Addition is exponentially harder than counting for shallow monotone circuits

Igor Carboni Oliveira

Columbia University / Charles University in Prague

Joint work with Xi Chen (Columbia) and Rocco Servedio (Columbia)

What is this talk about?

1. Exponential weights in bounded-depth monotone majority circuits.

1. Exponential weights in bounded-depth monotone majority circuits.

2. The power of negation gates in bounded-depth AND/OR/NOT circuits.

Part 1. Monotone majority circuits.

Weighted threshold functions

Def. $f: \{0,1\}^m \to \{0,1\}$ is a *weighted threshold function* if there are integers ("weights") w_1, \ldots, w_m and *t* such that

$$f(x) = 1 \quad \Leftrightarrow \quad \sum_{i=1}^m w_i x_i \ge t.$$

Threshold circuits: Definition

• Each internal gate computes a weighted threshold function.

• This circuit has **depth** 3 (# layers) and **size** 10 (# gates).

Threshold circuits: The frontier

Simple computational model whose power remains mysterious.

Open Problem. Can we solve **s-t-connectivity** using constant-depth polynomial size threshold circuits?

Threshold circuits: The frontier

Simple computational model whose power remains mysterious.

Open Problem. Can we solve **s-t-connectivity** using constant-depth polynomial size threshold circuits?

However, relative success in understanding the role of large weights in the gates of the circuit:

"Exponential weights vs. polynomial weights".

Threshold Circuits vs. Majority Circuits

• Majority circuits: "We care about the weights."

Example:
$$3x_1 - 4x_3 + 2x_7 - x_2 \ge 75$$
.

The weight of this gate is 3+4+2+1=10.

Threshold Circuits vs. Majority Circuits

o Majority circuits: "We care about the weights."

Example:
$$3x_1 - 4x_3 + 2x_7 - x_2 \ge 75$$

The weight of this gate is 3+4+2+1=10.

Size of Majority Circuit: Total weight in the circuit.

[Siu and Bruck, 1991] Poly-size bounded-depth threshold circuits simulated by poly-size bounded-depth majority circuits.

[Siu and Bruck, 1991] Poly-size bounded-depth threshold circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold circuits simulated by depth-(d + 1) majority circuits.

[Siu and Bruck, 1991] Poly-size bounded-depth threshold circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

[Siu and Bruck, 1991] Poly-size bounded-depth threshold circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters: [Hofmeister, 1996] and [Amano and Maruoka, 2005].

[Goldmann and Karpinski, 1993]

"If original threshold circuit is **monotone** (positive weights), simulation yields majority circuits with **negative weights**."

[Goldmann and Karpinski, 1993]

"If original threshold circuit is **monotone** (positive weights), simulation yields majority circuits with **negative weights**."

[GK'93] Is there a monotone transformation?

(Question recently reiterated by J. Hastad, 2010 & 2014)

Previous Work [Hofmeister, 1992]

No efficient monotone simulation in depth 2: Total weight must be $2^{\Omega(\sqrt{n})}$.

Our first result.

Solution to question posed by Goldmann and Karpinski:

No efficient monotone simulation in any fixed depth $d \in \mathbb{N}$.

Our first result.

Solution to question posed by Goldmann and Karpinski:

No efficient monotone simulation in any fixed depth $d \in \mathbb{N}$.

Our hard monotone threshold gate: $U_{d,N}$

Checks if the addition of d natural numbers (each with N bits) is at least 2^N .

The lower bound

The lower bound

Theorem 1. Any depth-*d* monotone MAJ circuit for $U_{d,N}$ has size $2^{\Omega(N^{1/d})}$.

The lower bound

Theorem 1. Any depth-*d* monotone MAJ circuit for $U_{d,N}$ has size $2^{\Omega(N^{1/d})}$. Furthermore, there is a matching upper bound.

Our approach: pairs of pairs of distributions

Intuition: YES^{*} distrib. supported over strings with sum $\geq 2^{N}$. NO^{*} distrib. supported over strings with sum $< 2^{N}$.

Our approach: pairs of pairs of distributions

Intuition: YES^{*} distrib. supported over strings with sum $\geq 2^{N}$. **NO**^{*} distrib. supported over strings with sum $< 2^{N}$.

Inductive Lemma. $\forall \ell \leq d$ any "small" depth- ℓ MAJ circuit C satisfies:

$$\mathsf{Pr}[\mathcal{C}(\mathsf{YES}^{\star}_{\ell}) = 1] \,+\, \mathsf{Pr}[\mathcal{C}(\mathsf{NO}^{\star}_{\ell}) = 0] \;<\; 1 + \frac{10^{\ell}}{10^{d}}.$$

(Proof explores monotonicity and low weight in a crucial way.)

Part 2. Monotonicity and AC⁰ circuits.

Monotone Complexity

Semantics vs. syntax:

Monotone Functions " = " Monotone Circuits

The Ajtai-Gurevich Theorem (1987)

 \circ Motivated by question in Finite Model Theory.

There is **monotone** g_n : $\{0, 1\}^n \rightarrow \{0, 1\}$ such that: $\mathbf{p} \in AC^0$;

• g_n requires **monotone** AC⁰ circuits of size $n^{\omega(1)}$.

The Ajtai-Gurevich Theorem (1987)

Motivated by question in Finite Model Theory.

There is **monotone** g_n : $\{0, 1\}^n \rightarrow \{0, 1\}$ such that: $\mathbf{q} \in AC^0$:

• g_n requires **monotone** AC⁰ circuits of size $n^{\omega(1)}$.

"Negations can speed-up the bounded-depth computation of monotone functions."

The Ajtai-Gurevich Theorem (1987)

Motivated by question in Finite Model Theory.

There is **monotone** g_n : $\{0, 1\}^n \rightarrow \{0, 1\}$ such that: $\mathbf{q} \in AC^0$:

• g_n requires **monotone** AC⁰ circuits of size $n^{\omega(1)}$.

"Negations can speed-up the bounded-depth computation of monotone functions."

Obs.: g_n computed by monotone AC⁰ circuits of size $n^{O(\log n)}$.

Question.

Is there an exponential speed-up in bounded-depth?

Question.

Is there an exponential speed-up in bounded-depth?

(Analogous question for **arbitrary** circuits answered positively **[Tardos, 1988]**.)

Our second result.

Theorem 2. There is a monotone f_n : $\{0, 1\}^n \rightarrow \{0, 1\}$ s.t.:

- $f \in AC^0$ (f_n computed in depth 3);
- f_n requires depth-*d* monotone MAJ circuits of size $2^{\tilde{\Omega}(n^{1/d})}$.

Our second result.

Theorem 2. There is a monotone f_n : $\{0, 1\}^n \rightarrow \{0, 1\}$ s.t.:

- $f \in AC^0$ (f_n computed in depth 3);
- f_n requires depth-*d* **monotone** MAJ circuits of size $2^{\widetilde{\Omega}(n^{1/d})}$.

- Exponential separation;
- \circ Hardness against MAJ gates instead of AND/OR gates.

Our second result.

Theorem 2. There is a monotone f_n : $\{0, 1\}^n \rightarrow \{0, 1\}$ s.t.:

- $f \in AC^0$ (f_n computed in depth 3);
- ► f_n requires depth-*d* **monotone** MAJ circuits of size $2^{\tilde{\Omega}(n^{1/d})}$.

- Exponential separation;
- \circ Hardness against MAJ gates instead of AND/OR gates.

Proof. Upper bound for our addition function $U_{k,N}$.

Concluding Remarks

Addition function $U_{k,N}$: monotone bounded-depth circuits are *exponentially weaker*.

Concluding Remarks

Addition function $U_{k,N}$: monotone bounded-depth circuits are *exponentially weaker*.

Small-distance connectivity STCONN(k(n)): Recent work showing that monotone bounded-depth circuits are *essentially optimal*.

Concluding Remarks

Addition function $U_{k,N}$: monotone bounded-depth circuits are *exponentially weaker*.

Small-distance connectivity STCONN(k(n)): Recent work showing that monotone bounded-depth circuits are *essentially optimal*.

An interesting direction:

Formulation of a general theory to explain when non-monotone operations speed-up the computation of monotone functions (in bounded-depth complexity).

Thank you!