Big data and new models needed to
study DNA variation in evolution
and cancer

David Haussler, UC Santa Cruz
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The G10K Community of Scientists



The Genome 10K Community Goal:
To understand how complex animal life evolved
through changes in DNA and use this knowledge to
become better stewards of the planet.

Collect samples and sequence at least 10,000 different
vertebrate species, bank fibroblast cell lines and make
IPS lines for > 1,000 species. Currently ~350 genomes
and dozens of IPS lines from various labs.

Annotate genomes, map and interpret genetic differences
between species, and compute the evolutionary record of
genetic changes on each lineage

Correlate with ecologic, biologic and geologic data for
deep study of vertebrate diversity, biology, evolution, and
for species conservation

The G10K Community of Scientists



Grand scientific challenge of vertebrate
molecular evolution

Reconstruct the evolutionary history
of each base In the genomes of the living
species

* Recognize functional elements from patterns of
negative and positive selection

* Find the origins of evolutionary innovations
specific to the human and other lineages




Early look at some evolutionary
differences in human neurodevelopment
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Differences in gene expression during early
neural development between rhesus and human

HUMAN RNA-SEQ TIMELINE
 Neural genes are

defined as genes

having 5 fold higher
CORTICAL -
ESC 1 1 1 1 NEUROSPHERE o~ PI >510N after .
neural differentiation

compared to their
expression in
embryonic stem cells

RHESUS RNA-SEQ TIMELINE

« Between 160-300 genes are >2-fold differentially expressed
between human and rhesus for each week of development

Frank Jacobs



All genes with a dynamic expression pattern during human and or rhesus cortical neuron differentiation (~11,000)
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Genome-wide gene profiling by RNA-seq,
ChlP-seq & DNasel-seq

UCSC Genome Browser on Human Mar. 2006 (NCBI36/hg18) Assembly
maove zocmin[ 1.5x ][ 3x ][ 10x ][ base ]zoomout[ 1.5x ][ 3x ][ 10x ]

position/search chr6:31,240,008-31.251.093

gene size 11,086 bp. Survey. Help us improve the Browser.
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OCT4: An Embryonic Stem Cell-specific enhancer

Frank Jacobs



Genome-wide gene profiling by RNA-seq,
ChlP-seq & DNasel-seq
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General differences observed

Increased expression of genes involved in cell proliferation during
early human neurodevelopment

Genes associated with neural differentiation are delayed in human
relative to rhesus, prolonging process

Challenging to find specific substitutions and rearrangements that
account for the differences

Once we find them, using new technology we can make selective
changes in the genomes of the cells in cell culture and study the
effects



Mathematical Foundations for
Comparative Genomics



One kind of graph unifies key data
structures in comparative genomics

Phylogenetic tree
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Sequence graphs are a simple construction
kit to describe genome variation
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Segments of DNA are attached In
different ways in different genomes
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Sequence graphs include both the breakpoint
graph and bi-directed graph formalisms

DNA-labeled Colored lines are bonds

dalfrows are
sequences
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History graphs add descent edges to
sequence graphs

Colored arrows are DNA sequences \y / Horizontal black lines are bonds
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Lightning bolts are '

substitutions >

Dotted lines are
descent edges

Benedict Paten, Preprint: http://arxiv.org/abs/1303.2246



Stochastic Models of Genome Evolution: the

Jukes-Cantor model of base substitution
-3r -3r
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The probabilities of specific substitutions in time t
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The spectral decomposition of the
rate matrix Is

R=poEy+1E1+ -+ Bnv_1FEN_1
where the betas are the eigenvalues and

EO?"'?EN—I

are mutually orthogonal projection matrices. The
probabillities of specific state changes in time t are
given by the matrix

(Rt? | (RY)?

Pt = et — T 1+ Rt )
e + it + 5 6 -+
N—1 N—1 N—1 N—1
(tBa)? (tBa)?
= E E E E
> Bt Y thabat Y g+ Y P
d=0 d=0 d=0 d=0



For Jukes-Cantor, the eigenvalues are 0 and
-4r, and the (integer-valued !) projection

matrices are

(1111\ [ 3 -1 -1 -1)
s -1 111 g _1f-1 3 -1 -1
°7 411111 174 -1 -1 3 -1
\1 11 1) \ -1 -1 -1 3
Plugging these into the general formula we get
Pt _ EO 6—4TtE1
/ 1 _|_36—4rt 1 — 6—47“75 1 — 6—4rt 1 — 6—4rt \
B 1 1 — 6—47“15 1+ 36—4rt 1 — e—47°t 1 — 6—4rt
— 4 1 — 6—47"75 1 — 6—47’75 1+ 36—4rt 1 — 6—47“15
\ 1 — 6—4rt 1 — 6—47“75 1 — 6—47"t 1 _|_36—4rt )



Whole genomes change by
2-break rearrangements

-2r - 2r

@CATGGACT@

C[:DACTGAC 2

>ACTGAC 2

3 )CCATGGACTG( 4

3>CCATGGACTG 4

State space of all genome \ Here we restrict to
configurations for 2 genes circular chromosomes



For this case of 2-gene genomes, the rate
matrix for 2-break rearrangements is

—2r r r
R = r =2r r
r r —2r

The spectral decomposition has integer-valued
projection matrices like the Jukes-Cantor model,
and gives

1+ 26—37“75 1 — 6—37“75 1 — 6—37“75
P2t _ 6Rt _ 1 — 6—37°t 1+ 26—37“15 1 — 6—37“75
1 — 6—3'r‘t 1 — 6—37“75 1+ 26—37“75



For 3-gene genomes, there are 15 states

3 types of
transitions: 0, 1
and 2 ops



For n-gene genomes, there are (2n-1)(2n-3) ... (1) states.
The general model of evolution of n-gene genomes by 2-
break rearrangements is a random processes on matchings,
explored in many areas:

1.
2.
3.

o B

O N O

Diaconis and Holmes (mixing times),

Saxl (group representation theory),

MacDonald and James (symmetric functions and zonal
polynomials),

Chillag (generalized circulants),

Saw and Takemura (multivariate statistics, Wishart
distributions),

Godsil (association schemes),

Krieg, Bump (Hecke algebras),

Thrall (Lie groups).



A homogeneous space Is a set X (e.g. the state
space of a Markov process) and a group G that acts
on X. When states are matchings on {1,2, ..., 2n} (i.e.
n-gene genomes), G is naturally the group S,,, of

permutations of {1,2, ..., 2n}. For a permutation 7T
and state

r = {{i1,i2},. .., {ion_1,%2n}}

the action of 7T changes x to

rx = {{n(i1),7(i2)}, ..., {7(ian_1), 7(ion)}}



T, X, =T %q o
X, =70 71X, (in this case = x,)

-
-
-
-
-
-
-

random walk on X by action of group G




Let the state x, be an arbitrary origin. The
stabilizer subgroup H = H,, Is the subgroup of
actions in G that leave X, fixed. For matchings, H is
the hyperoctahedral group of symmetries of the n-
cube. States in X are cosets of G = S, w.r.t. H.

We write X = G/H. This is why

’SQn’ _ (QTL)'
|H,| nl2n

X = = (2n—1)(2n =3)--- (1)



In homogeneous space X = G/H, the group G acts
naturally on pairs of states

m(z,y) = (mz, 1Y)
The orbital of (,y)is  {(7z,7y) : 7™ € G}
All state pairs in the same orbital are said to have the
same difference. Thus, each orbital defines a

difference in a difference set D. In the case of the
discrete Fourier space,

D ={-(n-1), -(n-2), ..., -1,0, 1, ..., n-1}.



For example, if
n=23,thenD =
{(1,1,1),(2,1),

(3)}-

The difference
between two n-
gene genomes
IS a partition of
the integer n. So
D = set of
partitions of n.

1)AcTGAcC(2

Partition: d = (2,1)

?
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break point graph unlabeled breakpoint graph




In a symmetric random walk on X the probabillity is the
same for all transitions with the same difference. The
dynamics are defined by a function on the difference set D.
The theory can be generalized to all complex functions on D.
We call these radial functions. Aradial function on D
Induces a unique function on X and G.

For radial functions f and g, here viewed as functions on the
group G, we define their convolution as

(fxg)(v)= >  fla)gB)

(a,B):y=ap

This becomes the usual notion of convolving the effect of
one random action followed by another when f and g are
probability distributions.



A homogeneous space X = G/H is a Gelfand
space If convolution of radial functions Is
commutative, i.e.

fxg=gx*f

In this case (G,H) Is said to be a Gelfand pair.
(Same Israel Gelfand that Bernard quoted.)

The Jukes-Cantor space, the discrete Fourier
space {0, ..., n-1}, and the space of n-gene
genomes are all Gelfand spaces.



The Fourier Transform is a linear mapping that ¢
converts convolution into multiplication.

Think of a radial function as a |D|-dimensional
vector. Then the Fourier transform @ is defined by a
matrix whose rows are a special orthogonal set of
radial functions{¢q : d € D} called normalized
spherical functions. The Fourier transform is
written

f=of
where f is the Fourier transform of f and f is the
complex conjugate of f. For the Fourier state space

¢d (k’) _ eiQWkd/n



We say that the Fourier transform converts
convolution into multiplication because for any
radial functions f and g,

frg="> fadada

deD

Gelfand spaces are precisely the homogneous
spaces where there Is a well-defined Fourier
transform of the simple type we have described.
There are only a few infinite families of discrete
Gelfand pairs on the permutation group, so we are
lucky to get one for genome rearrangements.



The spectral decomposition Is associated with the
Inverse Fourier transform

=) fata

deD

The radial functions f and{¢q : d € D} are
represented as matrices, and the Fourier
Coeﬁicientsfd play the role of eigenvalues.



As an example, for the Jukes Cantor case, as |D|-
dimensional vectors (functions on D), the normalized
spherical functions are (1,1)" and (3, -1)".
Equivalently, these can be represented by |X|-by-|X]
matricies, which turn out to be the projection
matrices in the spectral decomposition.

111 1 3 -1 -1 -1
EO:1(1111\ E1=1(:1 3 -1 :1\
2111 1 al -1 -1 3 -1

\ 11 1 1) \ -1 -1 -1 3



Because of the conversion of convolution to
multiplication, If you convolve f with itself |
times, you get

[rfs-xf=) fida

deD

By Taylor expansion you can get any analytical
function of convolution powers, e.g. an exponential.



Thus, If f Is taken from a radial rate matrix R (i.e.
rate depending only on differences in D) and t Is
any amount of time, the matrix of probabilities of
state changes over various differences is

Pt — Z etfd¢d

deD

This generalizes the spectral decomposition
method for Jukes-Cantor to a broad set of state
spaces.



The Fourier transform for a general Gelfand space
can be expressed as a matrix whose columns are
the unnormalized spherical functions. For example,
for the Jukes Cantor case, the normalized spherical
functions are (1,1)" and (3, -1)' so the Fourier
transform matrix is

o= (1 )

Wonderful thing: for a Gelfand space in which the
difference is symmetric, all the coefficients of the
Fourier transform are integers.



For the case of n-gene genomes (matchings), the Fourier
transform has an integer-valued matrix indexed by the
partitions of n. The first few transform matrices are:

1 2
n=2 <I>—<1 _1>




There i1s no known computationally tractable
closed-form formula for the integers in the
Fourier transform matrix for matchings.

Nevertheless, genome evolution by 2-break
rearrangements is a special case of an
extensive and beautiful theory (symmetric
Gelfand spaces)

Including duplications, gains and losses
complicates the model considerably



Comparative Genomics in Cancer



In cancers driven by a single mutation,
like BRAF V600 in metastatic melanoma,
targeted drugs can give spectacular results

Before initiation of vemurafenib 15 weeks on vemurafenib
-— [
i

Roche



But combination or immunotherapies will
be required to prevent relapse, just as In
the treatment of HIV AIDS

Before initiation of vemurafenib 15 weeks on vemurafenib 23 weeks after therapy
A 4 o B C Wy : .

‘5 }
ol

Roche



Some motivations for large-scale application
of comparative genomics in cancer

« Bring data to research and insights to clinical practice

« Learnto link phenotypes, including clinical outcomes, to underlying
molecular aberrations

« Create the infrastructure to select patient populations for targeted
clinical trials, and to enable a new kind of global rapid learning cycle
that complements targeted trials

« Gain a mechanistic, molecular level understanding of the etiology of
disease and mechanisms of resistance to treatment

All these require statistical power



Genomes are the key to
the future of cancer treatment
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The Cancer Genome Atlas:10,000 tumors
from 20 adult cancers
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TCGA Analysis Centers
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The Cancer Genomics Hub
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CANCER GENOMICS HUB

Total Cost ~ $100/year/genome at 50K
genomes

Houses genomes from all major NCI
projects

Planned 5 PB, Scalable to 20 PB

« FISMA compliant

 1st NIH Trusted Partner

« COTS hardware

* High availability

« CentOS, standard linux tools

* General Parallel Filesystem CGHub at San Diego

* Dual RAID 6 Supercomputer Center
« Co-location opportunities




cCurrent Stats

716,000 total files downloaded

10,462 TB transferred

495 TB data
43,000 files

2-4 Gb/s typical downloads in aggregate
outbound from CGHub




Future Requires Global Network of Hubs




Different Requirements for 1M Genomes

Different types of data interactions:
- Support both research and clinical practice
Compute within a provided cloud
Separately URled, metadata-tagged parts of a single patient file
supporting 3 party mashups and tools

Harmonized portable consents, sample donor has fined-
grained control of who can access their data parts, trusts
the security provided

APIls, not file formats. 3" parties must be able to build on
It: goal to enable research and clinical analysis, not
usurp it

Benchmarking so all can use system to improve
methods, e.g. variant calling

Dave Patterson, www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-211.html



Possible Genome Commons Architecture

Interpretation Layer o
functional impact analysis

Sequence graphs
Variation
Variation database (VCF) .
= Analysis
Variation Layer t _ |
variant calling

IIl""""---|__
Sequence database (BAMs)
~100 petabytes
'h.'-—__
Read Layer ]

[ Genomic sequence data J




What would it cost to store and analyze
1M Cancer Genomes in 20147

« Our estimate is ~ $50/genome/year in 2014
to store and analyze 1M whole genomes (~ 100
petabytes, 2 months of YouTube growth)

25,000 disks and 100,000 processor cores

Including operating costs: space, electricity,
operators

Including 2"d center to protect against disasters

« Note that cancer is the high water mark for global
genome commons requirements, requirements for
other diseases are smaller, less complex, assuming
cancer includes full germline and somatic cell analysis.

Dave Patterson, www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-211.html



Extracting molecular state from
raw DNA reads

Owerall Copd Humber

. chr2 - 29,064,1074" OV-0751 Somatic Reads

ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACAggagtattaaccccacctgatctcacgatgggagaggagacgcca

ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCATCTCC
ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCATCTCCTCCATCTCCCATCG
ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAAAGGAGGC
TATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCATCTCCTCCATCTCCCATCG
ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGGCCACAGAGGTCA
CTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCCTCTCCTCCATCTCCCATCG
ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAAAGGAGGCC
ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCCGAGGGCATCTCCTCCATCTCCCAC
GGCTGGCTGCACCCTATAATGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCATCTCCTCCATCTCCCATCG
CTAGATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCCTCAGAGGGCATCACCTCCACTTCCCATCG
ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCATCTCCTCCATCCCCCATCC
TGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCCACAAAGGGCCACTTCCCCACCTCCCCTCC

cactttctacagacgatgtcaccttccacctCACAGAAAATGGAGGCCATCAGAGGGCATCTCCtccatctcececatceg

I-chr2 : 28,500,054 '
Tandem Duplication Size = 564,053 bp

Zack Sanborn, now at Five3 Genomics



Completely solved problem? Not yet.
Given the same raw sequence (BAM) files, different
mutation calling pipelines do not completely agree

TCGA-13-0725_
Point mutations called in tumor TCGA-

13-0725
Total calls: Called by 2 Called by at
other centers least 1 other Broad UCSC
Broad: 3,194 62% 85%

UCSC: 2,688 74% 89%
WUSTL: 3,125 63% 82%
Still work to do to harden mutation- éa
calling software, even for point mutations

UCSC, Broad are leading a series of

TCGA/ICGC international benchmark

challenges. Visit cghub.ucsc.edu for WUSTL 0
TCGA Benchmark 4




Even more differences in calling
. Structural changes _ ..

06-0152 06-0188

« 2 Glioblastoma samples. Circle plot shows amplifications,
deletions, inter/intra chromosomal rearrangement

* These 2 samples have 23/25 top Broad, 21/29 top UCSC events



In 11/16 WGS TCGA glioblastoma cases
similar events lead to homozygous loss of
CDKN2A/B

One Copy Deleted by Other Copy Deleted by

5 GBMs Focal Loss Arm-Level loss of chr9p

(via inter-chrom translocation)

3 GBMs Focal Loss Arm-Level loss of chr9p

(mechanism unknown)

2 GBMs Focal Loss Complete loss of chr9
1 GBM Focal Loss Complex event
5 GBMs No loss detected No loss detected

Zack Sanborn



Massive Genomic Rearrangement

Acquired In a Single Catastrophic Event
during Cancer Development

Philip J. Stephens,” Chris D. Greenman,' Beiyuan Fu,” Fengtang Yang,' Graham R. Bignell," Laura J. Mudie,’

Erin D. Pleasance, King Wai Lau,? David Beare,? Lucy A. Stebbings," Stuart McLaren," Meng-Lay Lin," David J. McBride,?
Ignacio Varela," Serena Nik-Zainal,' Catherine Leroy,” Mingming Jia,” Andrew Menzies," Adam P. Butler,’

Jon W. Teague,” Michael A. Quail," John Burton,! Harold Swerdlow,! Migel P. Carter,’ Laura A. Morsberger,2

Christine lacobuzio-Donahue,? George A. Follows,? Anthony R. Green,** Adrienne M. Flanagan,>¢ Michael R. Stratton,’7
P. Andrew Futreal,' and Peter J. Campbell1.3.4.*

« Chromothripsis: DNA replication process get confused for a
period or DNA is shattered into pieces by some high energy
event when chromosome is in condensed state

* DNA repair mechanisms try to stitch genome back together

« Can generate rearrangements, losses, and circular “do_y_ble o

minute” chromosomes s \XJ

_— .y

kg S I

Zack Sanborn
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RAPB1 ( _ 304

DM from another GBM tumor. We estimate
20% of GBMs have oncogenic DMs

Validation by FISH
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Zack Sanborn, Cameron Brennan



Highlights from analysis of 500 GBMs

PRONEURAL

NEURAL CLASSICAL MESENCHYMAL

G-CIMP Non G-CIMP

I MIH | |I I

CRITEN
| ‘ | H#lelll”rl | |1

Suknin 1o

——__

IIHI %||| | |
‘|I|I||||I I {

4I||

i

||| | || | ||'||||I ||'| |f'||”|

{H |I|II|{I I Ihl | | || {HI I|I Il ||I||| L0 |I||VI| LT ] I|I || IPTEN

ARUTTNIITTRNRIA 20926 - PrEN

| MYc
11p15
IDH1
ATRX

17p13-TP53

| | | ! [TARHRY A B I|I|I |I|I|’||I||I|II| |I|I|,|W"53F S
| lll |I|| Iilll\ IMI| |II||IF |I| Ill||I| ll I|| |||||II||| | ll st o

| 12q14-cDK4
3926 - SOX2
EGFR vill

| EGFR - cDel

EGFR — pt mut
| 7p11 - EGFR
9924 - CDKN2a
19p

19q12 - CCNE1

20p
| III I | 20q

\IIIII\IIIIIII\IIII NFL

| I| icnms
17¢12 - NF1
|| 13q14-RB1

TCGA GBM Analysis
Working Group



Tumors have metagenomes: mixture of
clones resulting from somatic selection of
3 subclones
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One can use sequence graphs for
analysis of cancer metagenomes
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Daniel Zerbino



Algebraic/Combinatorial Approach to
Comparative Metagenomics

(a) (b)

Flows: A B

>A> | >B> | >B> | >C>

a) (b) (©

(
Alternating and 5 ° e
simple flows:

Daniel Zerbino



Duplication — raw data

Detected Breakend Primary Copy-Number
Signal
Scale 200 kb}
chré: 148,400,000| 148,500,000/ 148,600,000/ 148,700,000| 148,800,000/ 148,900,000| 149,000,000| 149,100,000
| bam?amadj
1000._0_0_0 I ]
1.61031 _ bambam.cov

bambam.cov 1-

0
UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics
SASH1 G EEE s ea il 1)
DKFZp68611750 I ,;
uUsT =D

Brian Raney



Duplication — model from data

Single duplication event (Copy number change + Breakend)

Scale 200 kb} I hg18
chré: 148,400,000/ 148,500,000| 148,600,000| 148,700,000| 148,800,000| 148,900,000| 149,000,000| 149,100,000
chavg

0.447_0_40_0
0.563886 _ cactus.cnv
cactus.cnv
0.
UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics
SASH1 > =ttt
DKFZp68611750 e$%
usT =D

Red = creation/duplication

Daniel Zerbino



Deletion — raw data

(No breakend detected)

Scale 100 kb| | hg18
chr6: 87,850,000] 87,900,000| 87,950,000 88,000,000 88,050,000
bambamadj
1.2547 _ bambam.cov

bambam.cov

0

UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics
CGA H
DKFZp686P0262 |
ZNF292 | H !
DKFZp686P0262 REEE S G ENINNNERS YN’
GJB7 "__-_'—[.?[\)'
GJB7 I

Daniel Zerbino



Deletion — model from data

Suggested novel

Single deletion event .
J breakend creation

Scale I hg18
chre: 87,850,000 87,950,000|/ 88,000,000| 88,050,000
chavg
SR _l
0.163524 _ cactus.cnv

UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics

.|

cactus.cnv

-0.563895 _

CGA
DKFZp686P0262 Ho—ss-

ZNF292 e Rt S |

DKFZp686P0262 > > H

- ML

GJB7 |

Blue = removal/deletion

Daniel Zerbino



Finally, key is interpretation of

TCGA

genomics data at the pathway level |&lioblastoma

GED CD oo -

Homozygous deletion, Homozygous signalling
mutation in 52% delotion in 47 % dlllrnnn in 2%

|
Ampiification _|

in18% .|I'I i“l

% Homozygous deletion,
mutation in 11%

RTK/RAS/PIZ)K

i@uillrunhnl:l
in B8%

Mutation,
delation in 18%

Analysis

[.ln:huu:l mml

y Homozygous deletion,

mutation in 49%
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Qo>

Amplihcaton in 7%
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The Age of Opportunity for the Study of
Genetics and Medicine

 #linfrastructure issue is to achieve statistical power by
aggregating information. We must head off the development of
genomic information silos

 #1interpretive challenge is to accurately read a genome and
model effects of genetic changes on molecular pathways and
phenotypes

« We must accelerate biomedical research and improve clinical
practice by building new global platforms for storage,
exchange and analysis of molecular and phenotypic
information



Some Current Collaborators

Collaborators

Dave Patterson group, UC Berkeley

David Altshuler, Charles Sawyers, Mike Stratton, Betsy Nabel, Brad
Margus, Karen Kennedy, Tom Hudson

Richard Durbin, Sanger Centre
Broad Institute, Wash U., Baylor
The Cancer Genome Atlas and its labs, esp. GBM analysis working

group
Stand Up To Cancer and its labs

Intl. Cancer Genome Consortium and its labs
Chris Benz, Buck Institute

Laura Van’t Veer, Laura Esserman, Joe Costello, Eric Collisson,
Margaret Tempero, UCSF

UCSC Storage Systems Group
Joe Gray, Paul Spellman, OHSU



UCSC Cancer Integration Group

Jing Zhu Charlie Vaske Steve Benz Zack Sanborn Mark Diekhans *

Josh Stuart, Co-PI

James Durbin Ted Golstein

Chris Szeto

Brian Craft

Daniel Zerbino
Kyle Elrott
Singer Ma
Artem Sokolov
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