — 21724 4 ¢ fraction of equations is
NP-hard on satisfiable instances when g = 2, degree < d
[Hastad'11]

m Best worst-case upper bound: g™ X poly(input-size)

(even if g = 2, degree < 2)

Input:
GF[q] polynomials p4, 02, ..., Pm
in formal variables x4, x5, ..., x,
Task:
find a satisfying assignment a € GF[q]"

l.e. p1(a) =py(a) = =p,(a) = 0 holds



SysPolyEqgs(q) as Hardness Assumption

Crypto-systems assuming the hardness of:

1. Enumerating all satisfying assignments
m Hidden Fields Equations (HFE) [Patarin'96,...]

m Unbalanced Oil and Vinegar signature schemes (UOV) [Kipnis-
Patarin-Goubin'99,...]

m McEliece variants [Faugere-Otmani-Perret-Tillich'10,...]
m Polly cracker [Albrecht-Faugere-Farshim-Perret'11,...]

2. Finding one satisfying assignment
m QUAD [Berbain-Gilbert-Patarin'06,09,...]
m Matsumoto-Imai public key scheme [-'88,...]



SysPolyEqgs(q) as Hardness Assumption

Strong Exponential Time Hypothesis (g™ is necessary)
for SysPolyEqs(g) on degree 2 instances implies:

m The current best algorithm for the Listing Triangles
problem is optimal [Bjérklund-Pagh-Vassilevska Williams-Zwick'14]

m Beating brute force for the GF(g)-weight k-clique
problem is impossible [Vassilevska-Williams'09]



Previous Algorithms

m Groebner Basis: used in practice,
double exponential time in the worst case

m 2"(1=€) or polynomial time algorithms for SysPolyEqs(2)
on degree 2 instances are known if instances satisfy some

conditions e.g. [Yang-Chen'04,Bardet-Faugere-Salvy-
Spaenlehauer'l13,Miura-Hashimoto-Takagi'l3,...]

m ¢"/? length “proof” for the unsatisfiability of
SysPolyEqgs(q) on degree 2 instances [Woods'98]

(i.e. co-nondeterministic algorithm for SAT)



Our Result 1

[randomized, search, bounded degree]

SysPolyEqgs(q) on degree k instances can be solved
in randomized time g™(1=1/0(ak))

For g = k = 2, an important case for cryptography,
we get the bound < 2087651

Input:

GF[q] polynomials p;, 02, ..., Pm
in formal variables x4, x», ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p;(a) = py(a) =+ =py(a) =0 holds



Our Result 2

[deterministic, counting, bounded degree, prime field]

For a prime g, #SysPolyEqgs(q) on degree k instances can be
solved in deterministic time g"(1~1/0(ak)

Input:

GF[q] polynomials py,ps, ..., Pm
in formal variables x4, x,, ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p;(a) = py(a) =+ =pyn(a) =0 holds



Our Result 3

[deterministic, counting, unbounded degree, GF(2)]
For s =the total number of monomials, #SysPolyEqgs(2) can

be solved in deterministic time 27(1—1/0og(s/n)))

Remark: exponentially faster than 2™ if s = 0(n)

Input:

GF[q] polynomials p4, 02, ..., Pm
in formal variables x4, x5, ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p1(a) =py(a) = =p,(a) = 0 holds

10



Our Result 4

[deterministic, counting, unbounded degree, GF(2)]

GenSysPolyEqs(2)

Input:
21X circuits (sum of products of linear forms)
D1,P32, -, Pm IN formal variables x4, x,, ..., x,,
eg.p1 = +x,+D)(xy +x3) + (7 +x4)x, +1

Result:

For s =the total number of products of linear forms,

#GenSysPolyEqgs(2) can be solved in deterministic time
on(1-1/0(log(s/n)))

Remark: exponentially faster than 2™ if s = 0(n)

11



(k-)CNF SAT is a special case of SysPolyEqs(2)
(on degree k instances)

e.g.
Cy = (mx1 VX Vxz) = pr=x1(1 + %) (1 + x3)

C2 — (Xl VvV —1X3 V _IX4) = Do = (1 + xl)xeZ

C3 = (2 Va3 Vay) = ps=(1+x)(1+x)(1+x3)

(1=CG=0G=1p =p,=p3=0

12



Optimality of Our Results

1. SysPolyEqs(2) on degree k instances can be solved
in time 27(1=1/0(k)

1'. k-CNF SAT can be solved in time 2(1~1/k)
[Paturi-Pudlak-Zane'97,...]

2. For s =the total number of products of linear forms,
GenSysPolyEqgs(2) can be solved in time 27(1~1/0(log(s/n)))

2'. For s =the number of clauses,
CNF SAT can be solved in time 2n(1—1/(2log(s/n)))
[Schuler'05,Calabro-Impagliazzo-Paturi’06,...]

13



Our Techniques

Polynomial Method in Circuit Complexity
(originally used for proving circuit size lower bounds)

We use (extensions of)
1. fast evaluation algorithms for polynomials [Yates'37,...]

2. approximation of polynomials by low degree
probabilistic polynomials [Razborov'87,Smolensky'87]

and its derandomization [Chan-Williams'16]

3. Schuler’s width reduction for CNF-SAT [Schuler’'05,...]

14



Cf. Polynomial Method

ACO[q]-circuit: bounded depth, unbounded-fan-in
Boolean circuit with AND/OR/NOT/mod g gates

Circuits Lower Bounds by [Razborov'87,Smolensky’'87]:
1. AC%[g]-circuit can be well approximated
by a low-degree GF(q) polynomial
2. majority, mod r cannot be well approximated
by a low-degree GF(q) polynomial

3. 1+2 = majority, mod r € AC°[q]-circuit

[tem 1 is useful in algorithm design

15



Algorithms via Polynomial Method

(In what follows, we focus on GF(2))

16



Our Tool 1

Lemmal[Fast Evaluation [Yates'37,...]]
Let p: {0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of monomials, then,
the truth table of p can be generated in time poly(n)2"

Note:
The number of monomials in p can be 2"

If we evaluate p(x) for each x € {0,1}",
then it takes poly(n)4"

17



Basic Idea

Input: degree k polynomials py,p,, ..., Pm

1. Define P:{0,1}"* - {0,1} as
P = (p1 +1)(p2+1) -+ (pm+1)
mp(x) =pa(x) = =ppx) =0 Px) =1
m P might contain = 2™ monomials
when represented as a sum of monomials

2. Define R: {0,1}"‘"' — {0,1} for some n’ < n as
R(y) =1l e 1w (P,@) + 1)

mdx,P(x) =1 3y,R(y) =0
m Each P(y,a) might contain = 2" monomials

18



Basic Idea

Observation:

If we can write R(y) as a sum of monomials in time 2™,
we can also solve the problem in time poly(n)2™*™™

by the Fast Evaluation Lemma

Note: straitfoward expansion needs 2™ x 2"~ 2"

1. Define P: {0,1}" - {0,1} as
P:= (p1 +1)(p2+1) - (pm+1)

2. Define R:{0,1}*™ - {0,1} for some n’ < n as
R(y) = HaE{O,l}n, (P(y, Cl) + 1)

m3x, p1(x) =p,(x) = =prx) =0 3y,R(y) =0
m Each P(y,a) might contain = 2" monomials 19



Our Tool 2

Definition:
For sq,...,s4 € {0,1}",
define degree d polynomial Q;:{0,1}" — {0,1} as

Qusp(x) = [T, ((s1, x) + 1), where (s;,%) = X e (51)%;
Intuition: Q{Si} ~ Hie[n](xi + 1)

Lemmal[Probabilistic Polynomial [Razborov'87,Smolensky'87]]
Select random sy, ..., s4 uniformly and independently,
then, for every non-zero x € {0,1}",

Pr[Q{Si}(x) =0]=1- 274 (ct. Pr[Q{Si}(O) =1]=1)

20



Our Algorithm for degree k

Input: degree-k polynomials py, 15, ..., Pm

1. Define P:{0,1}"* - {0,1} as
P = (p1 +1)(p2+1) - (o +1)

2. Define R: {0,1}"‘"' — {0,1} for some n’ < n as
R(y) = HaE{O,l}n’ (P(y, Cl) + 1)

3. Replace each product by a probabilistic polynomial
and write R as a sum of monomials p

4. Construct the truth table T of p

if T contains an entry with O, the input has a solution
5. Repeat 3-4 and take the majority voting of T's

21



Analysis of Our Algorithm

Input: degree-k polynomials py,p,, ..., Pm

1. Define P:{0,1}"* - {0,1} as
P = (p1 +1)(p2+1) - (o +1)

2. Define R: {0,1}"‘"' — {0,1} for some n’ < n as
R(y) =1l e 1w (Pr,@) + 1)

3. Replace each product by a probabilistic polynomial
and write R as a sum of monomials p

Step 3 takes time poly(n)2™"™™
if each product is replaced by a low degree polynomial

22



Our Result 1

SysPolyEqgs(q) on degree k instances can be solved
in randomized time g™(1=1/0(ak))

For g = k = 2, an important case for cryptography,
we get the bound < 2087651

Input:

GF[q] polynomials p;, 02, ..., Pm
in formal variables x4, x», ..., x,

Task:
find a satisfying assignment a € GF[q]"
l.e. p;(a) = py(a) =+ =py(a) =0 holds

23



On Deterministic Algorithms

1. Derandomization of probabilistic polynomials due to
Razoborov-Smolensky [Chan-Williams'16]

m small biased space [Naor-Naor'90,...]

m modulus amplifying polynomial [Toda’89,Yao'90,Beigel-
Tarui'91]

2. Fast evaluation algorithms for non-multilinear integer
polynomials

m fast rectangular matrix multiplication
[Coppersmith’'82,...,LeGall 12]

24



Our Algorithm for unbounded degree

Input: polynomials py, 05, ..., Pm

1. [Degree Reduction]
generate exponentially many instances
of SysPolyEqgs(2) such that

(1) original input has a solution if and only if
at least one of generated instances has a solution

(2) generated instances have degree at most k

2. Apply the algorithm for degree k

25



Our Algorithm for unbounded degree

Degree Reduction:
while there is a monomial of degree > k
€.9. P1=X1 s X Xfggq e X +
generate two Instances as
IF-lix, oxp =1, 1e,x; = =x3,=1
I-2: x1 ...x;, = 0 (added as a polynomial equation)

Note: Degree reduction can be generalized to handle
ZIIZ circuits (sum of products of linear forms)

by “Simplification Rules” based on "change of basis” in
Linear Algebra

26



Conclusion

27



Our Results

1. SysPolyEqgs(q) on degree k instances can be solved
in randomized time g™(1=1/0(ak))

2. For g = k = 2, an important case for cryptography,
we get the bound < 2087651

3. For a prime g, #SysPolyEqgs(q) on degree k instances can
be solved in deterministic time g(1~1/0(ak)

4. For s =the total number of products of linear forms,

#GenSysPolyEqgs(2) can be solved in deterministic time
2n(1-1/0(log(s/n)))

Optimality: Improvement requires that for (k-)CNF SAT

28



Future Directions

m Similar running time in polynomial space

m Degree Reduction for PolySysEqs(q), g # 2

m Beating Brute Force for other problems
using the Polynomial Method

m Develop/Apply Fast Evaluation Algorithms
for more expressive classes than polynomials

Thank you for your attention!

29



