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Main message

NP-hard problems become easier on planar graphs
and geometric objects, and usually exactly by a
square root factor.

Planar graphs Geometric objects
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Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
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Overview

We repeat some of the material from the boot
camp, but will also see new results.

Chapter 1:
Subexponential algorithms using treewidth.

Chapter 2:
Grid minors and bidimensionality.

Chapter 3:
Beyond bidimensionality:
Finding bounded-treewidth solutions.
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Chapter 1: Subexponential algorithms using treewidth

Treewidth is a measure of “how treelike the graph is.”

We need only the following basic facts:

Treewidth
1 If a graph G has treewidth k , then many classical NP-hard

problems can be solved in time 2O(k) · nO(1) or
2O(k log k) · nO(1) on G .

2 A planar graph on n vertices has treewidth O(
√
n).
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Treewidth — a measure of “tree-likeness”
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.
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Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm
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Lower bounds

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

Two natural questions:
Can we achieve this running time on general graphs?
Can we achieve even better running time (e.g., 2O( 3√n)) on
planar graphs?
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Lower bounds based on ETH

ETH + Sparsification Lemma

There is no 2o(m)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n +m) vertices
O(n +m) edges

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .
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Transfering bounds
There are polynomial-time reductions from, say, 3-Coloring to
many other problems such that the reduction increases the number
of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no 2o(n) time algorithm on
n-vertex graphs for

Independent Set

Clique

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .
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Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadget.
If two edges cross, replace them with a crossover gadget. 12
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Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring
introduces O(1) new edges/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for 3-Coloring on

an n-vertex planar graph G .

(Essentially observed by [Cai and Juedes 2001])
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Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
n) time algorithm

on n-vertex planar graphs for
Independent Set

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .
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Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
k) · nO(1) time algo-

rithm on planar graphs for
k-Independent Set

k-Dominating Set

k-Vertex Cover

k-Path

k-Feedback Vertex Set

. . .
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Summary of Chapter 1

Streamlined way of obtaining tight upper and lower bounds for
planar problems.

Upper bound:
Standard bounded-treewidth algorithm + treewidth bound on
planar graphs give 2O(

√
n) time subexponential algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) algorithms.

Works for Hamiltonian Cycle, Vertex Cover,
Independent Set, Feedback Vertex Set, Dominating
Set, Steiner Tree, . . .
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Chapter 2: Bidimensionality

Bidimensionality theory [Demaine, Fomin, Hajiaghayi, Thilikos 2005]
gives very elegant subexponential algorithms on planar graphs for
parameterized problems such as

k-Path

Vertex Cover

Feedback Vertex Set

Independent Set

Dominating Set

We already know that (assuming ETH), there are no 2o(
√
k) · nO(1)

time algorithms for these problems.
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Minors

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: length of the longest path in H is at most the length of the
longest path in G .
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Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k100 or so guarantees
a k × k grid minor [Chekuri and Chuzhoy 2013]!
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Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:
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Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we answer
“there is a path of length at least k .”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
2O(w logw) ·nO(1) = 2O(

√
k log k) ·nO(1).
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Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.
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Summary of Chapter 2

Tight bounds for minor-bidimensional planar problems.

Upper bound:
Standard bounded-treewidth algorithm + planar excluded grid
theorem give 2O(

√
k) · nO(1) time FPT algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) time algorithms ⇒ no 2o(

√
k) · nO(1) time

algorithm.

Variant of theory works for contraction-bidimensional problems,
e.g., Independent Set, Dominating Set.
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Chapter 3: Finding bounded-treewidth solutions

So far, we have exploited that the input has bounded treewidth
and used standard algorithms.

Change of viewpoint:

In many cases, we have to exploit instead that the solution has
bounded treewidth.
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Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.
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Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

Brute force solution: 2O(n) time.
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Minimum Weight Triangulation
Given a set of n points in the plane, find a triangulation of
minimum length.

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time 2O(
√
n log n).

23



Lower bound
Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])
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Lower bound
Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

Not for the fainthearted. . .
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Lower bound
Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

It can be checked that the proof also implies:

Theorem [Mulzer and Rote 2006]

Assuming ETH, Minimum Weight Triangulation cannot be solved
in time 2o(

√
n).
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Main paradigm

Exploit that the solution has treewidth O(
√
n) and

has separators of size O(
√
n).
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Counting problems

Counting is harder than decision:
Counting version of easy problems:
not clear if they remain easy.
Counting version of hard problems:
not clear if we can keep the same running time.

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.
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FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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FPT techniques . . . for counting?
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Counting Triangulations

Natural idea:
Guess size-O(

√
n) separator of the triangulation, solve the two

subproblems, multiply the number of solutions in the two
subproblems.

Does not work:
More than one separator could be valid for a triangulation
⇒ we can signifcantly overcount the number of triangulations.

Theorem [M. and Miltzow 2015+]

The number of triangulations can be counted in time 2O(
√
n log n).

Use canonical separators and enforce that they are canonical in the
triangulation.
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What do we know about a matching lower bound?
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Lower bounds, anyone?

Seems challenging: we need a counting complexity lower bound for
a delicate geometric problem.

Related lower bounds:
Finding a restricted triangulation (only a given list of pairs of
points can be connected) is NP-hard, and there is no 2o(

√
n)

time algorithm, assuming ETH.
[Lloyd 1977], [Schulz 2006].
Minimum Weight Triangulation is NP-hard.
[Mulzer and Rote 2006]
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TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time O(2n · n2).
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TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

http://xkcd.com/399/
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c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-change-OPT if no c-change can improve it.
We can find a c-change-OPT solution in nO(c) ·D time, where
D is the maximum (integer) distance.
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c-change TSP
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TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.
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TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

Can be solved in time nO(
√
n).

Assuming ETH, no 2o(
√
n) time algorithm.
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Can be solved in time nO(
√
n).

Can be solved in time 2k · nO(1).
Question: Can we restrict the exponential dependence to k
and exploit planarity?
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem [Klein and M. 2014]

Subset TSP for k cities in a unit-weight planar graph can be
solved in time 2O(

√
k log k) · nO(1).
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem [Klein and M. 2014]

Subset TSP for k cities in a weighted planar graph can be solved
in time (2O(

√
k log k) +W ) · nO(1) if the weights are integers not

more than W .
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Main paradigm

Exploit that the solution has treewidth O(
√
k) and

has separators of size O(
√
k).
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The treewidth bound
Can we bound the treewidth of the solution by O(

√
k)?
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The treewidth bound
Can we bound the treewidth of the solution by O(

√
k)?

The treewidth of the solution is of course 2.

??? Does not seem to be very insightful.
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The treewidth bound
Can we bound the treewidth of the solution by O(

√
k)?

Lemma
For every 4-change-OPT solution, there is an optimum solution
such that their union has treewidth O(

√
k).

36



Proof idea
To prove that treewidth of the union is O(

√
k), we mostly need to

show that the union has O(
√
k) faces.

Crucial point: there are not too many red-blue-red-blue faces of
length 4, because such they cannot form 4× 4 grids.
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Proof idea
To prove that treewidth of the union is O(

√
k), we mostly need to

show that the union has O(
√
k) faces.

Let us exchange these two sets of edges between the two tours.

The 4-change-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour that has fewer crossings with
the 4-change-OPT tour.
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Using the treewidth bound

Lemma
For every 4-change-OPT solution, there is an optimum solution
such that their union has treewidth O(

√
k).

The union has separators of size O(
√
k).

In each component, the set of cities visited by the optimum
solution is nice: it is the same as what O(

√
k) segments of the

4-change-OPT tour visited.
Define subproblems based on visiting cities on the union of
O(
√
k) segments 4-change-OPT tour.
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W[1]-hard problems

W[1]-hard problems probably have no f (k)nO(1) algorithms.
Many of them can be solved in nO(k) time.
For many of them, there is no f (k)no(k) time algorithm on
general graphs (assuming ETH).
For those problems that remain W[1]-hard on planar graphs,
can we improve the running time to no(k)?
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Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
40



Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
40



Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

Simple proof:

Fact
There is a parameterized reduction from k-Clique to k × k Grid
Tiling.
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Grid Tiling and planar problems

Theorem
k × k Grid Tiling is W[1]-hard and, assuming ETH, cannot be
solved in time f (k)no(k) for any function f .

This lower bound is the key for proving hardness results for planar
graphs.

Examples:
Multiway Cut on planar graphs with k terminals
Independent Set for unit disks
Strongly Connected Steiner Subgraph on planar
graphs
Scattered Set on planar graphs
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Grid Tiling with ≤

Grid Tiling with ≤
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

k = 3, D = 5
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Grid Tiling with ≤

Grid Tiling with ≤
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

Variant of the previous proof:

Theorem
There is a parameterized reduction from k × k-Grid Tiling to
O(k)× O(k) Grid Tiling with ≤.

Very useful starting point for geometric problems!
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Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Complicated proof using a geometric separator theorem, simple proof
by shifting.

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.
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Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Algorithm: Guess i and the O(
√
k) disks hit by the lines⇒ Remove

every disk intersected by the lines or disks⇒ Problem falls apart into
strips of height O(

√
k); can be solved optimally in time nO(

√
k). 43



Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Matching lower bound:

Theorem
There is a reduction from k × k Grid Tiling with ≤ to
k2-Independent Set for unit disks. Consequently,
Independent Set for unit disks is

is W[1]-hard, and

cannot be solved in time f (k)no(
√
k) for any function f .
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Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.
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Challenges

Key idea

We were able to find a separator that hits O(
√
k) disks of the

solution and breaks the instance in a nice way.

Two natural directions:
1 Can we solve Independent Set for disks with arbitrary

radius in time nO(
√
k)?

2 Can we solve Scattered Set (find k vertices that are at
distance at least d from each other) on planar graphs in time
nO(

√
k), if d is part of the input?

Problem:
The shifting algorithm for unit disks crucially uses the fact that the
disks have similar area.
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Main paradigm

Exploit that the solution has treewidth O(
√
k) and

has separators of size O(
√
k).

47



Voronoi diagrams
Voronoi diagram: we partition the points of the plane according
to the closest center.

Observation: every cell is convex.
Assume that the branch points of the diagram have degree 3.
Ignore what happens at infinity.
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.

There is a “ 2
3 -face-balanced noose” of length O(

√
k).

⇒ There is a corresponding polygon of length O(
√
k).
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.

Algorithm: guess O(
√
k) disks and a polygon going through them,

remove any disks intersecting the polygon or the guessed disks, re-
cursion on the inside and the outside.
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.

Algorithm: guess O(
√
k) disks and a polygon going through them,

remove any disks intersecting the polygon or the guessed disks, re-
cursion on the inside and the outside.
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Running time
Number of candidate polygons
Number of centers: n.
Potential locations of Voronoi branch points: n3.
⇒ Number of polygons of length O(

√
k): nO(

√
k).

Recursion
T (n, k): running time with n centers and solution size at most k .

T (n, k)= nO(
√
k)T (n,

2
3
k)

= nO(
√
k) · nO(

√
2
3k) · nO(

√
( 2
3 )

2k) · nO(
√

( 2
3 )

3k) · · ·

= nO((1+( 2
3 )

1
2 +( 2

3 )
2
2 +( 2

3 )
3
2 +... )

√
k) = nO(

√
k).

This gives another nO(
√
k) time algorithm for Independent Set

for unit disks, which can now be generalized to disks of
arbitrary size and to planar graphs.
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Higher dimensions

Bidimensionalty for planar graphs:

2O(
√
n), 2O(

√
k) · nO(1), nO(

√
k) time algorithms.

There is no tridimensionalty!

“Limited blessing of low dimensionality:”
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n), 2O(
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k) · nO(1), nO(

√
k) time algorithms.

What about higher dimensions?

“Limited blessing of low dimensionality:”

Theorem
Independent Set for unit spheres in d dimensions can be solved
in time nO(k1−1/d ).

Matching lower bound:

Theorem [M. and Sidiropoulos 2014]

Assuming ETH, Independent Set for unit spheres in d
dimensions cannot be solved in time no(k

1−1/d ).
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Higher dimensions

Bidimensionality for 2-dimensional geometric problems:

2O(
√
n), 2O(

√
k) · nO(1), nO(

√
k) time algorithms.

What about higher dimensions?

“Limited blessing of low dimensionality:”

Theorem [Smith and Wormald 1998]

Euclidean TSP in d dimensions can be solved in time
2O(n1−1/d+ε).

Matching lower bound:

Theorem [M. and Sidiropoulos 2014]

Assuming ETH, Euclidean TSP in d dimension cannot be
solved in time 2O(n1−1/d−ε) for any ε > 0.
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Summary of Chapter 3

Parameterized problems where bidimensionality does not work.
Upper bounds:
Algorithms exploiting that some representation of the solution
has bounded treewidth. Treewidth bound is problem-specific:

Minimum Weight Triangulation/Counting triangulations:
n-vertex triangulation has treewidth O(

√
n).

Subset TSP on planar graphs: the union of an optimum
solution and a 4-change-OPT solution has treewidth O(

√
k).

Independent Set for unit disks: Voronoi diagram of the
solution has treewidth O(

√
k).

Lower bounds:
To rule out f (k) · no(

√
k) time algorithms for W[1]-hard

problems, we have to prove hardness by reduction from Grid
Tiling.
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Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.

Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.
The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√
k) · nO(1) time algorithm for Steiner Tree with k

terminals in a planar graph?
2O(

√
k) · nO(1) time algorithm for finding a cycle of length

exactly k in a planar graph?
. . .
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