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What is this talk about?

1. Exponential weights in bounded-depth
monotone majority circuits.

2. The power of negation gates in
bounded-depth AND/OR/NOT circuits.
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Part 1. Monotone majority circuits.
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Weighted threshold functions

Def. f : {0,1}m → {0,1} is a weighted threshold function if
there are integers (“weights”) w1, . . . ,wm and t such that

f (x) = 1 ⇔
m∑

i=1

wixi ≥ t .
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Threshold circuits: Definition

◦ Each internal gate computes a weighted threshold function.

◦ This circuit has depth 3 (# layers) and size 10 (# gates).
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Threshold circuits: The frontier

Simple computational model whose power remains mysterious.

Open Problem. Can we solve s-t-connectivity using
constant-depth polynomial size threshold circuits?

However, relative success in understanding the role of
large weights in the gates of the circuit:

“Exponential weights vs. polynomial weights”.
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Threshold Circuits vs. Majority Circuits

◦ Majority circuits: “We care about the weights.”

Example: 3x1 − 4x3 + 2x7 − x2 ≥? 5.

The weight of this gate is 3 + 4 + 2 + 1 = 10.

Size of Majority Circuit: Total weight in the circuit.
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Polynomial weight is sufficient

[Siu and Bruck, 1991] Poly-size bounded-depth threshold
circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold
circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters:
[Hofmeister, 1996] and [Amano and Maruoka, 2005].

8



Polynomial weight is sufficient

[Siu and Bruck, 1991] Poly-size bounded-depth threshold
circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold
circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters:
[Hofmeister, 1996] and [Amano and Maruoka, 2005].

8



Polynomial weight is sufficient

[Siu and Bruck, 1991] Poly-size bounded-depth threshold
circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold
circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters:
[Hofmeister, 1996] and [Amano and Maruoka, 2005].

8



Polynomial weight is sufficient

[Siu and Bruck, 1991] Poly-size bounded-depth threshold
circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold
circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters:
[Hofmeister, 1996] and [Amano and Maruoka, 2005].

8



[Goldmann and Karpinski, 1993]

“If original threshold circuit is monotone (positive weights),
simulation yields majority circuits with negative weights.”

[GK’93] Is there a monotone transformation?

(Question recently reiterated by J. Hastad, 2010 & 2014)
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Previous Work [Hofmeister, 1992]

No efficient monotone simulation in depth 2:
Total weight must be 2Ω(

√
n).
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Our first result.

Solution to question posed by Goldmann and Karpinski:

No efficient monotone simulation in any fixed depth d ∈ N.

Our hard monotone threshold gate: Ud ,N

Checks if the addition of d natural numbers
(each with N bits) is at least 2N .
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The lower bound

Ud ,N :
N−1∑
j=0

2j(x1,j + . . .+ xd ,j) ≥? 2N

Theorem 1. Any depth-d monotone MAJ circuit for Ud ,N has
size 2Ω(N1/d ). Furthermore, there is a matching upper bound.
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Our approach: pairs of pairs of distributions

Intuition: YES? distrib. supported over strings with sum ≥ 2N .
NO? distrib. supported over strings with sum < 2N .

Inductive Lemma. ∀` ≤ d any “small” depth-` MAJ circuit C
satisfies:

Pr[C(YES?
` ) = 1] + Pr[C(NO?

` ) = 0] < 1 +
10`

10d .

(Proof explores monotonicity and low weight in a crucial way.)
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Part 2. Monotonicity and AC0 circuits.
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Monotone Complexity

Semantics vs. syntax:

Monotone Functions “ = ” Monotone Circuits
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The Ajtai-Gurevich Theorem (1987)

◦ Motivated by question in Finite Model Theory.

There is monotone gn : {0,1}n → {0,1} such that:
I g ∈ AC0;
I gn requires monotone AC0 circuits of size nω(1).

“Negations can speed-up the bounded-depth computation
of monotone functions.”

Obs.: gn computed by monotone AC0 circuits of size nO(log n).
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Question.

Is there an exponential speed-up in bounded-depth?

(Analogous question for arbitrary circuits answered positively
[Tardos, 1988].)
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Our second result.

Theorem 2. There is a monotone fn : {0,1}n → {0,1} s.t.:

I f ∈ AC0 (fn computed in depth 3);
I fn requires depth-d monotone MAJ circuits of size

2Ω̃(n1/d ).

◦ Exponential separation;
◦ Hardness against MAJ gates instead of AND/OR gates.

Proof. Upper bound for our addition function Uk ,N .
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Concluding Remarks

Addition function Uk ,N : monotone bounded-depth circuits are
exponentially weaker.

Small-distance connectivity STCONN(k(n)): Recent work
showing that monotone bounded-depth circuits are essentially
optimal.

An interesting direction:

Formulation of a general theory to explain when
non-monotone operations speed-up the computation of

monotone functions (in bounded-depth complexity).
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Thank you!
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