




Given a graph G, seek a solution 
that is a subgraph on k nodes. 
 

- Given a  set  of  k colors, color 
  each node (randomly).  
 

- With  high  probability,   there 
  is a solution where each node 
  has a different color. 
 

- Seek  such  a  solution—easy! 
  (dynamic programming) 
 

[Alon, Yuster and Zwick, J. ACM'95] 



Given a directed graph G, seek a path on k nodes. 

- Color nodes; use a set of k colors.* 

- Success (1 iteration): k!/kk.  
- Success (r iterations): 1 - (1-k!/kk)r. 
- r = O*(ek) iterations. 
 

* There is a variant of color coding that uses more colors. 

k = 6 



Given a directed graph G, seek a path on k nodes. 

- Color nodes; use a set of k colors. 

- Examine an iteration where the solution is colorful. 
- Use dynamic programming: 
   M[v,p,S] – Is there a path on p  nodes  that  ends 
                      at the node v and uses the color-set S?  
- Can handle weights. 
- Can be derandomized. 

k = 6 

Time: O*((2e)k)  



• Divide-and-color.  
   [Chen,  Kneis,  Lu, Mölle,  Richter,  Rossmanith,  Sze  and 
                                                                     Zhang, SICOMP'09] 
   - Weighted problems; deterministic; polynomial-space. 

• Multilinear detection & Narrow sieves. 
   [Koutis, ICALP'09], [Williams, IPL'09], [KW, ICALP'10] 
   & [Björklund, FOCS'10],   [Björklund, Husfeldt, Kaski and 
                                                                       Koivisto, arXiv'10] 
- Weighted problems; deterministic; polynomial-space. 

• Representative sets. 
  [Fomin, Lokshtanov and Saurabh, SODA'14] 
   - Weighted problems; deterministic; polynomial-space. 

Fast 

Fastest 

Faster 



• Based on recursion. 
 

• In each step, we have a set A of n elements,  and 
   we seek a certain subset A* of k elements in A. 
 

• We  color each element in A in one of two colors, 
   thus partitioning A into two sets B and C. 
 

• Now, we seek a subset B*  ⊇ A* in B, and a subset 
   C* = A*\B* in C. 



k = 6 

For each pair of nodes v and u, we seek a solution that 
starts at v and ends at u . 
 

- Color each node in red or blue. 
 

- Examine an option where the first “half” of the solution 
   is red, and the second “half” is blue. 

u v 



k = 6 

Now, we have two new subproblems: Find paths on k/2 
nodes in the subgraph induced by the red nodes, and find 
such paths in the subgraph induced by the blue nodes. 

u v w r 

Solutions to  the 
red subproblem: 

Solutions  to  the 
blue subproblem: 

v w r u 

y x a b 

p q 



k = 6 u v 

Definition: Let     be a set of functions f: {1,2,…,n} → {0,1}. 
We say that     is an (n,k)-universal set if for every subset 
of {1,2,…,n} of size k and a function f’:  →{0,1}, there is a 
function            such that for all                            .  
 

Theorem (Naor, Schulman and Srinivasan, FOCS'95): An (n,k)-
universal family of size 2k+o(k)logn can be computed in 
time O(2k+o(k)nlogn).  

Running time: O*(4k).  



Multilinear Detection: 
1. Potential solution → Monomial. 
      - Correct solution ↔ Multilinear monomial. 
2. Use a known O*(2t)-time randomized algorithm for the 

t-Multilinear Detection Problem. 



Narrow Sieves: 
1. Potential solution → Monomial. 
       - Correct solution → Unique monomial. 
 - The set of incorrect solutions can be partitioned into pairs, 

where the elements in each pair are associated with the same 
monomial. 

2. Inclusion-exclusion principle;  Schwartz-Zippel  lemma;  dynamic 
    programming.  

 
 
 



- Use a set C of k colors. 
- xv,c for each node v and color c; xe for each edge e. 
 

-                            , k = 3;  xp,gxq,bxu,g, xp,gxq,bxu,r, xp,bxq,rxu,r, …  
 

- Let WX be the set of colored walks on k nodes avoiding 
  colors from X. 
 

- Let Wcolorful be the set of colorful walks on k nodes. 
 

- POLcolorful =   ∑    mon(w)   =   ∑ (-1)|X| ∑  mon(w)  
 

 

→ Evaluate POLcolorful : O*(2k) time, polynomial-space. 
(Dynamic programming; do not remember color-sets.) 

p u q 

w∋ Wcolorful         w∋ WX X⊇C 

x(p,q)x(q,u)∙ 
 



- Use a set C of k colors. 
- xv,c for each node v and color c; xe for each edge e. 
 

-                            , k = 3;  xp,gxq,bxu,g, xp,gxq,bxu,r, xp,bxq,rxu,r, … 
 

- POLcolorful =   ∑    mon(w)  =  ∑    mon(w)  + ∑   mon(w)     
 
 

- correct: unique monomials; incorrect: partition into 
pairs having the same monomial. 
- Is POLcolorful 0? 
  (characteristic 2; Schwartz-Zippel  lemma; evaluations) 
 

p u q 

w∋ Wcolorful 

correct 
w∋ Wcolorful w∋ Wcolorful 

incorrect 

x(p,q)x(q,u)∙ 
 



- correct: unique monomials;    incorrect: partition into 
  pairs having the same monomial. 

x(p,q)x(q,u)x(u,v)xp,gxq,bxu,rxv,o 

k = 4 

p q u v 

p q u p p q u p 
Swap! (different colors → different potential solutions) 

x(p,q)x(q,u)x(u,v)xp,gxq,bxu,rxp,o 

(same monomial) 



Let  E  be a universe of n 
elements, and let S be a 
family of p-subsets of E. 
 

A subfamily S ⊇S k-represents S if: 
For every pair of sets X  ∋ S and Y  ⊇ E \ X 
such that |Y| ≤ k - p, 
there is a set X  ∋ S disjoint from Y. 

(Weighted problems, matroids: a more general definition.) 



• Consider  a   parameterized   algorithm,  A,   based   on 

   dynamic programming. 
 

• At each stage,  A  computes  a  family S of sets that are 
   partial solutions. 
 

• We compute a subfamily S ⊇S that represent S. 
 

• Each reference to S is replaced by a reference to S. 
 

• Can we efficiently compute representative families that 
   are small enough? 
   - Fomin, Lokshtanov and Saurabh, SODA'14: 
     [                            ,                                                       ] 

Size Time 



Let Sv,p be the family of node-sets of directed paths on p 
nodes that end at v. |Sv,p| can be very large!      (   ) 
Use dynamic programming + representative sets: 
M[v,p] stores a family that (k-p)-represents Sv,p. 
 

                                                                              (   )2o(k)logn 
 

→ Running time: O*(2.851k) 

k = 6 

n 
p 

p = 3 

v b a 

c d 

x y z 

k 
p 



Sometimes mixtures of color coding-related techniques 
result in faster algorithms. 

Directed k-Path (for example): 

1. Divide-and-Color: O*(4k) 
    (weighted; det.; pol.-space) 
2. Narrow Sieves: O*(2k) 
    (weighted; det.; pol.-space) 
3. Rep. Sets: O*(2.851k)   (weighted; det.; pol. space) 
•   Rep. Sets + Tradeoff + Div-and-Col: O*(2.597k) [ESA'15] 
 

Tradeoff: Fomin, Lokshtanov, Panolan and Saurabh, ESA'14; 
                 with Shachnai, ESA'14. 



Nodes: red and blue. 
 

There is a solution 
→  there  is  a 
solution   that 
looks like this: 



Standard dynamic programming + representative 
sets: 
 

At each stage, for each node v and integer p, we have 
a family of partial solutions; each partial solution is 
the node-set of a path on p nodes that ends at v.  



Dark blue and 
light blue: 

First half of the 
computation: 

Second half of 
the computation: 



The worst time to compute representative sets: 



- A more general definition of representative sets (+ the 
necessary computation). 
 

- Given the blue set, to find the dark and light blue sets, 
we use one step of divide-and-color. 
 

- Balanced cutting: . . . 




