Color Coding-Related Techniques

Meirav Zehavi

Tell Aviviw Universitity

Outline

Given a graph G, seek a solution that is a subgraph on k nodes.

- Given a set of k colors, color each node (randomly).
- With high probability, there is a solution where each node has a different color.
-Seek such a solution-easy! (dynamic programming)
[Alon, Yuster and Zwick, J. ACM'95]

Given a directed graph G, seek a path on k nodes.

$$
k=6
$$

- Color nodes; use a set of k colors. ${ }^{*}$
- Success (1 iteration): $k!/ k^{k}$.
- Success (r iterations): 1 - (1-k!/k $\left.{ }^{k}\right)^{r}$.
$-r=O^{*}\left(\mathrm{e}^{k}\right)$ iterations.
* There is a variant of color coding that uses more colors.

Given a directed graph G, seek a path on k nodes.

$$
k=6
$$

- Color nodes; use a set of k colors.
- Examine an iteration where the solution is colorful.
- Use dynamic programming:
$\mathrm{M}[v, p, S]$ - Is there a path on p nodes that ends at the node v and uses the color-set S ?
- Can handle weights.
- Can be derandomized.

Time: $O^{*}\left((2 \mathrm{e})^{k}\right)$

Divide-and-color.

[Chen, Kneis, Lu, Mölle, Richter, Rossmanith, Sze and Zhang, SICOMP'09]

- Weighted problems; deterministic; polynomial-space.

Multilinear detection \& Narrow sieves. Fastest
[Koutis, ICALP'09], [Williams, IPL'09], [KW, ICALP'10]
\& [Björklund, FOCS'10], [Björklund, Husfeldt, Kaski and
Koivisto, arXiv'10]

- Weighted problems; deterministic; polynomial-space. Representative sets.
[Fomin, Lokshtanov and Saurabh, SODA'14]
- Weighted problems; deterministic; polynomial-space.
- Based on recursion.
- In each step, we have a set A of n elements, and we seek a certain subset A^{*} of k elements in A.
- We color each element in A in one of two colors, thus partitioning A into two sets B and C.
- Now, we seek a subset $B^{*} \subseteq A^{*}$ in B, and a subset $C^{*}=A^{*} \backslash B^{*}$ in C.

For each pair of nodes v and u, we seek a solution that starts at v and ends at u.

- Color each node in red or blue.
- Examine an option where the first "half" of the solution is red, and the second "half" is blue.

Now, we have two new subproblems: Find paths on $k / 2$ nodes in the subgraph induced by the red nodes, and find such paths in the subgraph induced by the blue nodes.

Solutions to the red subproblem:

Solutions to the blue subproblem:

$$
k=6
$$

Definition: Let \mathcal{F} be a set of functions $\mathrm{f}:\{1,2, \ldots, \mathrm{n}\} \rightarrow\{0,1\}$. We say that \mathcal{F} is an (n, k)-universal set if for every subset I of $\{1,2, \ldots, n\}$ of size k and a function $f^{\prime}: I \rightarrow\{0,1\}$, there is a function $f \in \mathcal{F}$ such that for all $i \in I, f(i)=f^{\prime}(i)$.

Theorem (Naor, Schulman and Srinivasan, FOCS'95): An (n, k)universal family of size $2^{k+o(k)} \log n$ can be computed in time $O\left(2^{k+o(k)} n \operatorname{logn}\right)$.

Running time: $O^{*}\left(4^{k}\right)$.

Multilinear Detection:

1. Potential solution \rightarrow Monomial.

- Correct solution \leftrightarrow Multilinear monomial.

2. Use a known $O^{*}\left(2^{t}\right)$-time randomized algorithm for the t-Multilinear Detection Problem.

Narrow Sieves:

1. Potential solution \rightarrow Monomial.

- Correct solution \rightarrow Unique monomial.
- The set of incorrect solutions can be partitioned into pairs, where the elements in each pair are associated with the same monomial.

2. Inclusion-exclusion principle; Schwartz-Zippel lemma; dynamic programming.

Potential Solutions Monomials

- Use a set C of k colors.
- $\boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{c}}$ for each node \boldsymbol{v} and color $\boldsymbol{c} ; \boldsymbol{x}_{\boldsymbol{e}}$ for each edge \boldsymbol{e}.
$\rightarrow(p) \rightarrow(q) ; k=3 ; x_{p, g} x_{q, b} x_{u, g}, x_{p, g} x_{q, b} x_{u, r} x_{p, b} x_{q, r} x_{u, r} \ldots$
- Let $\boldsymbol{W}_{\boldsymbol{x}}$ be the set of colored walks on k nodes avoiding colors from X.
- Let $\boldsymbol{W}_{\text {colorful }}$ be the set of colorful walks on k nodes.
$-P O L_{\text {colorful }}=\sum_{w \in W_{\text {colorful }}} \operatorname{mon}(w)=\sum_{X \subseteq C}(-1)^{|x|} \sum_{w \in W_{X}} \operatorname{mon}(w)$
\rightarrow Evaluate $P L_{\text {colorful }}$: $O^{*}\left(2^{k}\right)$ time, polynomial-space.
(Dynamic programming; do not remember color-sets.)
- Use a set C of k colors.
- $\boldsymbol{x}_{\boldsymbol{v}, \boldsymbol{c}}$ for each node \boldsymbol{v} and color $\boldsymbol{c} ; \boldsymbol{x}_{\boldsymbol{e}}$ for each edge \boldsymbol{e}.
(p) $x_{(p, q)^{x}}(q, u)$.
$\rightarrow(p) \rightarrow(u) ; k=3 ; x_{p, g} x_{q, b} x_{u, g}, x_{p, g} x_{q, b} x_{u, r} x_{p, b} x_{q, r} x_{u, r} \ldots$
$-P_{\text {colorful }}=\sum \operatorname{mon}(w)=\sum \operatorname{mon}(w)+\sum \operatorname{mon}(w)$

$$
w \in W_{\text {colorful }} \quad \begin{gathered}
w \in W_{\text {colorful }} \\
\text { correct }
\end{gathered} \quad \begin{gathered}
w \in W_{\text {colorful }} \\
\text { incorrect }
\end{gathered}
$$

-correct: unique monomials; incorrect: partition into pairs having the same monomial.

- Is POL ${ }_{\text {colorful }}$ O?
(characteristic 2; Schwartz-Zippel lemma; evaluations)
- correct: unique monomials; incorrect: partition into pairs having the same monomial. $k=4$
$X_{(p, q)} X_{(q, u)^{X}}{ }_{(u, v)^{X}}{ }_{p, g}{ }^{X_{q, b}} \boldsymbol{X}_{u, r^{\prime}} X_{v, 0}$

Swap! (different colors \rightarrow different potential solutions)

$\boldsymbol{X}_{(p, q)}{ }^{\boldsymbol{X}}{ }_{(q, u)^{\boldsymbol{X}}}^{(u, v)}{ }^{\boldsymbol{X}} \boldsymbol{X}_{p, g^{X}} \boldsymbol{X}_{q, b} \boldsymbol{X}_{u, r^{\prime}} \boldsymbol{X}_{p, 0}$
(same monomial)

Let E be a universe of n elements, and let S be a family of p-subsets of E.
 A subfamily $\widehat{S} \subseteq \boldsymbol{S} k$-represents \boldsymbol{S} if: For every pair of sets $X \in S$ and $Y \subseteq E \backslash X$ such that $|Y| \leq k-p$, there is a set $\widehat{X} \in \widehat{S}$ disjoint from Y.
(Weighted problems, matroids: a more general definition.)

- Consider a parameterized algorithm, A, based on dynamic programming.
- At each stage, \mathbf{A} computes a family \mathbf{S} of sets that are partial solutions.
- We compute a subfamily $\widehat{S} \subseteq S$ that represent S.
- Each reference to S is replaced by a reference to \widehat{S}.
- Can we efficiently compute representative families that are small enough?
- Fomin, Lokshtanov and Saurabh, SODA'14:
$\left.\left[\begin{array}{l}k \\ p\end{array}\right) 2^{o(k)} \log n, O\left(|\mathcal{S}|(k /(k-p))^{k-p} 2^{o(k)} \log n\right)\right]$
Size
Time

Let $S_{v, p}$ be the family of node-sets of directed paths on p nodes that end at $v .\left|S_{v, p}\right|$ can be very large! $\quad\binom{n}{p}$
Use dynamic programming + representative sets: $\mathrm{M}[v, p]$ stores a family that ($k-p$)-represents $\mathrm{S}_{\mathrm{v}, \mathrm{p}}$.
$\binom{k}{p} 2^{0(k)} \log n$
\rightarrow Running time: $\mathrm{O}^{*}\left(2.851^{k}\right)$

Sometimes mixtures of color coding-related techniques result in faster algorithms.
Directed k-Path (for example):

1. Divide-and-Color: $O^{*}\left(4^{k}\right)$
(weighted; det.; pol.-space)
2. Narrow Sieves: $O^{*}\left(2^{k}\right)$
(weighted; det.; pol.-space)

3. Rep. Sets: $O^{*}\left(2.851^{k}\right) \quad$ (weighted; det.; pol.space)

- Rep. Sets + Tradeoff + Div-and-Col: $O^{*}\left(2.597^{k}\right)$ [ESA'15]

Tradeoff: Fomin, Lokshtanov, Panolan and Saurabh, ESA'14; with Shachnai, ESA'14.

Mixing: Directed $k=$ Path

Nodes: red and blue.
There is a solution
\rightarrow there is a solution that looks like this:

\square

Standard dynamic programming + representative sets:

At each stage, for each node v and integer p, we have a family of partial solutions; each partial solution is the node-set of a path on p nodes that ends at v.

Dark blue and light blue:

First half of the computation:

? ? ? ? ? ? ? ? ? ? ? ? ?

Second half of
the computation:

Mixing: Directed $k=P a t h$

The worst time to compute representative sets:

Mixing: Directed $k=P a t h$

- A more general definition of representative sets (+ the necessary computation).
- Given the blue set, to find the dark and light blue sets, we use one step of divide-and-color.
- Balanced cutting: $\mathrm{O} \rightarrow \mathrm{O} \rightarrow \mathrm{O} \rightarrow \mathrm{O} \rightarrow \mathrm{O} \rightarrow \ldots . . \quad \rightarrow \mathrm{O} \rightarrow \mathrm{O}$

