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Introduction and Kernelization
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Fixed Parameter Tractable (FPT)
Algorithms

For decision problems with input size n, and a parameter k,
(which typically is the solution size), the goal here is to design
an algorithm with running time fpkq ¨ nOp1q, where f is a
computable function of k alone.

Problems that have such an algorithm are said to be fixed
parameter tractable (FPT).
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A Few Examples

Vertex Cover Parameter: k
Input: A graph G “ pV,Eq and a positive integer k.
Question: Does there exist a subset V 1 Ď V of size at most k
such that for every edge pu, vq P E either u P V 1 or v P V 1?

Path Parameter: k
Input: A graph G “ pV,Eq and a positive integer k.
Question: Does there exist a path P in G of length at least
k?
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Kernelization: A Method for Everyone

(I, k)

Polynomial Time

(I 0, k0)

|I 0|, k0  f(k)

(I, k)

Polynomial Time

(I 0, k0)

|I 0|, k0  f(k)

Informally: A kernelization algorithm is a polynomial-time
transformation that transforms any given parameterized instance to
an equivalent instance of the same problem, with size and parameter
bounded by a function of the parameter.
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Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for
a parameterized problem L Ď Σ˚ ˆ N is an algorithm that given
px, kq P Σ˚ ˆ N, outputs in pp|x| ` kq time a pair
px1, k1q P Σ˚ ˆ N such that

• px, kq P L ðñ px1, k1q P L ,
• |x1|, k1 ď fpkq,

where f is an arbitrary computable function, and p a
polynomial. Any function f as above is referred to as the size of
the kernel.

Polynomial kernel ùñ f is polynomial.
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k ` 1 then

include v in solution and pG´ tvu, k ´ 1q

... k + 1
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k ` 1 then

include v in solution and pG´ tvu, k ´ 1q

Apply these rules until no longer possible.

What conclusions can we draw ?
Outcome 1: If G is not empty and k drops to 0 — the answer is

No.
Observation: Every vertex has degree at most k — number of

edges they can cover is at most k2.
Outcome 2: If |E| ą k2 — the answer is No. Else |E| ď k2,

|V | ď 2k2 and we have polynomial sized kernel of
Opk2q.
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A decidable problem admits a kernel if and
only if it is fixed-parameter tractable.
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A decidable problem admits a kernel if and
only if it is fixed-parameter tractable.

A fine grained question: Which of these
problems admit polynomial kernel?.
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A decidable problem admits a kernel if and
only if it is fixed-parameter tractable.

A fine grained question: Which of these
problems admit polynomial kernel?.
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Theory of Lower Bound

• Hans L. Bodlaender, Rodney G. Downey, Michael R.
Fellows, Danny Hermelin: On Problems without Polynomial
Kernels (Extended Abstract). ICALP (1) 2008: 563-574

• Lance Fortnow, Rahul Santhanam: Infeasibility of instance
compression and succinct PCPs for NP. STOC 2008:
133-142

• Holger Dell, Dieter van Melkebeek: Satisfiability allows no
nontrivial sparsification unless the polynomial-time
hierarchy collapses. STOC 2010: 251-260

Some problems do not admit polynomial
kernel unless NP Ď co-NP

Poly
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Goal to clean the picture even more.

That will have to wait a bit. First we take
a detour.

17



Goal to clean the picture even more.

That will have to wait a bit. First we take
a detour.

17



Mantra

It never hurts to run kernelization
algorithm before running any algorithm
such as approximation or heuristics!

Really :).
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algorithm before running any algorithm
such as approximation or heuristics!

Really :).

18



An important drawback!

It does not combine well with
approximation algorithms or with

heuristics.
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Why?(I, k)

Polynomial Time

(I 0, k0)

|I 0|, k0  f(k)

• Run 2-approximation on pI 1, k1q and get solution S.
• Can we use S to get solution for I?
• The current definition provides no insight whatsoever about
the original instance.

• If we have an α-approximate solution to pI 1, k1q there is no
guarantee that we will be able to get an α-approximate
solution to pI, kq, or even able to get any feasible solution
to pI, kq.
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Some Remarks

• In practice most kernels are okay.

• For example we could just run kernel with larger values of
k.

It is primarily a limitation of the definition.
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Definition is broken :(

Let us fix it.
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Definition is broken :(

(I, k) (I 0, k0)

Yes Yes

optimal optimal

Polynomial Time
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Definition is broken :(

(I, k) (I 0, k0)

optimal optimal

Polynomial Time

Useful information in reduced instance gives useful information
in the original instance.

22



Kernel?

(I, k) (I 0, k0)

c-factor
approximationapproximation

Polynomial Time

c-factor

Observe that the inequality should hold for all values of c.

If allowing loss in reduced instance why not allow loss in
reduction itself!
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α-Approximate Kernel (Rough Version)

(I, k) (I 0, k0)

c-factor
approximationapproximation

↵c-factor

Observe that the inequality should hold for all values of c.

Solution for reduced instance ùñ α bad solution for original
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(I, k) (I 0, k0)

c-factor
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↵c-factor

Observe that the inequality should hold for all values of c.
Solution for reduced instance ùñ α bad solution for original
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α-Approximate Kernel: Expectations

• Should fit with approximation world.
• Should fit with the fpt - approximations.

25



Why it seems difficult?

Approximation is about optimization
problems.

Most of Parameterized algorithms is built
around decision problems.

Of course except doing Parameterized
Approximation.
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Need a notion of parameterized
optimization problems.

Build parameterized complexity with this
notion.

Robust — Versatile – Natural

Encompass both Parameterized
Algorithms, Approximation Algorithms

and Kernelization.
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Parameterized optimization problems.

1 Yijia Chen, Martin Grohe, Magdalena Grüber: On
Parameterized Approximability. IWPEC 2006: 109-120

2 Dániel Marx. Parameterized complexity and approximation
algorithms. The Computer Journal, 51(1):60-78, 2008.

We could build the
approximate-kernelization framework

starting from these but we give a different
definition and use that for our framework.
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An attempt to build such a framework for
approximate kernelization.
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Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem Π is a computable function

Π : Σ˚ ˆ Nˆ Σ˚ Ñ RY t˘8u.

• Instances of a parameterized optimization problem Π are
pairs pI, kq P Σ˚ ˆ N.

• A solution to pI, kq is simply a string s P Σ˚, such that
|s| ď |I| ` k.

• The value of the solution s is ΠpI, k, sq.
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• Just as for “classical” optimization problems the instances
of Π are given as input, and the algorithmic task is to find
a solution with the best possible value.

• Best means minimization and maximization.

• So we need a notion of optimum for parameterized
optimization problems.
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Optimum Value

Definition
For a parameterized minimization problem Π, the optimum
value of an instance pI, kq P Σ˚ ˆ N is

OPTΠpI, kq “ min
sPΣ˚

|s|ď|I|`k

ΠpI, k, sq.

For an instance pI, kq of a parameterized optimization problem
Π, an optimal solution is a solution s such that
ΠpI, k, sq “ OPTΠpI, kq.
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Example with Connected Vertex Cover

Connected Vertex Cover (CVC) Parameter: k
Input: A graph G “ pV,Eq and a positive integer k.
Question: Does there exist a subset V 1 Ď V of size at most k
such that V 1 is a vertex cover and GrV 1s is connected?
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Example with Connected Vertex Cover

CV CpG, k, Sq “

"

8 if S is not a cvc of the graph G
min t|S|u otherwise

CV CpG, k, Sq “

"

8 if S is not a cvc of the graph G
min t|S|, k ` 1u otherwise
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Solving Parameterized Optimization
Problems

Let Π be a parameterized optimization problem.
• Algorithm solves Π if, for every instance pI, kq the solution
s output by the algorithm is optimal for pI, kq.

Definition
A parameterized optimization problem Π is fixed parameter
tractable (FPT) if there is an algorithm that solves Π, such that
the running time of the algorithm on instances of size n with
parameter k is upper bounded by fpkqnOp1q for a computable
function f .
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Fixed Parameter Tractable (FPT)
Algorithms

A parameterized decision problem Π is fixed parameter tractable
(FPT) if there is an algorithm that decides Π, such that the
running time of the algorithm on instances of size n with
parameter k is upper bounded by fpkqnOp1q for a computable
function f .

A parameterized optimization problem Π is fixed parameter
tractable (FPT) if there is an algorithm that solves Π, such that
the running time of the algorithm on instances of size n with
parameter k is upper bounded by fpkqnOp1q for a computable
function f .
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• Solving a desicion problem amounts to always output “yes”
on “yes”-instances and “no” on “no”-instances.

• For parameterized optimization problems the algorithm has
to produce an optimal solution.

• This is analogous to the definition of optimization problems
most commonly used in approximation algorithms.

Parameterized decision problems ðñ Parameterized
Optimization Problems

37



• Solving a desicion problem amounts to always output “yes”
on “yes”-instances and “no” on “no”-instances.

• For parameterized optimization problems the algorithm has
to produce an optimal solution.

• This is analogous to the definition of optimization problems
most commonly used in approximation algorithms.

Parameterized decision problems ðñ Parameterized
Optimization Problems

37



• Solving a desicion problem amounts to always output “yes”
on “yes”-instances and “no” on “no”-instances.

• For parameterized optimization problems the algorithm has
to produce an optimal solution.

• This is analogous to the definition of optimization problems
most commonly used in approximation algorithms.

Parameterized decision problems ðñ Parameterized
Optimization Problems

37



• Solving a desicion problem amounts to always output “yes”
on “yes”-instances and “no” on “no”-instances.

• For parameterized optimization problems the algorithm has
to produce an optimal solution.

• This is analogous to the definition of optimization problems
most commonly used in approximation algorithms.

Parameterized decision problems ðñ Parameterized
Optimization Problems

37



Kernels for Parameterized Optimization
Problems

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

optimaloptimal

A decidable parameterized optimization problem Π is FPT if
and only if it admits a kernel.
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FPT-Approximation

Definition
Polynomial time α-approximation algorithm for a parameterized
optimization problem Π is an algorithm that takes as input an
instance pI, kq, runs in time |I|Op1q, and outputs a solution s
such that ΠpI, k, sq ď α ¨OPT pI, kq if Π is a minimization
problem.

Definition
Let α ě 1 be constant. A fixed parameter tractable
α-approximation algorithm for a parameterized optimization
problem Π is an algorithm that takes as input an instance pI, kq,
runs in time fpkq|I|Op1q, and outputs a solution s such that
ΠpI, k, sq ď α ¨OPT pI, kq if Π is a minimization problem.
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α-Approximate Kernel

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

c-approximate↵c-approximate
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α-Approximate Kernel and
α-Approximation FPT Algorithm

For every α ě 1 and decidable parameterized optimization
problem Π, Π admits a fixed parameter tractable
α-approximation algorithm if and only if Π has an
α-approximate kernel.

For every α ě 1 and decidable parameterized optimization
problem Π, Π admits a polynomial time α-approximation
algorithm if and only if Π has an α-approximate kernel of
constant size.
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For every α ě 1 and decidable
parameterized optimization problem Π, Π

admits a fixed parameter tractable
α-approximation algorithm if and only if Π

has an α-approximate kernel.

A fine grained question: Which of these
problems admit α-approximate polynomial

kernel?
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A fine grained question: Which of these
problems admit α-approximate polynomial

kernel?

In particular, which of the problems that
do not admit polynomial kernel, admit

α-approximate polynomial kernel.
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Connected Vertex Cover

What are the right question for this problem in
this framework?

• It has a factor 2-approximation ùñ Op1q-sized
2-approximate kernel.

• It has no polynomial kernel ùñ no kOp1q-sized
1-approximate kernel.

• So the right question is: does this has α-approximate kernel
of kOp1q-size where 1 ă α ă 2.
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Connected Vertex Cover

What is the best answer one can hope for?

• For every α ą 1, it has α-approximate kernel of kfpαq -size.

45



Connected Vertex Cover

What is the best answer one can hope for?

• For every α ą 1, it has α-approximate kernel of kfpαq -size.

45



Connected Vertex Cover

Size

A
cc

u
ra

cy
1

2

O(1) kO(1) 2k
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Our Results

Problem Name Apx. Apx. Hardness Kernel Apx. Ker. Fact. Appx. Ker. Size
Vertex Cover 2 [44] (2 ≠ ‘) [17,33] 2k [12] 1 < – < 2 2(2 ≠ –)k [26]
d-Hitting Set d [44] d ≠ ‘ [16, 33] O(kd≠1) [1] 1 < – < d O((k · d≠–

–≠1 )d≠1) [26]
Steiner Tree 1.39 [9] no PTAS [10] no kO(1) [18] 1 < – kf(–)

OLA/v.c. O(
Ô

logn log logn) [24] no PTAS [3] f(k) [35] 1 < – < 2 f(–)2kk4

Partial V.C. ( 4
3 ≠ ‘) [23] no PTAS [38] no f(k) [29] 1 < – f(–)k5

Connected V.C. 2 [4, 41] (2 ≠ ‘) [33] no kO(1) [18] 1 < – kf(–)

Cycle Packing O(logn) [40] (logn)
1
2 ≠‘ [28] no kO(1) [7] 6 O((k log k)2)

Cycle Packing 1 < – kf(–) log k

Disjoint Factors 2 no PTAS no kO(1) [7] 1 < – kf(–)

Longest Path O( n
logn ) [2] 2(logn)1≠‘ [32] no kO(1) [5] – no kf(–)

Figure 1: Summary of known and new results for the problems considered in this paper. The columns show respectively:
the best factor of a known approximation algorithm, the best known lower bound on the approximation ratio of polynomial
time approximation algorithms, the best known kernel (or kernel lower bound), the approximation factor of the relevant
approximate kernel, and the size of that approximate kernel. In the problem name column, V.C. abbreviates vertex cover.

model of lossy kernelization than –-fidelity kernels are.
It is important to note that even though the definition of –-approximate kernels crucially

di�ers from the definition of –-fidelity kernels [26], it seems that most of the pre-processing
algorithms that establish the existence of –-approximate kernels can be used to establish the
existence of –-fidelity kernels and vice versa. In particular, all of the –-fidelity kernel results of
Fellows et al. [26] can be translated to –-approximate kernels.

Our Results. Our main technical contribution is an investigation of the lossy kerneliza-
tion complexity of several parameterized optimization problems, namely Connected Vertex
Cover, Disjoint Cycle Packing, Disjoint Factors and Longest Path. For all of these
problems there are known lower bounds [5, 7, 18] precluding them from admitting polynomial
kernels under widely believed complexity theoretic assumtions. Indeed, all of these four prob-
lems have played a central role in the development of the tools and techniques for showing
kernelization lower bounds. For all of these problems, with the exception of Longest Path,
we give approximate kernels that beat both the known lower bounds on kernel size and the
lower bounds on approximation ratios of approximation algorithms. On the other hand, for
Longest Path we show that even an approximate kernel of polynomial size would imply NP
™ coNP/Poly, collapsing the polynomial hierarchy. Next we discuss our results for each of the
four problems in more detail. An overview of the state of the art, as well as the results of this
paper can be found in Table 1.

In the Connected Vertex Cover problem we are given as input a graph G, and the task
is to find a smallest possible connected vertex cover S ™ V (G). A vertex set S is a connected
vertex cover if G[S] is connected and every edge has at least one endpoint in S. This problem is
NP-complete [4], admits a factor 2 approximation algorithm [4,41], and is known not to admit
a factor (2 ≠ ‘) approximation algorithm assuming the Unique Games conjecture [33]. Further,
an approximation algorithm with ratio below 1.36 would imply that P = NP [17]. From the
perspective of kernelization, it is easy to show that Connected Vertex Cover admits a
kernel with at most 2k vertices [12], where k is the solution size. On the other hand, Dom et
al. [18] showed that Connected Vertex Cover does not admit a kernel of polynomial size,
unless NP ™ coNP/Poly. In this work we show that Connected Vertex Cover admits a
Polynomial Size Approximate Kernelization Scheme, or PSAKS, the approximate kernelization
analogue of a polynomial time approximation scheme (PTAS). In particular, for every ‘ > 0,
Connected Vertex Cover admits a simple (1 + ‘)-approximate kernel of polynomial size.
The size of the kernel is upper bounded by kO(1/‘). Our results for Connected Vertex Cover
show that allowing an arbitrarily small multiplicative loss in precision drastically improves the
worst-case behaviour of preprocessing algorithms for this problem.
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How do we make α-approximate kernel

• Safe Reduction Rules
• pI, kq if and only if pI 1, k1q.

pI, kq ðñ pI1, k1q ðñ pI3, k3q ¨ ¨ ¨ ðñ pI`, k`q
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Making α-approximate kernel
• α-Safe Reduction Rules
• pI, kq ùñ pI 1, k1q. For every c-approximate solution to
pI 1, k1q we get αc approximate solution to original.

(I, k) (I1, k1) (I2, k2)

c↵c↵2c
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Making α-approximate kernel
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α-Safe Reduction Rule

↵ ↵ ↵

• s1 be a c-approximate solution to pI 1, k1q
• If c ď α then s must be at most α approximate solution to
pI, kq.

• If c ą α then s must be at most c approximate solution to
pI, kq.
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α-Safe Reduction Rule

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

If ⇧ is a minimization problem

then

⇧(I,k,s)
OPT (I,k)  max

n
⇧(I0,k0,s0)
OPT (I0,k0) ,↵

o
.
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α-Safe Reduction Rule

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

⇧(I,k,s)
OPT (I,k)  max

n
⇧(I0,k0,s0)
OPT (I0,k0) ,↵

o
.

OPT (I 0, k0)  OPT (I, k) ��forward

⇧(I, k, s)  ⇧(I 0, k0, s0) + �backward
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α-Safe Reduction Rule

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

OPT (I 0, k0)  OPT (I, k) ��forward

⇧(I, k, s)  ⇧(I 0, k0, s0) + �backward

⇧(I, k, s)

OPT (I, k)
 ⇧(I 0, k0, s0) + �backward

OPT (I 0, k0) + �forward

 max

⇢
⇧(I 0, k0, s0)
OPT (I 0, k0)

,
�backward

�forward

�

⇧(I,k,s)
OPT (I,k)  max

n
⇧(I0,k0,s0)
OPT (I0,k0) ,↵

o
.
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α-approximate kernel for CVC

Let d be the least integer such that d
d´1 ď α.

Rule: Let v P I be a vertex of degree D ě d. Delete NGrvs
from G and add a vertex w such that the neighborhood of w is
NGpNGpvqqztvu. Then add k degree 1 vertices v1, . . . , vk whose
neighbor is w. Output this graph G1, together with the new
parameter k1 “ k ´ pD ´ 1q.
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α-approximate kernel for CVC

Let d be the least integer such that d
d´1 ď α.

A false twin of a vertex v is a vertex u such that uv R EpGq and
Npuq “ Npvq.
Rule: If a vertex v has at least k` 1 false twins, then remove v,
i.e output G1 “ G´ v and k1 “ k.
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Problems

Pick your favourite problem for which has
no polynomial kernel and try this

approach!
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Thank You.
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