Color Coding-Related Techniques

Meirav Zehavi

Tel Aviv University

Outline

Mixing Color Coding-Related Techniques

Color Coding

Given a graph *G*, seek a solution that is a subgraph on *k* nodes.

- Given a set of *k* colors, color each node (randomly).

- With high probability, there is a solution where each node has a different color.
- Seek such a solution—easy!(dynamic programming)

[Alon, Yuster and Zwick, J. ACM'95]

Color Coding: Directed k-Path

Given a directed graph *G*, seek a path on *k* nodes.

- Color nodes; use a set of k colors.*
- Success (1 iteration): $k!/k^k$.
- Success (r iterations): $1 (1-k!/k^k)^r$.
- $-r = O^*(e^k)$ iterations.
- * There is a variant of color coding that uses more colors.

Color Coding: Directed k-Path

Given a directed graph *G*, seek a path on *k* nodes.

- Color nodes; use a set of *k* colors.
- Examine an iteration where the solution is colorful.
- Use dynamic programming:
 - M[v,p,S] Is there a path on p nodes that ends at the node v and uses the color-set S?
- Can handle weights.
- Can be derandomized.

Time: $O^*((2e)^k)$

Color Coding-Related Techniques

Divide-and-color.

Fast

[Chen, Kneis, Lu, Mölle, Richter, Rossmanith, Sze and Zhang, SICOMP'09]

- Weighted problems; deterministic; polynomial-space.

Multilinear detection & Narrow sieves. Fastest

[Koutis, ICALP'09], [Williams, IPL'09], [KW, ICALP'10] & [Björklund, FOCS'10], [Björklund, Husfeldt, Kaski and Koivisto, arXiv'10]

- Weighted problems; deterministic; polynomial-space.

Representative sets.

Faster

[Fomin, Lokshtanov and Saurabh, SODA'14]

- Weighted problems; deterministic; polynomial-space.

Divide-and-Color

- Based on recursion.
- In each step, we have a set A of n elements, and we seek a certain subset A* of k elements in A.
- We color each element in A in one of two colors, thus partitioning A into two sets B and C.
- Now, we seek a subset $B^* \subseteq A^*$ in B, and a subset $C^* = A^* \setminus B^*$ in C.

Divide-and-Color: Directed k-Path

For each pair of nodes v and u, we seek a solution that starts at v and ends at u.

- Color each node in red or blue.
- Examine an option where the first "half" of the solution is red, and the second "half" is blue.

Divide-and-Color: Directed k-Path

Solutions to the

Now, we have two new subproblems: Find paths on k/2 nodes in the subgraph induced by the red nodes, and find such paths in the subgraph induced by the blue nodes.

Solutions to the

red subproblem:

blue subproblem: $v \rightarrow v \rightarrow v \qquad r \rightarrow v \qquad p \rightarrow q$ $v \rightarrow v \rightarrow v \qquad a \rightarrow b$

Divide-and-Color: Directed k-Path

Definition: Let \mathcal{F} be a set of functions $f: \{1,2,...,n\} \rightarrow \{0,1\}$. We say that \mathcal{F} is an (n,k)-universal set if for every subset I of $\{1,2,...,n\}$ of size k and a function $f': I \rightarrow \{0,1\}$, there is a function $f \in \mathcal{F}$ such that for all $i \in I$, f(i) = f'(i).

Theorem (Naor, Schulman and Srinivasan, FOCS'95): An (n,k)universal family of size $2^{k+o(k)}\log n$ can be computed in time $O(2^{k+o(k)}n\log n)$.

Running time: $O^*(4^k)$.

Multilinear Detection & Narrow Sieves

Multilinear Detection:

- 1. Potential solution \rightarrow Monomial.
 - Correct solution ← Multilinear monomial.
- 2. Use a known $O^*(2^t)$ -time **randomized** algorithm for the t-Multilinear Detection Problem.

Multilinear Detection & Narrow Sieves

Narrow Sieves:

- 1. Potential solution \rightarrow Monomial.
 - Correct solution → Unique monomial.
 - The set of incorrect solutions can be partitioned into pairs, where the elements in each pair are associated with the same monomial.
- Inclusion-exclusion principle; Schwartz-Zippel lemma; dynamic programming.
 Potential Solutions

 Monomials

Narrow Sieves: Directed k-Path

- Use a set C of k colors.
- $\mathbf{x}_{\mathbf{v},\mathbf{c}}$ for each node \mathbf{v} and color \mathbf{c} ; $\mathbf{x}_{\mathbf{e}}$ for each edge \mathbf{e} .

- Let W_X be the set of colored walks on k nodes avoiding colors from X.
- Let $W_{colorful}$ be the set of colorful walks on k nodes.
- $-POL_{colorful} = \sum_{w \in W_{colorful}} mon(w) = \sum_{X \subseteq C} (-1)^{|X|} \sum_{w \in W_X} mon(w)$
- \rightarrow Evaluate $POL_{colorful}$: $O^*(2^k)$ time, polynomial-space. (Dynamic programming; do not remember color-sets.)

Narrow Sieves: Directed k-Path

- Use a set C of k colors.
- $\mathbf{x}_{\mathbf{v},\mathbf{c}}$ for each node \mathbf{v} and color \mathbf{c} ; $\mathbf{x}_{\mathbf{e}}$ for each edge \mathbf{e} .

$$- (p) \rightarrow (q) \rightarrow (u); k = 3; x_{p,g} x_{q,b} x_{u,g}, x_{p,g} x_{q,b} x_{u,r}, x_{p,b} x_{q,r} x_{u,r}, ...$$

$$-POL_{colorful} = \sum_{w \in W_{colorful}} mon(w) = \sum_{w \in W_{colorful}} mon(w) + \sum_{w \in W_{colorful}} mon(w) + \sum_{w \in W_{colorful}} mon(w)$$

- correct: unique monomials; incorrect: partition into pairs having the same monomial.
- Is **POL**_{colorful} 0? (characteristic 2; Schwartz-Zippel lemma; evaluations)

Narrow Sieves: Directed k-Path

- correct: unique monomials; incorrect: partition into pairs having the same monomial. k = 4

$$X_{(p,q)}X_{(q,u)}X_{(u,v)}X_{p,g}X_{q,b}X_{u,r}X_{v,o}$$

Swap! (different colors \rightarrow different potential solutions)

$$X_{(p,q)}X_{(q,u)}X_{(u,v)}X_{p,g}X_{q,b}X_{u,r}X_{p,o}$$

(same monomial)

Representative Sets: Definition

Let *E* be a universe of *n* elements, and let *S* be a family of *p*-subsets of *E*.

A subfamily $\widehat{S} \subseteq S$ k-represents S if: For every pair of sets $X \in S$ and $Y \subseteq E \setminus X$ such that $|Y| \leq k - p$, there is a set $\widehat{X} \in \widehat{S}$ disjoint from Y.

(Weighted problems, matroids: a more general definition.)

Representative Sets: Technique

- Consider a parameterized algorithm, A, based on dynamic programming.
- At each stage, A computes a family S of sets that are partial solutions.
- We compute a subfamily $\widehat{S} \subseteq S$ that represent S.
- Each reference to \mathcal{S} is replaced by a reference to $\widehat{\mathcal{S}}$.
- Can we efficiently compute representative families that are small enough?
 - Fomin, Lokshtanov and Saurabh, SODA'14: $[\binom{k}{n} 2^{o(k)} \log n \text{ , } O(|\mathcal{S}|(k/(k-p))^{k-p} 2^{o(k)} \log n)]$

Size Time

Representative Sets: Directed k-Path

Let $S_{v,p}$ be the family of node-sets of directed paths on p nodes that end at v. $|S_{v,p}|$ can be very large! $\binom{n}{p}$ Use dynamic programming + representative sets: M[v,p] stores a family that (k-p)-represents $S_{v,p}$. $\binom{k}{p} 2^{o(k)} \log n$

 \rightarrow Running time: O*(2.851^k)

Mixing Color Coding-Related Techniques

Sometimes **mixtures** of color coding-related techniques result in faster algorithms.

<u>Directed k-Path (for example)</u>:

- 1. Divide-and-Color: $O^*(4^k)$ (weighted; det.; pol.-space)
- 2. Narrow Sieves: $O^*(2^k)$ (weighted; det.; pol.-space)
- 3. Rep. Sets: $O^*(2.851^k)$ (weighted; det.; pol. space)
- Rep. Sets + Tradeoff + Div-and-Col: O*(2.597^k) [ESA'15]

Tradeoff: Fomin, Lokshtanov, Panolan and Saurabh, ESA'14; with Shachnai, ESA'14.

Mixing: Directed *k*-Path

Nodes: red and blue.

There is a solution

→ there is a solution that looks like this:

Mixing: Directed k-Path

Standard dynamic programming + representative sets:

At each stage, for each node v and integer p, we have a family of partial solutions; each partial solution is the node-set of a path on p nodes that ends at v.

Dark blue and light blue:

First half of the computation:

Second half of the computation:

Mixing: Directed *k*-Path

The worst time to compute representative sets:

Mixing: Directed k-Path

- A more general definition of representative sets (+ the necessary computation).
- Given the blue set, to find the dark and light blue sets, we use one step of divide-and-color.

