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Introduction and Kernelization



Fixed Parameter Tractable (FPT)
Algorithms

For decision problems with input size n, and a parameter k,
(which typically is the solution size), the goal here is to design
an algorithm with running time f(k) - n®"), where f is a
computable function of k alone.

Problems that have such an algorithm are said to be fixed
parameter tractable (FPT).



A Few Examples

VERTEX COVER Parameter: £
Input: A graph G = (V, E) and a positive integer k.
Question: Does there exist a subset V' € V of size at most k
such that for every edge (u,v) € E either ue V' or v e V'?

PATH Parameter: k
Input: A graph G = (V, E) and a positive integer k.
Question: Does there exist a path P in G of length at least
k?




Kernelization: A Method for Everyone

Polynomial Time

[I'], k" < f(k)



Kernelization: A Method for Everyone

Polynomial Time

1",k < f(k)

INFORMALLY: A kernelization algorithm is a polynomial-time
transformation that transforms any given parameterized instance to
an equivalent instance of the same problem, with size and parameter
bounded by a function of the parameter.
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Kernel: Formally

FORMALLY: A kernelization algorithm, or in short, a kernel for
a parameterized problem L < 3* x N is an algorithm that given
(x,k) € 3* x N, outputs in p(|z| + k) time a pair

(', k") € ¥* x N such that
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FORMALLY: A kernelization algorithm, or in short, a kernel for
a parameterized problem L < 3* x N is an algorithm that given
(x,k) € 3* x N, outputs in p(|z| + k) time a pair
(', k") € ¥* x N such that

o (v,k)eL — (,K)eL,

o ||,k < f(k),
where f is an arbitrary computable function, and p a

polynomial. Any function f as above is referred to as the size of
the kernel.
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Kernel: Formally

FORMALLY: A kernelization algorithm, or in short, a kernel for
a parameterized problem L < 3* x N is an algorithm that given
(x,k) € 3* x N, outputs in p(|z| + k) time a pair
(', k") € ¥* x N such that

o (v,k)eL — (,K)eL,

o ||,k < f(k),
where f is an arbitrary computable function, and p a

polynomial. Any function f as above is referred to as the size of
the kernel.

Polynomial kernel = f is polynomial.
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Example 1: VERTEX COVER

Rule 1: Remove any isolated vertices.



Example 1: VERTEX COVER

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k + 1 then
include v in solution and (G — {v},k —1)
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Example 1: VERTEX COVER

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k£ + 1 then
include v in solution and (G — {v}, k — 1)

Apply these rules until no longer possible.
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Outcome 1: If G is not empty and k drops to 0 — the answer is
No.
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include v in solution and (G — {v}, k — 1)
Apply these rules until no longer possible.
What conclusions can we draw 7

Outcome 1: If G is not empty and k drops to 0 — the answer is
No.

Observation: Every vertex has degree at most & — number of
edges they can cover is at most k°.
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Example 1: VERTEX COVER

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k£ + 1 then
include v in solution and (G — {v},k — 1)

Apply these rules until no longer possible.
What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is
No.

Observation: Every vertex has degree at most & — number of
edges they can cover is at most k°.

Outcome 2: If |E| > k* — the answer is NoO. Else |E| < k?,

|V| < 2k* and we have polynomial sized kernel of
O(k?).
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A decidable problem admits a kernel if and
only if it is fixed-parameter tractable.
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A decidable problem admits a kernel if and
only if it is fixed-parameter tractable.



A decidable problem admits a kernel if and
only if it is fixed-parameter tractable.

A fine grained question: Which of these
problems admit polynomial kernel?.



Theory of Lower Bound

e Hans L. Bodlaender, Rodney G. Downey, Michael R.
Fellows, Danny Hermelin: On Problems without Polynomial
Kernels (Extended Abstract). ICALP (1) 2008: 563-574

e Lance Fortnow, Rahul Santhanam: Infeasibility of instance
compression and succinct PCPs for NP. STOC 2008:
133-142

e Holger Dell, Dieter van Melkebeek: Satisfiability allows no

nontrivial sparsification unless the polynomial-time
hierarchy collapses. STOC 2010: 251-260



Theory of Lower Bound

e Hans L. Bodlaender, Rodney G. Downey, Michael R.
Fellows, Danny Hermelin: On Problems without Polynomial
Kernels (Extended Abstract). ICALP (1) 2008: 563-574

e Lance Fortnow, Rahul Santhanam: Infeasibility of instance
compression and succinct PCPs for NP. STOC 2008:
133-142

e Holger Dell, Dieter van Melkebeek: Satisfiability allows no

nontrivial sparsification unless the polynomial-time
hierarchy collapses. STOC 2010: 251-260

Some problems do not admit polynomial

kernel unless NP < _co-NP
Poly
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Goal to clean the picture even more.



Goal to clean the picture even more.

That will have to wait a bit. First we take
a detour.



Mantra

[t never hurts to run kernelization
algorithm before running any algorithm
such as approximation or heuristics!



Mantra

[t never hurts to run kernelization
algorithm before running any algorithm
such as approximation or heuristics!

Really :).



An important drawback!

It does not combine well with
approximation algorithms or with
heuristics.



Polynomial Time

1",k < f(k)

Why?
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Polynomial Time

1",k < f(k)

e Run 2-approximation on (I, k') and get solution S.
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Why?

Polynomial Time

1",k < f(k)

e Can we use S to get solution for 17
e The current definition provides no insight whatsoever about

the original instance.
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Why?

Polynomial Time

1",k < f(k)

e If we have an c-approximate solution to (I’, k") there is no
guarantee that we will be able to get an a-approximate
solution to (I, k), or even able to get any feasible solution
to (I, k).
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e In practice most kernels are okay.

Some Remarks
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Some Remarks

e In practice most kernels are okay.

e For example we could just run kernel with larger values of
k.
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Some Remarks

e In practice most kernels are okay.

e For example we could just run kernel with larger values of
k.

[t is primarily a limitation of the definition.
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Definition is broken :(

Let us fix it.
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Definition is broken :(

PorynomiAL TiMe

——————

YES e ———e YES

OPTIMAL <@ss===p> OPTIMAL
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Definition is broken :(

PoryNoMIAL TIME

<(eeeeee——

OPTIMAL < OPTIMAL

Useful information in reduced instance gives useful information
in the original instance.
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Kernel?

m POLYNOMIAL TIME
<:

c-factor | <====  c-factor
approximation approximation

Observe that the inequality should hold for all values of c.
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Kernel?

m POLYNOMIAL TIME
<:

c-factor | <====  c-factor
approximation approximation

Observe that the inequality should hold for all values of c.
If allowing loss in reduced instance why not allow loss in
reduction itself!
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a-Approximate Kernel (Rough Version)

OZC-f?LCtOT_ <= c-factor
approximation approximation

Observe that the inequality should hold for all values of c.
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a-Approximate Kernel (Rough Version)

OéC-f?thOT_ <= c-factor
approximation approximation

Observe that the inequality should hold for all values of c.
Solution for reduced instance = « bad solution for original

24



a-Approximate Kernel: Expectations

e Should fit with approximation world.
e Should fit with the fpt - approximations.



Why it seems difficult?

Approximation is about optimization
problems.
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Why it seems difficult?

Approximation is about optimization
problems.

Most of Parameterized algorithms is built
around decision problems.

26



Why it seems difficult?

Approximation is about optimization
problems.

Most of Parameterized algorithms is built
around decision problems.

Of course except doing Parameterized
Approximation.
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Need a notion of parameterized
optimization problems.



Need a notion of parameterized
optimization problems.

Build parameterized complexity with this
notion.
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optimization problems.
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Robust — Versatile — Natural



Need a notion of parameterized
optimization problems.

Build parameterized complexity with this
notion.

Robust — Versatile — Natural

Encompass both Parameterized
Algorithms, Approximation Algorithms
and Kernelization.



Parameterized optimization problems.

@ Yijia Chen, Martin Grohe, Magdalena Griiber: On
Parameterized Approximability. IWPEC 2006: 109-120

® Déniel Marx. Parameterized complexity and approximation
algorithms. The Computer Journal, 51(1):60-78, 2008.



Parameterized optimization problems.

@ Yijia Chen, Martin Grohe, Magdalena Griiber: On
Parameterized Approximability. IWPEC 2006: 109-120

® Déniel Marx. Parameterized complexity and approximation
algorithms. The Computer Journal, 51(1):60-78, 2008.

We could build the
approximate-kernelization framework
starting from these but we give a different
definition and use that for our framework.
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An attempt to build such a framework for
approximate kernelization.

29



Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

II: Y xNxY*—>Ru{+oo}.

30



Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

II: Y xNxY*—>Ru{+oo}.

e Instances of a parameterized optimization problem II are
pairs (I, k) e ¥* x N.
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Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

II: Y xNxY*—>Ru{+oo}.

e Instances of a parameterized optimization problem II are
pairs (I, k) e ¥* x N.

e A solution to (I, k) is simply a string s € ¥*, such that
Is| < |I] + k.

e The value of the solution s is I1(7, k, s).

30



e Just as for “classical” optimization problems the instances
of II are given as input, and the algorithmic task is to find
a solution with the best possible value.

e Best means minimization and maximization.



e Just as for “classical” optimization problems the instances
of II are given as input, and the algorithmic task is to find
a solution with the best possible value.

e Best means minimization and maximization.

e So we need a notion of optimum for parameterized
optimization problems.
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Optimum Value

Definition
For a parameterized minimization problem II, the optimum
value of an instance (I, k) € ¥* x N is

OPTn(I1,k) = min II(1, k, s).

SEY
[s|<|I|+k

32



Optimum Value

Definition
For a parameterized minimization problem II, the optimum
value of an instance (I, k) € ¥* x N is

OPTn(I1,k) = min II(1, k, s).
SIS Tk

For an instance (I, k) of a parameterized optimization problem
II, an optimal solution is a solution s such that

(I, k,s) = OPTyu(I, k).

32



Example with Connected Vertex Cover

CONNECTED VERTEX COVER (CVC) Parameter: k
Input: A graph G = (V, E) and a positive integer k.
Question: Does there exist a subset V/ < V of size at most k
such that V' is a vertex cover and G[V'] is connected?

33



Example with Connected Vertex Cover

oo if S is not a cvc of the graph G
min {|S|} otherwise

CVC(G,k,S) = {

34



Example with Connected Vertex Cover

oo if S is not a cvc of the graph G
min {|S|} otherwise

CVC(G,k,S) = {

oo if S is not a cvc of the graph G

CVC(G,E,S) = { min {|S|,k + 1} otherwise

34



Solving Parameterized Optimization
Problems

Let IT be a parameterized optimization problem.

e Algorithm solves II if, for every instance (I, k) the solution
s output by the algorithm is optimal for (I, k).



Solving Parameterized Optimization
Problems

Let IT be a parameterized optimization problem.

e Algorithm solves II if, for every instance (I, k) the solution
s output by the algorithm is optimal for (I, k).

Definition

A parameterized optimization problem II is fized parameter
tractable (FPT) if there is an algorithm that solves II, such that
the running time of the algorithm on instances of size n with
parameter k is upper bounded by f(k)n® (1) for a computable
function f.



Fixed Parameter Tractable (FPT)
Algorithms

A parameterized decision problem 1I is fized parameter tractable
(FPT) if there is an algorithm that I1, such that the
running time of the algorithm on instances of size n with
parameter k is upper bounded by f(k)n O for a computable
function f.

A parameterized optimization problem II is fized parameter
tractable (FPT) if there is an algorithm that IT, such that
the running time of the algorithm on instances of size n with
parameter k is upper bounded by f(k)n® (1) for a computable
function f.
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e Solving a desicion problem amounts to always output “yes”
on “yes’-instances and ‘no” on ‘no’-instances.
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e This is analogous to the definition of optimization problems
most commonly used in approximation algorithms.



e Solving a desicion problem amounts to always output “yes”
on “yes’-instances and ‘no” on ‘no’-instances.

e For parameterized optimization problems the algorithm has
to produce an optimal solution.

e This is analogous to the definition of optimization problems
most commonly used in approximation algorithms.

Parameterized decision problems <= Parameterized
Optimization Problems



Kernels for Parameterized Optimization

Problems
PoLynoMIAL TIME
e ———
Reduction Algorithm
S < ' /

. 1 Solution Lifting Algorithm S .
optima optimal
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Kernels for Parameterized Optimization

Problems
PorLyNOMIAL TIME
[ —————
Reduction Algorithm
S < ' /
. 1 Solution Lifting Algorithm S .
optima optimal

A decidable parameterized optimization problem II is FPT if
and only if it admits a kernel.
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FPT-Approximation

Definition

Polynomial time a-approximation algorithm for a parameterized
optimization problem II is an algorithm that takes as input an
instance (I, k), runs in time |[7|°Y), and outputs a solution s
such that II(1,k,s) < a- OPT(I,k) if II is a minimization
problem.
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FPT-Approximation

Definition

Polynomial time a-approximation algorithm for a parameterized
optimization problem II is an algorithm that takes as input an
instance (I, k), runs in time |[7|°Y), and outputs a solution s
such that II(1, k,s) < a- OPT(I,k) if II is a minimization
problem.

Definition

Let a > 1 be constant. A fixed parameter tractable
a-approximation algorithm for a parameterized optimization
problem II is an algorithm that takes as input an instance (I, k),
runs in time f(k)|7|/®"), and outputs a solution s such that
II(I,k,s) <a-OPT(I,k) if II is a minimization problem.

39



S

(c-approximate

a-Approximate Kernel

PorynoMIAL TIME

[ ———————
Reduction Algorithm

< | /
Solution Lifting Algorithm S

c-approximate




a-Approximate Kernel and
a-Approximation FPT Algorithm

For every o > 1 and decidable parameterized optimization
problem II, IT admits a fixed parameter tractable
a-approximation algorithm if and only if II has an
a-approximate kernel.



a-Approximate Kernel and
a-Approximation FPT Algorithm

For every a > 1 and decidable parameterized optimization
problem II, IT admits a fixed parameter tractable
a-approximation algorithm if and only if II has an
a-approximate kernel.

For every a > 1 and decidable parameterized optimization
problem II, IT admits a polynomial time a-approximation
algorithm if and only if IT has an a-approximate kernel of
constant size.



For every @ > 1 and decidable
parameterized optimization problem I, II
admits a fixed parameter tractable
a-approximation algorithm if and only if II
has an a-approximate kernel.

A fine grained question: Which of these
problems admit a-approximate polynomial
kernel?



A fine grained question: Which of these
problems admit a-approximate polynomial
kernel?

In particular, which of the problems that
do not admit polynomial kernel, admit
a-approximate polynomial kernel.



Connected Vertex Cover

What are the right question for this problem in
this framework?

e It has a factor 2-approximation = O(1)-sized
2-approximate kernel.
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Connected Vertex Cover

What are the right question for this problem in
this framework?

e It has a factor 2-approximation = O(1)-sized
2-approximate kernel.

e It has no polynomial kernel — no k9"-sized
l-approximate kernel.

e So the right question is: does this has a-approximate kernel
of k9(M_size where 1 < a < 2.



Connected Vertex Cover

What is the best answer one can hope for?



Connected Vertex Cover

What is the best answer one can hope for?

e For every a > 1, it has a-approximate kernel of k/(%) size.



Accuracy

Connected Vertex Cover




Our Results

[ Problem Name | Apx. [ Aps. Hardness [ Kernel [ Apx. Ker. Fact. [ Appx. Ker. Size
Vertex Cover 2[4 2-g 73 | %[ 1<a<? 2(2-a)k [2]
d-Hrrmvg Ser 4 d-e1633 | ORI | 1<ac<d [ Ok Z2)N) g
STEINER TREE 139 9] 10 PTAS 10] | no ko(l) 1§ 1<« kfe]

OLA/ve. | O(Vlognloglogn) [24] | no PTAS [3] (k) 30] 1<a<? flo)
PartiaL V.C. (G-9) o PTAS [38] | o f (k) [29] 1<a fl)k®
Coxgctep V.C. 24,41 (2- e B3 [0 k0Dg | 1<a ki
CYCLE PACKING 0(logn) [40] ogn 8] | no kO ) 6 O((klogh)?)
CYCLE PACKING 1<a fTeTTogk
DISIONT FACTORS ) 10 PTAS 10 KU [7] 1<a fe]
LONGEST PaTH O(ﬁ) 2 gllogn)'~ 3 | no kO [ a no k/(@)

Figure 1: Summary of known and new results for the problems considered in this paper. The columns show respectively:
the best factor of a known approzimation algorithm, the best known lower bound on the approzimation ratio of polynomial
time approzimation algorithms, the best known kernel (or kernel lower bound), the approximation factor of the relevant
approzimate kernel, and the size of that approzimate kernel. In the problem name column, V.C. abbreviates vertex cover.
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How do we make a-approximate kernel

e Safe Reduction Rules
e (I,k) if and only if (I', k).
(I,k) < (L,k1) < (I3,k3) -+ <= (Ip, ko)
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Making a-approximate kernel
e a-Safe Reduction Rules
o (I,k) = (I',K'). For every c-approximate solution to
(I', k") we get ae approximate solution to original.
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Making a-approximate kernel

e o-Safe Reduction Rules
o (I,k) = (I',K'). For every c-approximate solution to
(I', k") we get ae approximate solution to original.

==
o’ < ac  gmm=m
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a-Safe Reduction Rule

A A A

A
A AA

e s’ be a c-approximate solution to (I’, k')
e If ¢ < o then s must be at most « approximate solution to
(I, k).

e If ¢ > o then s must be at most ¢ approximate solution to

(I k).
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a-Safe Reduction Rule

PoLyNOMIAL TIME

I ——
Reduction Algorithm

5 G /
Solution Lifting Algorithm S

If IT is a minimization problem
then

H(Ivkas) < H(I,?k/asl)
OPT(I k) =M\ opT(17 1) ¥ ("
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a-Safe Reduction Rule

PoLyNOMIAL TIME

I ——
Reduction Algorithm

S N /
Solution Lifting Algorithm S

1(1,k,s) (I ,k',s")
OPT(1 k) = Mmax { oPT(I k) %[

OPT(I',K') < OPT(I, k) — Atoraard
H(I7 ka 8) S H(I/a kl? Sl) + Abackward
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a-Safe Reduction Rule

POLYNOMIAL TIME
Reduction Algonthm
S

P —]
Solution Lifting Algorithm

oH}gTiZSJZ) < max{%,a}-
OPT(I', k') < OPT(I,k) — Atorward
(1, k,s) <TI(I', k', s") + Apackward
(1, k,s) - II(I', k', s") + Apackward
OPT(I,k) — OPT(I', k') + Aforward

H(I/7 k/7 S/) Abackward
< max ,
OPT(I/, k/) Aforward
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a-approximate kernel for CVC

Let d be the least integer such that d%‘ll < a.

Rule: Let v € I be a vertex of degree D > d. Delete N¢|v]
from G and add a vertex w such that the neighborhood of w is
Na(Ng(v)\{v}. Then add k degree 1 vertices vy, ..., v whose
neighbor is w. Output this graph G’, together with the new
parameter k' = k — (D — 1).



a-approximate kernel for CVC

Let d be the least integer such that d%‘ll < a.

A false twin of a vertex v is a vertex u such that uv ¢ E(G) and
N(u) = N(v).

Rule: If a vertex v has at least k + 1 false twins, then remove v,
i.e output G’ = G —v and k' = k.



Problems

Pick your favourite problem for which has
no polynomial kernel and try this
approach!
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Thank You.
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