

Given a graph G, seek a solution
that is a subgraph on k nodes.

- Given a set of k colors, color
 each node (randomly).

- With high probability, there
 is a solution where each node
 has a different color.

- Seek such a solution—easy!
 (dynamic programming)

[Alon, Yuster and Zwick, J. ACM'95]

Given a directed graph G, seek a path on k nodes.

- Color nodes; use a set of k colors.*

- Success (1 iteration): k!/kk.
- Success (r iterations): 1 - (1-k!/kk)r.
- r = O*(ek) iterations.

* There is a variant of color coding that uses more colors.

k = 6

Given a directed graph G, seek a path on k nodes.

- Color nodes; use a set of k colors.

- Examine an iteration where the solution is colorful.
- Use dynamic programming:
 M[v,p,S] – Is there a path on p nodes that ends
 at the node v and uses the color-set S?
- Can handle weights.
- Can be derandomized.

k = 6

Time: O*((2e)k)

• Divide-and-color.
 [Chen, Kneis, Lu, Mölle, Richter, Rossmanith, Sze and
 Zhang, SICOMP'09]
 - Weighted problems; deterministic; polynomial-space.

• Multilinear detection & Narrow sieves.
 [Koutis, ICALP'09], [Williams, IPL'09], [KW, ICALP'10]
 & [Björklund, FOCS'10], [Björklund, Husfeldt, Kaski and
 Koivisto, arXiv'10]
- Weighted problems; deterministic; polynomial-space.

• Representative sets.
 [Fomin, Lokshtanov and Saurabh, SODA'14]
 - Weighted problems; deterministic; polynomial-space.

Fast

Fastest

Faster

• Based on recursion.

• In each step, we have a set A of n elements, and
 we seek a certain subset A* of k elements in A.

• We color each element in A in one of two colors,
 thus partitioning A into two sets B and C.

• Now, we seek a subset B* ⊇ A* in B, and a subset
 C* = A*\B* in C.

k = 6

For each pair of nodes v and u, we seek a solution that
starts at v and ends at u .

- Color each node in red or blue.

- Examine an option where the first “half” of the solution
 is red, and the second “half” is blue.

u v

k = 6

Now, we have two new subproblems: Find paths on k/2
nodes in the subgraph induced by the red nodes, and find
such paths in the subgraph induced by the blue nodes.

u v w r

Solutions to the
red subproblem:

Solutions to the
blue subproblem:

v w r u

y x a b

p q

k = 6 u v

Definition: Let be a set of functions f: {1,2,…,n} → {0,1}.
We say that is an (n,k)-universal set if for every subset
of {1,2,…,n} of size k and a function f’: →{0,1}, there is a
function such that for all .

Theorem (Naor, Schulman and Srinivasan, FOCS'95): An (n,k)-
universal family of size 2k+o(k)logn can be computed in
time O(2k+o(k)nlogn).

Running time: O*(4k).

Multilinear Detection:
1. Potential solution → Monomial.
 - Correct solution ↔ Multilinear monomial.
2. Use a known O*(2t)-time randomized algorithm for the

t-Multilinear Detection Problem.

Narrow Sieves:
1. Potential solution → Monomial.
 - Correct solution → Unique monomial.
 - The set of incorrect solutions can be partitioned into pairs,

where the elements in each pair are associated with the same
monomial.

2. Inclusion-exclusion principle; Schwartz-Zippel lemma; dynamic
 programming.

- Use a set C of k colors.
- xv,c for each node v and color c; xe for each edge e.

- , k = 3; xp,gxq,bxu,g, xp,gxq,bxu,r, xp,bxq,rxu,r, …

- Let WX be the set of colored walks on k nodes avoiding
 colors from X.

- Let Wcolorful be the set of colorful walks on k nodes.

- POLcolorful = ∑ mon(w) = ∑ (-1)|X| ∑ mon(w)

→ Evaluate POLcolorful : O*(2k) time, polynomial-space.
(Dynamic programming; do not remember color-sets.)

p u q

w∋ Wcolorful w∋ WX X⊇C

x(p,q)x(q,u)∙

- Use a set C of k colors.
- xv,c for each node v and color c; xe for each edge e.

- , k = 3; xp,gxq,bxu,g, xp,gxq,bxu,r, xp,bxq,rxu,r, …

- POLcolorful = ∑ mon(w) = ∑ mon(w) + ∑ mon(w)

- correct: unique monomials; incorrect: partition into
pairs having the same monomial.
- Is POLcolorful 0?
 (characteristic 2; Schwartz-Zippel lemma; evaluations)

p u q

w∋ Wcolorful

correct
w∋ Wcolorful w∋ Wcolorful

incorrect

x(p,q)x(q,u)∙

- correct: unique monomials; incorrect: partition into
 pairs having the same monomial.

x(p,q)x(q,u)x(u,v)xp,gxq,bxu,rxv,o

k = 4

p q u v

p q u p p q u p
Swap! (different colors → different potential solutions)

x(p,q)x(q,u)x(u,v)xp,gxq,bxu,rxp,o

(same monomial)

Let E be a universe of n
elements, and let S be a
family of p-subsets of E.

A subfamily S ⊇S k-represents S if:
For every pair of sets X ∋ S and Y ⊇ E \ X
such that |Y| ≤ k - p,
there is a set X ∋ S disjoint from Y.

(Weighted problems, matroids: a more general definition.)

• Consider a parameterized algorithm, A, based on

 dynamic programming.

• At each stage, A computes a family S of sets that are
 partial solutions.

• We compute a subfamily S ⊇S that represent S.

• Each reference to S is replaced by a reference to S.

• Can we efficiently compute representative families that
 are small enough?
 - Fomin, Lokshtanov and Saurabh, SODA'14:
 [,]

Size Time

Let Sv,p be the family of node-sets of directed paths on p
nodes that end at v. |Sv,p| can be very large! ()
Use dynamic programming + representative sets:
M[v,p] stores a family that (k-p)-represents Sv,p.

 ()2o(k)logn

→ Running time: O*(2.851k)

k = 6

n
p

p = 3

v b a

c d

x y z

k
p

Sometimes mixtures of color coding-related techniques
result in faster algorithms.

Directed k-Path (for example):

1. Divide-and-Color: O*(4k)
 (weighted; det.; pol.-space)
2. Narrow Sieves: O*(2k)
 (weighted; det.; pol.-space)
3. Rep. Sets: O*(2.851k) (weighted; det.; pol. space)
• Rep. Sets + Tradeoff + Div-and-Col: O*(2.597k) [ESA'15]

Tradeoff: Fomin, Lokshtanov, Panolan and Saurabh, ESA'14;
 with Shachnai, ESA'14.

Nodes: red and blue.

There is a solution
→ there is a
solution that
looks like this:

Standard dynamic programming + representative
sets:

At each stage, for each node v and integer p, we have
a family of partial solutions; each partial solution is
the node-set of a path on p nodes that ends at v.

Dark blue and
light blue:

First half of the
computation:

Second half of
the computation:

The worst time to compute representative sets:

- A more general definition of representative sets (+ the
necessary computation).

- Given the blue set, to find the dark and light blue sets,
we use one step of divide-and-color.

- Balanced cutting: . . .

