Parameterized Inapproximability of Max k-Subset Intersection under ETH

Bingkai Lin

The University of Tokyo

Simons Institute, Berkeley, CA
ETH can be used to refute the existence of exponential time approximation algorithms.
Max-k-Subset-Intersection

Input: A collection $\mathcal{F} = \{S_1, S_2, \cdots, S_n\}$ of subsets over $[n]$.

Solution: k distinct subsets $S_{j_1}, S_{j_2}, \cdots, S_{j_k}$ from \mathcal{F}.

Cost: $|S_{j_1} \cap \cdots \cap S_{j_k}|$.

Goal: max.
Max-\(k\)-Subset-Intersection

Input: A collection \(\mathcal{F} = \{S_1, S_2, \ldots, S_n\} \) of subsets over \([n]\).

Solution: \(k \) distinct subsets \(S_{j_1}, S_{j_2}, \ldots, S_{j_k} \) from \(\mathcal{F} \).

Cost: \(|S_{j_1} \cap \cdots \cap S_{j_k}|\).

Goal: max.

Another formulation: given a bipartite graph \(G = (A \cup B, E) \), find a \(k \)-vertex set \(V \in \binom{A}{k} \) with maximum number of common neighbors.
Max-k-Subset-Intersection

Input: A collection $\mathcal{F} = \{S_1, S_2, \ldots, S_n\}$ of subsets over $[n]$.

Solution: k distinct subsets $S_{j_1}, S_{j_2}, \ldots, S_{j_k}$ from \mathcal{F}.

Cost: $|S_{j_1} \cap \cdots \cap S_{j_k}|$.

Goal: max.

Another formulation: given a bipartite graph $G = (A \cup B, E)$, find a k-vertex set $V \in \binom{A}{k}$ with maximum number of common neighbors.

Remark

1. **Max-k-Subset-Intersection** is **NP-hard**
2. **Max-k-Subset-Intersection** can be solved in time $n^{O(k)}$.
Max-k-Subset-Intersection

Input: A collection \(\mathcal{F} = \{S_1, S_2, \ldots, S_n\} \) of subsets over \([n]\).

Solution: \(k \) distinct subsets \(S_{j_1}, S_{j_2}, \ldots, S_{j_k} \) from \(\mathcal{F} \).

Cost: \(|S_{j_1} \cap \cdots \cap S_{j_k}| \).

Goal: max.

Let \(\text{OPT}_{kmsi}(\mathcal{F}) \) be the maximum \(k \)-subset intersection size of \(\mathcal{F} \).

Question

Is there an \(f(k) \cdot n^{O(1)}\)-time algorithm that, given \(\mathcal{F} \), finds \(k \) distinct subsets from \(\mathcal{F} \) with intersection size at least \(\frac{1}{r} \cdot \text{OPT}_{kmsi} \)?
Results of **Polynomial-time** inapproximability:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Biclique</td>
<td>$2^{(\log n)^\delta}$</td>
<td>3SAT $\not\in$ DTIME($2^{n^{3/4+\varepsilon}}$)</td>
<td>Feige and Kogan 04</td>
</tr>
<tr>
<td>Max-Biclique</td>
<td>$n^{\varepsilon'}$</td>
<td>SAT has no randomized $2^{n^{\varepsilon}}$ algorithm</td>
<td>Khot 05</td>
</tr>
<tr>
<td>Max-Edge-Biclique</td>
<td>$n^{\varepsilon'}$</td>
<td>SAT has no randomized $2^{n^{\varepsilon}}$ algorithm</td>
<td>Ambuhl et al. 11</td>
</tr>
<tr>
<td>Max-k-Subset-Intersection</td>
<td>$n^{\varepsilon'}$</td>
<td>SAT has no randomized $2^{n^{\varepsilon}}$ algorithm</td>
<td>Eduardo C. Xavier 12</td>
</tr>
</tbody>
</table>

It does not rule out approximate algorithms in $f(k) \cdot n^{O(1)}$-time.
Results of **Polynomial-time** inapproximability:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Biclique</td>
<td>$2^{(\log n)^{\delta}}$</td>
<td>3SAT $\not\in$ DTIME($2^{n^{3/4+\epsilon}}$)</td>
<td>Feige and Kogan 04</td>
</tr>
<tr>
<td>Max-Biclique</td>
<td>$n^{c'/2}$</td>
<td>SAT has no randomized 2^{n^c} algorithm</td>
<td>Khot 05</td>
</tr>
<tr>
<td>Max-Edge-Biclique</td>
<td>$n^{c'/2}$</td>
<td>SAT has no randomized 2^{n^c} algorithm</td>
<td>Ambuhl et al. 11</td>
</tr>
<tr>
<td>Max-k-Subset-Intersection</td>
<td>$n^{c'/2}$</td>
<td>SAT has no randomized 2^{n^c} algorithm</td>
<td>Eduardo C. Xavier 12</td>
</tr>
</tbody>
</table>

It does not rule out approximate algorithms in $f(k) \cdot n^{O(1)}$-time.
1. Most proofs of the classical inapproximability rely on the PCP theorem.

2. Reductions based on the PCP theorem produce instances with optimal solutions of relatively large size, e.g. $k = n^{\Theta(1)}$.

3. In parameterized complexity, we assume the value of k is small, hence k should not depend on n.
A gap-producing reduction

Theorem (main)

We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

1. if $K_k \subseteq G$, then there are s vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;

2. if $K_k \not\subseteq G$, every s vertices in A have at most $(k + 1)!$ common neighbors in B,

where $s = \binom{k}{2}$.

Remark

- This reduction does not use the PCP theorem. It is based on some extremal combinatorics construction.
- It applies in case with small value of k.

A gap-producing reduction

Theorem (main)
We can construct a bipartite graph \(H = (A \cup B, E) \) in polynomial time on input an \(n \)-vertex graph \(G \) and \(k \in \mathbb{N} \) with \((k + 1)! < n^{\Theta(1/k)}\) s.t.:

1. if \(K_k \subseteq G \), then there are \(s \) vertices in \(A \) with at least \(n^{\Theta(1/k)} \) common neighbors in \(B \);
2. if \(K_k \not\subseteq G \), every \(s \) vertices in \(A \) have at most \((k + 1)! \) common neighbors in \(B \),

where \(s = \binom{k}{2} \).

Remark

- This reduction does not use the PCP theorem. It is based on some extremal combinatorics construction.
Theorem (main)
We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

1. if $K_k \subseteq G$, then there are s vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
2. if $K_k \not\subseteq G$, every s vertices in A have at most $(k + 1)!$ common neighbors in B,

where $s = \binom{k}{2}$.

Remark

- This reduction does not use the PCP theorem. It is based on some extremal combinatorics construction.
- It applies in case with small value of k.

Consequence under ETH

Theorem (Chen et. al 04)
Assuming ETH, k-Clique cannot be solved in $f(k) \cdot n^{o(k)}$-time for any computable function f.

Corollary
Assuming ETH, Max-k-Subset-Intersection does not admit $f(k) \cdot n^{o(\sqrt{k})}$-time approximation algorithm with ratio $n^{1/\sqrt{k}}$.
A variant of main theorem

Fix $\Delta \in \mathbb{N}^+$.

Theorem

We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

1. if $K_k \subseteq G$, then there are $s \cdot \Delta$ vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
2. if $K_k \not\subseteq G$, every $s \cdot \Delta$ vertices in A have at most $(k + 1)!$ common neighbors in B,

where $s = \binom{k}{2}$.

Theorem

Assuming ETH, Max-\textit{k-Subset-Intersection} does not admit $f(k) \cdot n^{o(\sqrt{k}/\Delta)}$-time approximation algorithm with ratio $n^{\sqrt{\Delta}/\sqrt{k}}$.
A variant of main theorem

Let $\Delta = 2^k/s$.

Theorem

We can construct a bipartite graph $H = (A \cup B, E)$ in fpt time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

1. if $K_k \subseteq G$, then there are $2^k = s \cdot \Delta$ vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
2. if $K_k \not\subseteq G$, every $2^k = s \cdot \Delta$ vertices in A have at most $(k + 1)!$ common neighbors in B,

where $s = \binom{k}{2}$.
Let $\Delta = 2^k/s$.

Theorem

We can construct a bipartite graph $H = (A \cup B, E)$ in fpt time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

1. if $K_k \subseteq G$, then there are $2^k = s \cdot \Delta$ vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
2. if $K_k \not\subseteq G$, every $2^k = s \cdot \Delta$ vertices in A have at most $(k + 1)!$ common neighbors in B,

where $s = \binom{k}{2}$.

Corollary

Max-k-Subset-Intersection does not admit $f(k) \cdot n^{o(\log k)}$-time approximation algorithm to ratio $n^{1/\log k}$ under ETH.
What can we do with this gap?
Inapproximability of other natural parameterized problem

Question

Find gap-preserving fpt-reduction from Max-k-Subset-Intersection to

- k-Clique
- k-Dominating-Set
Question

Is there any fpt-algorithm A such that on input a bipartite graph $H = (A \cup B, E)$, it constructs a graph G satisfying:

- (1) if there exists $V \in \binom{A}{s}$ with $n^{\Theta(1/k)}$ common neighbors, then G contains a $g(k)$ clique;
- (2) if every $V \in \binom{A}{s}$ has at most $(k + 1)!$ common neighbors, then G contains no $\frac{g(k)}{2}$ clique.

Wrong: there might exist $s - 1$ vertices in A with $n^{\Theta(1/k)}$ common neighbors, leading to a $(s - 1 + 2(k + 1)!)$-clique.
Question

Is there any fpt-algorithm \(A \) such that on input a bipartite graph \(H = (A \cup B, E) \), it construct a graph \(G \) satisfying:

- (1) if there exists \(V \in \binom{A}{s} \) with \(n^{\Theta(1/k)} \) common neighbors, then \(G \) contains a \(g(k) \)-clique;
- (2) if every \(V \in \binom{A}{s} \) has at most \((k + 1)!\) common neighbors, then \(G \) contains no \(\frac{g(k)}{2} \)-clique.

A naive idea: color \(A \) (resp. \(B \)) with \(s \) (resp. \(2(k + 1)! \)) colors, add edges between vertices in \(A \) (resp. \(B \)) with different colors.

- in case (1), \(H \) has a \((s + 2(k + 1)!)\)-clique;
- in case (2), \(H \) has no clique with \(> (s + (k + 1)! \) vertices.
Question

Is there any fpt-algorithm A such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G satisfying:

- (1) if there exists $V \in \binom{A}{s}$ with $n^{\Theta(1/k)}$ common neighbors, then G contains a $g(k)$ clique;
- (2) if every $V \in \binom{A}{s}$ has at most $(k + 1)!$ common neighbors, then G contains no $\frac{g(k)}{2}$ clique.

A naive idea: color A (resp. B) with s (resp. $2(k+1)!$) colors, add edges between vertices in A (resp. B) with different colors.

- in case (1), H has a $(s + 2(k + 1)!)$-clique;
- in case (2), H has no clique with $> (s + (k + 1)!)$ vertices.

Wrong: there might exist $s - 1$ vertices in A with $n^{\Theta(1/k)}$ common neighbors, leading to a $(s - 1 + 2(k + 1)!)$-clique.
From Max-k-Subset-Intersection to k-Dominating-Set?

Let $\gamma(G)$ be the size of its minimum dominating set.

Question

Is there any fpt-algorithm A such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G satisfying:

- (i) if there exists $V \in (A_s)$ with $n^{\Theta(1/k)}$ common neighbors, then $\gamma(G) < g(k)$;
- (ii) if every $V \in (A_s)$ has at most $(k + 1)!$ common neighbors, then $\gamma(G) > 2g(k)$.

where $s = \binom{k}{2}$.
Constant inapproximability of dominating set

Theorem (Chen and Lin 15)

There is an algorithm \(\mathcal{A} \) such that on input a bipartite graph \(H = (A \cup B, E) \), it construct a graph \(G \) in \(f(k, d) \cdot |H|^{O(c)} \)-time satisfying:

- if there exists \(V \in \binom{A}{s} \) with \(d \) common neighbors, then \(\gamma(G) < (1 + \varepsilon)d^c \);
- if every \(V \in \binom{A}{s} \) has at most \((k + 1)! \) common neighbors, then \(\gamma(G) > cd^c/3 \).

where \(s = \binom{k}{2} \), \(d = k^{O(k^3)} \).
Theorem (Chen and Lin 15)

There is an algorithm A such that on input a bipartite graph $H = (A \cup B, E)$, it constructs a graph G in $f(k, d) \cdot |H|^{O(c)}$-time satisfying:

1. If there exists $V \in \binom{A}{s}$ with d common neighbors, then $\gamma(G) < (1 + \varepsilon)d^c$;
2. If every $V \in \binom{A}{s}$ has at most $(k + 1)!$ common neighbors, then $\gamma(G) > cd^c/3$.

where $s = \binom{k}{2}$, $d = k^{O(k^3)}$.

Theorem

Assuming ETH, there is no $f(\gamma(G)) \cdot |G|^{O(1)}$-time algorithm which on every input graph G outputs a dominating set of size at most $4 + \varepsilon \sqrt{\log(\gamma(G))} \cdot \gamma(G)$.
Previous inapproximability results of dominating set

Results of **Polynomial-time** inapproximability:

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \log n$</td>
<td>$P \neq NP$</td>
<td>Raz and Safra 97</td>
</tr>
<tr>
<td>$(1 - \varepsilon) \ln n$</td>
<td>$NP \not\subset DTIME(n^{O(\log \log n)})$</td>
<td>Feige 98</td>
</tr>
<tr>
<td>$(1 - \varepsilon) \ln n$</td>
<td>$P \neq NP$</td>
<td>Dinur and Steuer 14</td>
</tr>
</tbody>
</table>

Remark: Independent dominating set problem is not monotone.
Previous inapproximability results of dominating set

Results of **Polynomial-time** inapproximability:

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \log n$</td>
<td>$P \neq NP$</td>
<td>Raz and Safra 97</td>
</tr>
<tr>
<td>$(1 - \varepsilon) \ln n$</td>
<td>$NP \not\subset \text{DTIME}(n^{O(\log \log n)})$</td>
<td>Feige 98</td>
</tr>
<tr>
<td>$(1 - \varepsilon) \ln n$</td>
<td>$P \neq NP$</td>
<td>Dinur and Steuer 14</td>
</tr>
</tbody>
</table>

Parameterized inapproximability of **independent** dominating set problem:

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(k)$</td>
<td>$\text{FPT} \neq \text{W}[2]$</td>
<td>Dowen et. al 08</td>
</tr>
</tbody>
</table>
Previous inapproximability results of dominating set

Results of **Polynomial-time** inapproximability:

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \log n$</td>
<td>$\mathsf{P} \neq \mathsf{NP}$</td>
<td>Raz and Safra 97</td>
</tr>
<tr>
<td>$(1 - \varepsilon) \ln n$</td>
<td>$\mathsf{NP} \not\subseteq \mathsf{DTIME}(n^{O(\log \log n)})$</td>
<td>Feige 98</td>
</tr>
<tr>
<td>$(1 - \varepsilon) \ln n$</td>
<td>$\mathsf{P} \neq \mathsf{NP}$</td>
<td>Dinur and Steuer 14</td>
</tr>
</tbody>
</table>

Parameterized inapproximability of **independent** dominating set problem:

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Assumptions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(k)$</td>
<td>$\mathsf{FPT} \neq \mathsf{W}[2]$</td>
<td>Dowen et. al 08</td>
</tr>
</tbody>
</table>

Remark

Independent dominating set problem is not monotone.
Proof of the gap-producing reduction
Proof of the gap-producing reduction

Notation: \(\Gamma(X) \) is the set of common neighbors of all vertices in \(X \).

Goal: Given \(n \)-vertex graph \(G \) construct \(H = (A \dot{\cup} B, E) \) in FPT, such that:

1. If \(K_k \subseteq G \), then \(\exists V \in (\mathcal{A}_s) \), \(|\Gamma(V)| \geq h \); \(h = n \Theta(1/k) \)

2. If \(K_k \not\subseteq G \), then \(\forall V \in (\mathcal{A}_s) \), \(|\Gamma(V)| \leq \ell \); \(\ell = (k+1)! \)

where \(s = \binom{k}{2} \).

Example \((k = 3, s = 3)\):

Key idea: construct a bipartite graph \(T = (\mathcal{V}(G) \dot{\cup} B, E(T)) \) satisfying:

1. For all \(V \in (\mathcal{V}(G))_{k+1} \), \(|\Gamma(V)| \leq \ell \);
2. For a random \(V \in (\mathcal{V}(G))_k \), with high probability \(|\Gamma(V)| \geq h \).
Proof of the gap-producing reduction

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X.
Proof of the gap-producing reduction

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X.
Goal: Given n-vertex graph G construct $H = (A \cup B, E)$ in FPT, such that:

- H_1 if $K_k \subseteq G$, then $\exists V \in \binom{A}{s}, |\Gamma(V)| \geq h; (h = n^{\Theta(1/k)})$
- H_2 if $K_k \nsubseteq G$, then $\forall V \in \binom{A}{s}, |\Gamma(V)| \leq \ell. (\ell = (k + 1)!)$

where $s = \binom{k}{2}$.

Example ($k = 3$, $s = 3$)
Proof of the gap-producing reduction

Notation: \(\Gamma(X) \) is the set of common neighbors of all vertices in \(X \).

Goal: Given \(n \)-vertex graph \(G \) construct \(H = (A \cup B, E) \) in \(\text{FPT} \), such that:

- **H1** if \(K_k \subseteq G \), then \(\exists V \in \binom{A}{s}, |\Gamma(V)| \geq h; (h = n^{\Theta(1/k)}) \)
- **H2** if \(K_k \not\subseteq G \), then \(\forall V \in \binom{A}{s}, |\Gamma(V)| \leq \ell. (\ell = (k + 1)!) \)

where \(s = \binom{k}{2} \).

Example (\(k = 3, s = 3 \))
Proof of the gap-producing reduction

Notation: \(\Gamma(X) \) is the set of common neighbors of all vertices in \(X \).

Goal: Given \(n \)-vertex graph \(G \) construct \(H = (A \cup B, E) \) in \(\text{FPT} \), such that:

- **H1** if \(K_k \subseteq G \), then \(\exists V \in \binom{A}{s}, |\Gamma(V)| \geq h; (h = n^{\Theta(1/k)}) \)
- **H2** if \(K_k \not\subseteq G \), then \(\forall V \in \binom{A}{s}, |\Gamma(V)| \leq \ell. (\ell = (k + 1)!) \)

where \(s = \binom{k}{2} \).

Example \((k = 3, s = 3)\)

key idea: construct a bipartite graph \(T = (V(G) \cup B, E(T)) \) satifying:

- **T1** \(\forall V \in \binom{V(G)}{k+1}, |\Gamma(V)| \leq \ell; \)
- **T2** for a random \(V \in \binom{V(G)}{k} \), with high probability \(|\Gamma(V)| \geq h; \)
Proof of the gap-producing reduction

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X.

Goal: Given n-vertex graph G construct $H = (A \cup B, E)$ in FPT, such that:

- **H1** if $K_k \subseteq G$, then $\exists V \in (A^s), |\Gamma(V)| \geq h$;
- **H2** if $K_k \not\subseteq G$, then $\forall V \in (A^s), |\Gamma(V)| \leq \ell$.

where $s = \binom{k}{2}$.

Example ($k = 3, s = 3$)
Proof of the gap-producing reduction

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X.

Goal: Given n-vertex graph G construct $H = (A \cup B, E)$ in FPT, such that:

- $H1$ if $K_k \subseteq G$, then $\exists V \in \binom{A}{s}, |\Gamma(V)| \geq h$;

- $H2$ if $K_k \not\subseteq G$, then $\forall V \in \binom{A}{s}, |\Gamma(V)| \leq \ell$.

where $s = \binom{k}{2}$.

Example ($k = 3, s = 3$)
Probabilistic construction of T

Bipartite Random Graph: $T = (A \cup B, E)$
- $|A| = |B| = n$
- $u \in A$ and $v \in B$ is joined by an edge with probability $p = n^{-1/(k+1)}$
Probabilistic construction of T

Bipartite Random Graph: $T = (A \cup B, E)$

- $|A| = |B| = n$
- $u \in A$ and $v \in B$ is joined by an edge with probability $p = n^{-1/(k+1)}$

The expected number of common neighbors of a $(k+1)$-vertex subset of A is

$$n \cdot p^{k+1} = O(1)$$
Bipartite Random Graph: \(T = (A \cup B, E) \)

- \(|A| = |B| = n \)
- \(u \in A \) and \(v \in B \) is joined by an edge with probability \(p = \frac{n-1}{k+1} \)

The expected number of common neighbors of a \((k+1)\)-vertex subset of \(A \) is

\[
n \cdot p^{k+1} = O(1)
\]

The expected number of common neighbors of a \(k \)-vertex subset of \(A \) is

\[
n \cdot p^k = n^{1/(k+1)}
\]
Define bipartite graph $T = (A \cup B, E) = ((V_1 \cup V_2 \cup \cdots \cup V_n) \cup B, E)$ satisfying:

T1 every $k + 1$ vertices in A has at most ℓ common neighbors;

T2' for every k distinct indices i_1, \cdots, i_k, there exist $v_{i_1} \in V_{i_1}, \cdots, v_{i_k} \in V_{i_k}$ such that v_1, \cdots, v_k have at least h common neighbors.

Remark: The reduction can be adapted to T satisfying T_1 and T_2'.

Lemma: For $\ell = \binom{k+1}{2} < h = \Theta(\frac{1}{k})$, we can construct T satisfying T_1 and T_2' in polynomial time.
Derandomizing the reduction

Define bipartite graph $T = (A \cup B, E) = ((V_1 \cup V_2 \cup \cdots \cup V_n) \cup B, E)$ satisfying:

1. **T1** every $k + 1$ vertices in A has at most ℓ common neighbors;
2. **T2’** for every k distinct indices i_1, \cdots, i_k, there exist $v_{i_1} \in V_{i_1}, \cdots, v_{i_k} \in V_{i_k}$ such that v_1, \cdots, v_k have at least h common neighbors.

Remark

The reduction can be adapted to T satisfying T1 and T2’.

Lemma

For $\ell = (k + 1)! < h = n^{\Theta(1/k)}$, we can construct T satisfying T1 and T2’ in polynomial time.
Summary

- We give an fpt gap-producing reduction from k-Clique to Max-k-Subset-Intersection.
- Under ETH, we can rule out moderate exponential approximation algorithms for Max-k-Subset-Intersection.
- Inapproximability of other natural parameterized problem.
 - k-Dominating-Set: no constant fpt-approximation

Open questions

- Does k-Clique have constant fpt-approximation?
- Does k-Dominating-Set have fpt-approximation with ratio $\rho(k)$?
Summary

- We give an fpt gap-producing reduction from k-CLIQUE to MAX-k-SUBSET-INTERSECTION.
- Under ETH, we can rule out moderate exponential approximation algorithms for MAX-k-SUBSET-INTERSECTION.
- Inapproximability of other natural parameterized problem.
 - k-DOMINATING-SET: no constant fpt-approximation

Open questions
- Does k-CLIQUE have constant fpt-approximation?
- Does k-DOMINATING-SET have fpt-approximation with ratio $\rho(k)$?
Thank You!