Satisfiability Algorithms for Small Depth Circuits with Symmetric Gates

Suguru TAMAKI

Kyoto University & Simons Institute

Connections Between Algorithm Design and Complexity Theory, October 1, 2015, Simons Institute, Berkeley, CA

This Talk

is about Algorithm Design & Complexity Theory because

this workshop is about ``Connections Between Algorithm Design and Complexity Theory"

this program is about ``Fine-Grained Complexity and Algorithm Design"

<u>Contribution</u> (Algorithm Design) Circuit SAT algorithms for ``interesting" circuit classes <u>Implications</u> (Complexity Theory) Circuit size lower bounds (by known results)

Our Problem

Circuit Satisfiability (SAT)

Input:

Boolean circuit $C: \{0,1\}^n \rightarrow \{0,1\}$

Output:

- $\exists x, C(x) = 1 \Rightarrow$ Yes $\forall x, C(x) = 0 \Rightarrow$ No
- Canonical NPC problem
- Solved in time $poly(|C|)2^n$ (n: #variables)
- C-SAT: input only from circuit class C e.g. C = (k-)CNF, AC^0 , $AC^0[p]$, ACC^0 , TC^0 , NC^1 (Formula),...

General Research Goals

- 1. Design non-trivial algorithms for a stronger circuit class
- Non-trivial:
 - super-polynomially (exponentially) faster than 2^n
- Stronger circuit class:
 - $(k-)\mathsf{CNF} \subset \mathsf{AC}^0 \subset \mathsf{AC}^0[p] \subset \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \ldots \subseteq \mathsf{CKT}$
- 2. If non-trivial algorithms exist for C-SAT, then
- improve the running time
- prove the difficulty of improvement

Why Study Circuit SAT?

1. Useful

- can encode many combinatorial problems efficiently
- (sometimes) inspires algorithms for other problems
 e.g. All-Pairs Shortest Paths (APSP) [Williams'14,...]
- 2. Connection to circuit lower bounds
- [black box] non-trivial C-SAT algorithm \Rightarrow NEXP $\nsubseteq C$ [Williams'10,11,...] (NEXP: nondeterministic exponential time)
- [white box] analysis of *C*-SAT algorithm
 - ⇒ average-case lower bounds

[Santhanam'10,Seto-T'12,Chen-Kabanets-Kolokolova-Shaltiel-Zuckerman'14,...]

Circuit Classes

$(k\operatorname{-})\operatorname{CNF} \subset \operatorname{AC}^0 \subset \operatorname{AC}^0[p] \subset \operatorname{ACC}^0 \subseteq \operatorname{TC}^0 \subseteq \operatorname{NC}^1 \subseteq \ldots \subseteq \operatorname{CKT}$

- (k-)CNF: conjunction of disjunctions of (at most k) literals
- AC⁰: constant-depth, unbounded-fan-in, AND/OR/NOT
- $AC^0[p]$: $AC^0 + mod p$ gates (p: prime power)
- ACC⁰: AC⁰ + mod m gates (m: integer ≥ 2)
- TC⁰: constant-depth, unbounded-fan-in, linear threshold (THR) gates: $sgn(\sum_{i=1}^{n} w_i x_i - \theta)$
- NC¹: fan-in 2, fan-out 1, AND/OR/NOT(/XOR)
- CKT: fan-in 2, AND/OR/NOT(/XOR)

• $C_1 \circ C_2$: composition of $C_1 \circ C_2$ e.g. CNF=AND \circ OR (Note: assume #gates = poly(*n*) unless otherwise specified)

Research Frontier

$... \subset \mathrm{AC}^0[p] \subset \mathrm{ACC}^0 \subseteq \mathrm{ACC}^0 \circ \mathrm{THR} \subseteq \mathrm{TC}^0 \subseteq \mathrm{NC}^1 \subseteq ... \subseteq \mathrm{CKT}$

Non-trivial *C*-SAT algorithm:

ACC⁰ • THR with a super-poly #gates [Williams'14]
 THR • THR with a linear #wires [Impagliazzo-Paturi-Schneider'13,...]

Lower Bounds for C:

- majority, mod $q \notin AC^0[p]$ [Razborov'87, Smolensky'87]
- NEXP \nsubseteq ACC⁰ THR [Williams'14]
- parity \notin depth-*d* TC⁰ with

#wires = $n^{1+1/3^d}$ or #gates = $(n/2)^{1/(2d-1)}$

[Impagliazzo-Paturi-Saks'93]

New C-SAT algorithms

Attempts to handle TC⁰ (probably $C \not\subseteq ACC^0 \circ THR$)

- AC⁰ with a limited #symmetric gates: $g(\sum_{i=1}^{n} x_i)$
- THRoTHR with a sub-quadratic #gates

Faster algorithms within $AC^{0}[p]$ ($C \subseteq ACC^{0} \circ THR$)

- Systems of (degree-k) Polynomial Equations over GF(2)
- XOR•AND•XOR•AND•XOR
- $AC^0[p]$

AC⁰ with a limited #symmetric gates

Motivation

Think about some interesting $C \subset TC^0 \setminus ACC^0 \circ THR$

i.e. $C = AC^0$ with t(n) symmetric gates"

(Note: $C \not\subseteq ACC^0 \circ THR$ is not known)

Definition:

■ $f: \{0,1\}^n \rightarrow \{0,1\}$ is symmetric (SYM)

if $\exists g: \mathbb{Z} \to \{0,1\}, f = g(\sum_{i=1}^n x_i)$

■ $f: \{0,1\}^n \rightarrow \{0,1\}$ is weighted symmetric

if $\exists g: \mathbb{Z} \to \{0,1\}, \exists w_i \in \mathbb{Z}, f = g(\sum_{i=1}^n w_i x_i)$

AND, OR, parity, mod m, majority are symmetric THR (sgn($\sum_{i=1}^{n} w_i x_i - \theta$)) is weighted symmetric $C = AC^0$ with t(n) symmetric gates"

Interesting?

- contains Max SAT when depth-2, t(n) = 1 (THR•OR) non-trivial algorithm for Max 3-SAT is open (cf. 2^{0.791n} time algorithm for Max 2-SAT [Williams'04])
- Lower bounds:
 generalized inner product (GIP) ∉ AC⁰ with
 #symmetric gates = n^{1-o(1)} or #THRs = n^{1/2-o(1)}
 [...,Lovett-Srinivasan'11]

New C-SAT algorithms (1)

Theorem [Sakai-Seto-T-Teruyama]:

Let $C = AC^0$ with t(n) weighted symmetric gates"

where $t(n) = n^{o(1)}$, maximum weight $2^{n^{0.99}}$

There is a non-trivial deterministic algorithm for #C-SAT (Note: we assume evaluation of symmetric gate is easy)

Corollary:

Max SAT can be solved in deterministic time $2^{n-n^{1/O(k)}}$ when #clauses = $O(n^k)$ (Note: Max k-SAT \Rightarrow #clauses = $O(n^k)$)

Implications

Corollary: Let $C = AC^0$ with t(n) weighted symmetric gates" where $t(n) = n^{o(1)}$, maximum weight $2^{n^{0.99}}$ Then $E^{NP} \not\subseteq C$

Questions:

New? Interesting?

Core Technical Result

Lemma:

Let $C = (\text{weighted SYM}) \circ \text{AND}$ where #ANDs = m, maximum weight wThere is a deterministic algorithm for #C-SATthat runs in time $\operatorname{poly}(n, m, \log w) 2^{n-\mu(n,m,w)}$ where $\mu(n, m, w) = (n/\log(mw))^{\Omega(\log n/\log m)}$

Based on ``Concentrated Shrinkage" & DP

(Note: Theorem follows from Lemma and transformation AC⁰ with symmetric gates ⇒ SYM∘ AND using [Beigel-Reingold-Spielman'91,Beigel'92,Beame-Impagliazzo-Srinivasan'12])

THRoTHR with a sub-quadratic #gates

Motivation

Think about another interesting $C \subset TC^0 \setminus ACC^0 \circ THR$ i.e. $C = THR \circ THR$

(Note: $C \not\subseteq ACC^0 \circ THR$ is not known)

• C-SAT can be solved in time $2^{n(1-\mu(c))}$ where $\mu(c)=1/c^{O(c)}$, #wires = cn [Impagliazzo-Paturi-Schneider'13, Chen-Santhanam'15]

(non-trivial if $cn = o(n \log n / \log \log n)$

parity ∉ depth-d TC⁰ with
 #wires = n^{1+1/3^d} or #gates = (n/2)^{1/(2d-1)}
 [Impagliazzo-Paturi-Saks'93]

New C-SAT algorithms (2)

Theorem [T]:

Let $C = THR \circ THR$, where #gates = m

There is a randomized algorithm for $\mathcal{C}\text{-}\mathsf{SAT}$

- that runs in time $poly(n,m) 2^{n-\mu(n,m)}$,
- where $\mu(n,m) = \Omega(n/m^{1/2+o(1)})^c$, $\exists c < 1/5$ (Note: #gates \leq #wires)

Questions:

Derandomization?

- (coNP algorithm is enough for $E^{NP} \not\subseteq C$)
- New lower bounds from analysis?

Proof Sketch

- based on the Polynomial Method in Circuit Complexity
- follow the framework for ACC⁰•THR [Williams'14]
- use probabilistic polynomial for THR [Srinivasan'13]
- some transformation techniques due to [Maciel-Therien'98], [Beigel'92]
- use fast evaluation algorithm for SYM SYM [Williams'14]

Some details later

Faster algorithms within ACC⁰

Motivation

$$(k-)\mathsf{CNF} \subset \mathsf{AC}^0 \subset \mathsf{AC}^0[p] \subset \mathsf{ACC}^0$$

- C: C-SAT in time T, condition
- *k*-CNF: $2^{n(1-\mu(k))}, \mu(k) = 1/O(k)$

[Paturi-Pudlak-Zane'97,...]

- CNF: $2^{n(1-\mu(c))}, \mu(c) = 1/O(\log c), \text{ #clauses} = cn$ [Schuler'05,Calabro-Impagliazzo-Paturi'06,...]
- AC⁰: $2^{n(1-\mu(c,d))}$, $\mu(c,d) = 1/O(\log c + d \log d)^{d-1}$, depth-d, #gates = cn [Impagliazzo-Matthews-Paturi'12]
- ACC⁰: $2^{n-\mu(n,d)}$, $\mu(n,d) = n^{1/2^{O(d)}}$,

depth-d, #gates = $2^{n^{o(1)}}$ [Williams'11]

New C-SAT algorithms (3)

Theorem [T-Williams]:

- C: C-SAT in time T, condition
- Systems of degree-k Polynomial Equations over GF(2) (= AND \circ XOR \circ AND_k \supset k-CNF = AND \circ OR_k): $2^{n(1-\mu(k))}, \mu(k) = 1/O(k)$
- XOR•AND•XOR•AND•XOR (\supset CNF = AND•OR): $2^{n(1-\mu(c))}, \mu(c) = 1/O(\log c),$ #ANDs = cn at depth-4

■ $AC^{0}[p] (\supset AC^{0})$: $2^{n(1-\mu(d,m))}, \mu(d,m) = 1/O(\log m)^{d-1},$ depth-d, #gates = m

Proof Sketch

- based on the Polynomial Method in Circuit Complexity
- use probabilistic polynomial for AND/OR [Razborov'87,Smolensky'87] AC⁰[p] [Kopparty-Srinivasan'12]
- use fast evaluation algorithm for polynomial [Yates,...]
- first item is essentially due to [Lokshtanov-Paturi]
 (algorithm for k-CNF based on the polynomial method)
- second item is based on

degree reduction for AND•XOR•AND•XOR

extending Schuler's width reduction for CNF

Some details later

Algorithms via Polynomial Method

Polynomial Method

Example [Razborov'87,Smolensky'87]:

- 1. $AC^{0}[p]$ can be well approximated
 - by a low-degree GF(p) polynomial
- 2. majority, mod q cannot be well approximated by a low-degree GF(p) polynomial
- $1+2 \Rightarrow$ majority, mod $q \notin AC^0[p]$

item 1 is useful in algorithm design(``sparse" suffices instead of ``low-degree" in many cases)

Polynomial Method

Definition:

- Let $f: \{0,1\}^n \to \{0,1\}$
- A distribution *P* over polynomials is an ϵ -error probabilistic polynomial for *f* if $\forall x$, $\Pr_{p \sim P}[p(x) \neq f(x)] \leq \epsilon$
- $\deg(P) \le d$ if $\Pr_{p \sim P}[\deg(p) \le d] = 1$

 ϵ -error probabilistic C-circuit is defined analogously

Algorithm for C-SAT

Input: $C: \{0,1\}^n \rightarrow \{0,1\}, C \in \mathcal{C}$

- Step 1. Define $C': \{0,1\}^{n-n'} \rightarrow \{0,1\}, C' \in OR \circ \mathcal{C}$ as
 - $C'(y) \coloneqq \bigvee_{a \in \{0,1\}^{n'}} C(y,a) \quad (\text{Note: } |C'| \approx 2^{n'}|C|)$
- Step 2. Construct (1/3)-error probabilistic polynomial pfor C' in time T(n, n', |C|)
- Step 3. Evaluate p(y) for all $y \in \{0,1\}^{n-n'}$ in time T'(n,n',|C|)

Step 4. repeat 2-3 O(n) times to reduce error probability

Output: truth table V of C' such that $\forall y, \Pr[V(y) \neq C'(y)] \leq 2^{-2n}$ Running Time: O(n(T(n, n', |C|) + T'(n, n', |C|)))

Ingredients for THRoTHR (1/3)

Lemma [Razborov'87,Smolensky'87]:

There exists ϵ -error probabilistic polynomial for AND/OR of degree $\log(1/\epsilon)$ and it is efficiently samplable

Lemma [Srinivasan'13]:

There exists ϵ -error probabilistic polynomial for THR of degree \sqrt{n} polylog (n/ϵ) and it is efficiently samplable

Ingredients for THRoTHR (2/3)

Lemma:

 $XOR \circ AND \circ XOR \circ AND \subset XOR \circ AND$

Lemma [Maciel-Therien'98]: THR⊂ AC⁰[2] ∘SYM

Lemma [Beigel'92]: AND∘SYM ⊂ weighted SYM

Ingredients for THRoTHR (3/3)

Lemma [Williams'14]:

- Let $C: \{0,1\}^n \rightarrow \{0,1\}, C \in SYM \circ (weighted SYM)$ where
- top gate has fan-in u
- bottom gates have maximum weight w
- such that $uw \leq 2^{0.1n}$
- Then, truth table of C can be generated in time $poly(n)2^n$

Algorithm for THRoTHR-SAT

Input: $C: \{0,1\}^n \rightarrow \{0,1\}, C \in THR \circ THR$

Step 1. Define $C': \{0,1\}^{n'} \rightarrow \{0,1\}, C \in OR \circ C$ as

 $C'(y) \coloneqq \bigvee_{a \in \{0,1\}^{n'}} C(y,a) \quad (\text{Note: } |C'| \approx 2^{n'}|C|)$

Step 2. Construct (1/3)-error probabilistic circuit C'' for C'

 $C'' \in (XOR \circ AND) \circ (XOR \circ AND) \circ \cdots \circ (XOR \circ AND) \circ SYM$

Step 3. transform C'' into $C''' \in XOR_{\circ}(weighted SYM)$

Step 4. Evaluate C'''(y) for all $y \in \{0,1\}^{n-n'}$

Step 5. Repeat 2-4 O(n) times to reduce error probability

Output: truth table of C'

Algorithm for THRoTHR-SAT

Theorem [T]:

Let $C = \text{THR} \circ \text{THR}$, where #gates = mThere is a randomized algorithm for C-SAT that runs in time poly $(n,m) \ 2^{n-\mu(n,m)}$, where $\mu(n,m) = \Omega(n/m^{1/2+o(1)})^c$, $\exists c < 1/5$

Questions:

- Derandomization?
- (coNP algorithm is enough for $E^{NP} \not\subseteq C$)
- New lower bounds from analysis?

Other Techniques

Degree Reduction

AND•XOR•AND•XOR with #ANDs at depth-3 = m can be computed by a decision tree such that

- 1. internal node queries a linear equation Ax = b? where rank(A) $\approx \log(m/n)$
- 2. leaf queries a system of degree-*d* polynomial equations where $d \approx \log(m/n)$
- 3. if leaf is reached after L times Yes, the system is defined over linear space of dimension $\approx n - L \log(m/n)$
- 4. #leaves reached by L times Yes

is at most
$$\binom{m+L}{L}$$
 (Note: $L \le n/\log(m/n)$)

Degree Reduction

degree reduction for AND•XOR•AND•XOR is a generalization of Schuler's width reduction for CNF

Question:

degree reduction is useful in proving average-case lower bounds for AC⁰[*p*]?

(as Schuler's width reduction is useful in proving average-case lower bounds for AC⁰)

Bottom Fan-In Reduction

(weighted SYM)•AND with #ANDs $= m = O(n^k)$ can be computed by a decision tree such that

- 1. internal node queries a variable x_i
- 2. leaf queries a (weighted SYM) \circ AND circuit whose bottom fan-in = O(k)
- 3. #leaves $\leq 2^{n-\sqrt{n}}$

Question:

useful in proving average-case lower bounds for (weighted SYM)•AND?

Conclusion

New C-SAT algorithms

Attempts to handle TC⁰ (probably $C \not\subseteq ACC^0 \circ THR$)

- AC⁰ with a limited #weighted symmetric gates
- THRoTHR with a sub-quadratic #gates
- Faster algorithms within $AC^{0}[p]$ ($C \subseteq ACC^{0} \circ THR$)
- Systems of (degree-k) Polynomial Equations over GF(2)
 (⊃ k-CNF)
- XOR•AND•XOR•AND•XOR (\supset CNF)
- $AC^0[p] (\supset AC^0)$

Open Questions

■ non-trivial algorithm for stronger C: ACC⁰ • THR ⊆ TC⁰ ⊆ NC¹ ⊆ ... ⊆ CKT

e.g. AC⁰ with more symmetric gates, THRoTHR with more gates, THRoTHRoTHR... or improve:

- NC¹ with n^3 (n^2) gates [Komargodski-Raz-Tal'13,...]
- CKT with 3n (2.5n) gates [Chen-Kabanets'15]
- without polynomial method? (in polynomial space?)
- other lower bound techniques useful?

e.g. communication complexity, proof complexity, mathematical programming,...

Iower bound for C ⇔ non-trivial C-SAT algorithm?
 fine-grained reduction between C-SAT and C'-SAT?