
Satisfiability Algorithms for Small
Depth Circuits with Symmetric Gates

Suguru TAMAKI

Kyoto University & Simons Institute

Connections Between Algorithm Design and Complexity Theory, October 1, 2015, Simons Institute, Berkeley, CA

This Talk
is about Algorithm Design & Complexity Theory because

this workshop is about ``Connections Between
Algorithm Design and Complexity Theory’’

this program is about
``Fine-Grained Complexity and Algorithm Design’’

Contribution (Algorithm Design)
Circuit SAT algorithms for ``interesting’’ circuit classes

Implications (Complexity Theory)
Circuit size lower bounds (by known results)

2

Our Problem
Circuit Satisfiability (SAT)

Input:
Boolean circuit 𝐶𝐶: {0,1}𝑛𝑛→ {0,1}

Output:
∃𝑥𝑥,𝐶𝐶 𝑥𝑥 = 1 ⇒ Yes
∀𝑥𝑥,𝐶𝐶 𝑥𝑥 = 0 ⇒ No

∎ Canonical NPC problem
∎ Solved in time poly(𝐶𝐶)2𝑛𝑛 (𝑛𝑛: #variables)
∎ 𝒞𝒞-SAT: input only from circuit class 𝒞𝒞

e.g. 𝒞𝒞 = (𝑘𝑘-)CNF, AC0, AC0[𝑝𝑝], ACC0, TC0, NC1 (Formula),…

3

1x + ¬

≡

∧

∨

2x 3x 1x

=1?

General Research Goals
1. Design non-trivial algorithms for a stronger circuit class

Non-trivial:
super-polynomially (exponentially) faster than 2𝑛𝑛

Stronger circuit class:
(𝑘𝑘-)CNF ⊂ AC0 ⊂ AC0[𝑝𝑝] ⊂ACC0 ⊆ TC0 ⊆ NC1⊆ …⊆ CKT

2. If non-trivial algorithms exist for 𝒞𝒞-SAT, then
∎ improve the running time
∎ prove the difficulty of improvement

4

Why Study Circuit SAT?
1. Useful
∎ can encode many combinatorial problems efficiently
∎ (sometimes) inspires algorithms for other problems

e.g. All-Pairs Shortest Paths (APSP) [Williams’14,…]

2. Connection to circuit lower bounds
∎ [black box] non-trivial 𝒞𝒞-SAT algorithm ⇒ NEXP ⊈ 𝒞𝒞

[Williams’10,11,…] (NEXP: nondeterministic exponential time)

∎ [white box] analysis of 𝒞𝒞-SAT algorithm
⇒ average-case lower bounds

[Santhanam’10,Seto-T’12,Chen-Kabanets-Kolokolova-Shaltiel-
Zuckerman’14,…]

5

Circuit Classes
(𝑘𝑘-)CNF ⊂ AC0 ⊂ AC0[𝑝𝑝] ⊂ACC0 ⊆ TC0 ⊆ NC1⊆ … ⊆ CKT

∎ (𝑘𝑘-)CNF: conjunction of disjunctions of (at most 𝑘𝑘) literals
∎ AC0: constant-depth, unbounded-fan-in, AND/OR/NOT
∎ AC0[𝑝𝑝]: AC0 + mod 𝑝𝑝 gates (𝑝𝑝: prime power)
∎ ACC0: AC0 + mod 𝑚𝑚 gates (𝑚𝑚: integer ≥ 2)
∎ TC0: constant-depth, unbounded-fan-in,

linear threshold (THR) gates: sgn(∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃)
∎ NC1: fan-in 2, fan-out 1, AND/OR/NOT(/XOR)
∎ CKT: fan-in 2, AND/OR/NOT(/XOR)
∎ 𝒞𝒞1∘𝒞𝒞2: composition of 𝒞𝒞1∘𝒞𝒞2 e.g. CNF=AND∘OR
(Note: assume #gates = poly(𝑛𝑛) unless otherwise
specified) 6

Research Frontier
… ⊂ AC0[𝑝𝑝] ⊂ACC0 ⊆ ACC0∘THR ⊆ TC0 ⊆ NC1⊆ … ⊆ CKT

Non-trivial 𝒞𝒞-SAT algorithm:
∎ ACC0∘THR with a super-poly #gates [Williams’14]

∎ THR∘THR with a linear #wires [Impagliazzo-Paturi-
Schneider’13,…]

Lower Bounds for 𝒞𝒞:
∎ majority, mod 𝑞𝑞 ∉ AC0[𝑝𝑝] [Razborov’87,Smolensky’87]

∎ NEXP ⊈ ACC0∘THR [Williams’14]

∎ parity ∉ depth-𝑑𝑑 TC0 with

#wires = 𝑛𝑛1+1/3𝑑𝑑 or #gates = (𝑛𝑛/2)1/(2𝑑𝑑−1)

[Impagliazzo-Paturi-Saks’93]
7

New 𝒞𝒞-SAT algorithms
Attempts to handle TC0 (probably 𝒞𝒞 ⊈ ACC0∘THR)
∎ AC0 with a limited #symmetric gates: 𝑔𝑔(∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖)
∎ THR∘THR with a sub-quadratic #gates

Faster algorithms within AC0[𝑝𝑝] (𝒞𝒞 ⊆ ACC0∘THR)
∎ Systems of (degree-𝑘𝑘) Polynomial Equations over GF(2)
∎ XOR∘AND∘XOR∘AND∘XOR
∎ AC0[𝑝𝑝]

8

AC0 with a limited #symmetric gates

9

Motivation
Think about some interesting 𝒞𝒞 ⊂ TC0 ∖ACC0∘THR
i.e. 𝒞𝒞= ``AC0 with 𝑡𝑡(𝑛𝑛) symmetric gates’’
(Note: 𝒞𝒞 ⊈ ACC0∘THR is not known)

Definition:
∎ 𝑓𝑓: {0,1}𝑛𝑛→ 0,1 is symmetric (SYM)
if ∃𝑔𝑔:ℤ → 0,1 ,𝑓𝑓 = 𝑔𝑔(∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖)
∎ 𝑓𝑓: {0,1}𝑛𝑛→ 0,1 is weighted symmetric
if ∃𝑔𝑔:ℤ → 0,1 ,∃𝑤𝑤𝑖𝑖 ∈ ℤ,𝑓𝑓 = 𝑔𝑔(∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)

AND, OR, parity, mod 𝑚𝑚, majority are symmetric
THR (sgn(∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃)) is weighted symmetric

10

Motivation
𝒞𝒞= ``AC0 with 𝑡𝑡(𝑛𝑛) symmetric gates’’

Interesting?

∎ contains Max SAT when depth-2, 𝑡𝑡 𝑛𝑛 = 1 (THR∘OR)
non-trivial algorithm for Max 3-SAT is open
(cf. 20.791𝑛𝑛 time algorithm for Max 2-SAT [Williams’04])

∎ Lower bounds:
generalized inner product (GIP) ∉ AC0 with
#symmetric gates = 𝑛𝑛1−𝑜𝑜(1) or #THRs = 𝑛𝑛1/2−𝑜𝑜(1)

[…,Lovett-Srinivasan'11]

11

New 𝒞𝒞-SAT algorithms (1)
Theorem [Sakai-Seto-T-Teruyama]:

Let 𝒞𝒞= ``AC0 with 𝑡𝑡(𝑛𝑛) weighted symmetric gates’’

where 𝑡𝑡 𝑛𝑛 = 𝑛𝑛𝑜𝑜(1), maximum weight 2𝑛𝑛0.99

There is a non-trivial deterministic algorithm for #𝒞𝒞-SAT
(Note: we assume evaluation of symmetric gate is easy)

Corollary:

Max SAT can be solved in deterministic time 2𝑛𝑛−𝑛𝑛1/𝑂𝑂(𝑘𝑘)

when #clauses = 𝑂𝑂(𝑛𝑛𝑘𝑘)
(Note: Max 𝑘𝑘-SAT ⇒ #clauses = 𝑂𝑂(𝑛𝑛𝑘𝑘))

12

Implications
Corollary:

Let 𝒞𝒞= ``AC0 with 𝑡𝑡(𝑛𝑛) weighted symmetric gates’’

where 𝑡𝑡 𝑛𝑛 = 𝑛𝑛𝑜𝑜(1), maximum weight 2𝑛𝑛0.99

Then ENP ⊈ 𝒞𝒞

Questions:
New? Interesting?

13

Core Technical Result
Lemma:

Let 𝒞𝒞=(weighted SYM)∘ AND
where #ANDs = 𝑚𝑚, maximum weight 𝑤𝑤
There is a deterministic algorithm for #𝒞𝒞-SAT
that runs in time poly(𝑛𝑛,𝑚𝑚, log𝑤𝑤)2𝑛𝑛−𝜇𝜇(𝑛𝑛,𝑚𝑚,𝑤𝑤)

where 𝜇𝜇 𝑛𝑛,𝑚𝑚,𝑤𝑤 = (𝑛𝑛/log(𝑚𝑚𝑤𝑤))Ω(log 𝑛𝑛/ log 𝑚𝑚)

Based on ``Concentrated Shrinkage’’ & DP

(Note: Theorem follows from Lemma and transformation
AC0 with symmetric gates ⇒ SYM∘ AND using
[Beigel-Reingold-Spielman'91,Beigel'92,Beame-Impagliazzo-
Srinivasan'12])

14

THR∘THR with a sub-quadratic #gates

15

Motivation
Think about another interesting 𝒞𝒞 ⊂ TC0 ∖ACC0∘THR
i.e. 𝒞𝒞= THR∘THR
(Note: 𝒞𝒞 ⊈ ACC0∘THR is not known)

∎ 𝒞𝒞-SAT can be solved in time 2𝑛𝑛(1−𝜇𝜇(𝑐𝑐))

where 𝜇𝜇(𝑐𝑐)=1/𝑐𝑐𝑂𝑂(𝑐𝑐), #wires = 𝑐𝑐𝑛𝑛
[Impagliazzo-Paturi-Schneider’13, Chen-Santhanam’15]

(non-trivial if 𝑐𝑐𝑛𝑛 = 𝑜𝑜(𝑛𝑛 log 𝑛𝑛/loglog 𝑛𝑛)

∎ parity ∉ depth-𝑑𝑑 TC0 with

#wires = 𝑛𝑛1+1/3𝑑𝑑 or #gates = (𝑛𝑛/2)1/(2𝑑𝑑−1)

[Impagliazzo-Paturi-Saks’93]

16

New 𝒞𝒞-SAT algorithms (2)
Theorem [T]:

Let 𝒞𝒞= THR∘THR, where #gates = 𝑚𝑚
There is a randomized algorithm for 𝒞𝒞-SAT
that runs in time poly(𝑛𝑛,𝑚𝑚) 2𝑛𝑛−𝜇𝜇(𝑛𝑛,𝑚𝑚),

where 𝜇𝜇 𝑛𝑛,𝑚𝑚 = Ω 𝑛𝑛/𝑚𝑚1/2+𝑜𝑜 1 𝑐𝑐
,∃𝑐𝑐 < 1/5

(Note: #gates ≤ #wires)

Questions:
Derandomization?
(coNP algorithm is enough for ENP ⊈ 𝒞𝒞)
New lower bounds from analysis?

17

Proof Sketch
∎ based on the Polynomial Method in Circuit Complexity
∎ follow the framework for ACC0∘THR [Williams’14]

∎ use probabilistic polynomial for THR [Srinivasan’13]

∎ some transformation techniques due to
[Maciel-Therien’98], [Beigel’92]

∎ use fast evaluation algorithm for SYM ∘ SYM [Williams’14]

Some details later

18

Faster algorithms within ACC0

19

Motivation
(𝑘𝑘-)CNF ⊂ AC0 ⊂ AC0[𝑝𝑝] ⊂ACC0

𝒞𝒞: 𝒞𝒞-SAT in time T, condition
∎ 𝑘𝑘-CNF: 2𝑛𝑛(1−𝜇𝜇 𝑘𝑘), 𝜇𝜇 𝑘𝑘 = 1/𝑂𝑂(𝑘𝑘)

[Paturi-Pudlak-Zane’97,…]

∎ CNF: 2𝑛𝑛(1−𝜇𝜇 𝑐𝑐), 𝜇𝜇 𝑐𝑐 = 1/𝑂𝑂(log 𝑐𝑐), #clauses = 𝑐𝑐𝑛𝑛
[Schuler’05,Calabro-Impagliazzo-Paturi’06,…]

∎ AC0: 2𝑛𝑛(1−𝜇𝜇 𝑐𝑐,𝑑𝑑), 𝜇𝜇 𝑐𝑐,𝑑𝑑 = 1/𝑂𝑂(log 𝑐𝑐 + 𝑑𝑑 log𝑑𝑑) 𝑑𝑑−1,
depth-𝑑𝑑, #gates = 𝑐𝑐𝑛𝑛 [Impagliazzo-Matthews-Paturi’12]

∎ ACC0: 2𝑛𝑛−𝜇𝜇 𝑛𝑛,𝑑𝑑 , 𝜇𝜇 𝑛𝑛,𝑑𝑑 = 𝑛𝑛1/2𝑂𝑂(𝑑𝑑) ,

depth-𝑑𝑑, #gates = 2𝑛𝑛𝑜𝑜(1)
[Williams’11]

20

New 𝒞𝒞-SAT algorithms (3)
Theorem [T-Williams]:
𝒞𝒞: 𝒞𝒞-SAT in time T, condition
∎ Systems of degree-𝑘𝑘 Polynomial Equations over GF(2)

(= AND∘XOR∘ANDk ⊃ 𝑘𝑘-CNF = AND∘ORk):
2𝑛𝑛(1−𝜇𝜇 𝑘𝑘), 𝜇𝜇 𝑘𝑘 = 1/𝑂𝑂(𝑘𝑘)

∎ XOR∘AND∘XOR∘AND∘XOR (⊃ CNF = AND∘OR):
2𝑛𝑛(1−𝜇𝜇 𝑐𝑐), 𝜇𝜇 𝑐𝑐 = 1/𝑂𝑂(log 𝑐𝑐), #ANDs = 𝑐𝑐𝑛𝑛 at depth-4

∎ AC0[𝑝𝑝] (⊃ AC0):
2𝑛𝑛(1−𝜇𝜇 𝑑𝑑,𝑚𝑚), 𝜇𝜇 𝑑𝑑,𝑚𝑚 = 1/𝑂𝑂(log𝑚𝑚) 𝑑𝑑−1,
depth-𝑑𝑑, #gates = 𝑚𝑚

21

Proof Sketch
∎ based on the Polynomial Method in Circuit Complexity
∎ use probabilistic polynomial for

AND/OR [Razborov’87,Smolensky’87]

AC0[𝑝𝑝] [Kopparty-Srinivasan’12]

∎ use fast evaluation algorithm for polynomial [Yates,…]

∎ first item is essentially due to [Lokshtanov-Paturi]

(algorithm for 𝑘𝑘-CNF based on the polynomial method)
∎ second item is based on

degree reduction for AND∘XOR∘AND∘XOR
extending Schuler’s width reduction for CNF

Some details later
22

Algorithms via Polynomial Method

23

Polynomial Method
Example [Razborov’87,Smolensky’87]:
1. AC0[𝑝𝑝] can be well approximated

by a low-degree GF(𝑝𝑝) polynomial
2. majority, mod 𝑞𝑞 cannot be well approximated

by a low-degree GF(𝑝𝑝) polynomial

1+2 ⇒ majority, mod 𝑞𝑞 ∉ AC0[𝑝𝑝]

item 1 is useful in algorithm design
(``sparse’’ suffices instead of ``low-degree’’ in many cases)

24

Polynomial Method
Definition:

Let 𝑓𝑓: {0,1}𝑛𝑛→ {0,1}

A distribution 𝑃𝑃 over polynomials is
an 𝜖𝜖-error probabilistic polynomial for 𝑓𝑓
if ∀𝑥𝑥, Pr𝑝𝑝∼𝑃𝑃 𝑝𝑝 𝑥𝑥 ≠ 𝑓𝑓(𝑥𝑥) ≤ 𝜖𝜖

deg(𝑃𝑃) ≤ 𝑑𝑑 if Pr𝑝𝑝∼𝑃𝑃 deg 𝑝𝑝 ≤ 𝑑𝑑 = 1

𝜖𝜖−error probabilistic 𝒞𝒞-circuit is defined analogously

25

Algorithm for 𝒞𝒞-SAT
Input: 𝐶𝐶: {0,1}𝑛𝑛→ 0,1 ,𝐶𝐶 ∈𝒞𝒞

Step 1. Define 𝐶𝐶′: 0,1 𝑛𝑛−𝑛𝑛′ → 0,1 ,𝐶𝐶′ ∈ OR∘𝒞𝒞 as
𝐶𝐶′ 𝑦𝑦 ≔ ∨𝑎𝑎∈ 0,1 𝑛𝑛′ 𝐶𝐶(𝑦𝑦,𝑎𝑎) (Note: |𝐶𝐶′| ≈ 2𝑛𝑛′|𝐶𝐶|)

Step 2. Construct (1/3)-error probabilistic polynomial 𝑝𝑝
for 𝐶𝐶′ in time 𝑇𝑇(𝑛𝑛,𝑛𝑛′, |𝐶𝐶|)

Step 3. Evaluate 𝑝𝑝(𝑦𝑦) for all 𝑦𝑦 ∈ 0,1 𝑛𝑛−𝑛𝑛′

in time 𝑇𝑇′(𝑛𝑛,𝑛𝑛′, |𝐶𝐶|)
Step 4. repeat 2-3 𝑂𝑂(𝑛𝑛) times to reduce error probability

Output: truth table 𝑉𝑉 of 𝐶𝐶′ such that
∀𝑦𝑦, Pr 𝑉𝑉 𝑦𝑦 ≠ 𝐶𝐶′(𝑦𝑦) ≤ 2−2𝑛𝑛

Running Time: 𝑂𝑂(𝑛𝑛(𝑇𝑇(𝑛𝑛,𝑛𝑛′, |𝐶𝐶|)+ 𝑇𝑇′(𝑛𝑛,𝑛𝑛′, |𝐶𝐶|))) 26

Ingredients for THR∘THR (1/3)
Lemma [Razborov’87,Smolensky’87]:

There exists 𝜖𝜖-error probabilistic polynomial for AND/OR
of degree log(1/𝜖𝜖) and it is efficiently samplable

Lemma [Srinivasan’13]:
There exists 𝜖𝜖-error probabilistic polynomial for THR
of degree 𝑛𝑛 polylog(𝑛𝑛/𝜖𝜖) and it is efficiently samplable

27

Ingredients for THR∘THR (2/3)
Lemma:

XOR∘AND∘XOR∘AND ⊂ XOR∘AND

Lemma [Maciel-Therien’98]:
THR⊂ AC0[2] ∘SYM

Lemma [Beigel’92]:
AND∘SYM ⊂ weighted SYM

28

Ingredients for THR∘THR (3/3)
Lemma [Williams’14]:

Let 𝐶𝐶: {0,1}𝑛𝑛→ 0,1 , 𝐶𝐶 ∈ SYM∘(weighted SYM) where
top gate has fan-in 𝑢𝑢
bottom gates have maximum weight 𝑤𝑤
such that 𝑢𝑢𝑤𝑤 ≤ 20.1𝑛𝑛

Then, truth table of 𝐶𝐶 can be generated in time poly 𝑛𝑛 2𝑛𝑛

29

Algorithm for THR∘THR-SAT
Input: 𝐶𝐶: {0,1}𝑛𝑛→ 0,1 ,𝐶𝐶 ∈THR∘THR

Step 1. Define 𝐶𝐶′: {0,1}𝑛𝑛′→ 0,1 ,𝐶𝐶 ∈ OR∘𝒞𝒞 as
𝐶𝐶′ 𝑦𝑦 ≔ ∨𝑎𝑎∈ 0,1 𝑛𝑛′ 𝐶𝐶(𝑦𝑦,𝑎𝑎) (Note: |𝐶𝐶′| ≈ 2𝑛𝑛′|𝐶𝐶|)

Step 2. Construct (1/3)-error probabilistic circuit 𝐶𝐶′′ for 𝐶𝐶′

𝐶𝐶′′ ∈ (XOR∘AND)∘(XOR∘AND)∘ ⋯ ∘ (XOR ∘ AND) ∘SYM
Step 3. transform 𝐶𝐶′′ into 𝐶𝐶′′′ ∈ XOR∘(weighted SYM)

Step 4. Evaluate 𝐶𝐶′′′(𝑦𝑦) for all 𝑦𝑦 ∈ 0,1 𝑛𝑛−𝑛𝑛′

Step 5. Repeat 2-4 𝑂𝑂(𝑛𝑛) times to reduce error probability

Output: truth table of 𝐶𝐶′

30

Algorithm for THR∘THR-SAT
Theorem [T]:

Let 𝒞𝒞= THR∘THR, where #gates = 𝑚𝑚
There is a randomized algorithm for 𝒞𝒞-SAT
that runs in time poly(𝑛𝑛,𝑚𝑚) 2𝑛𝑛−𝜇𝜇(𝑛𝑛,𝑚𝑚),

where 𝜇𝜇 𝑛𝑛,𝑚𝑚 = Ω 𝑛𝑛/𝑚𝑚1/2+𝑜𝑜 1 𝑐𝑐
,∃𝑐𝑐 < 1/5

Questions:
Derandomization?
(coNP algorithm is enough for ENP ⊈ 𝒞𝒞)
New lower bounds from analysis?

31

Other Techniques

32

Degree Reduction
AND∘XOR∘AND∘XOR with #ANDs at depth-3 = 𝑚𝑚
can be computed by a decision tree such that

1. internal node queries a linear equation 𝐴𝐴𝑥𝑥 = 𝑏𝑏?
where rank 𝐴𝐴 ≈ log(𝑚𝑚/𝑛𝑛)

2. leaf queries a system of degree-𝑑𝑑 polynomial equations
where 𝑑𝑑 ≈ log(𝑚𝑚/𝑛𝑛)

3. if leaf is reached after L times Yes,
the system is defined over linear space of
dimension ≈ 𝑛𝑛 − L log(𝑚𝑚/𝑛𝑛)

4. #leaves reached by L times Yes

is at most 𝑚𝑚 + L
L (Note: L ≤ 𝑛𝑛/ log(𝑚𝑚/𝑛𝑛))

33

Degree Reduction
degree reduction for AND∘XOR∘AND∘XOR
is a generalization of Schuler’s width reduction for CNF

Question:
degree reduction is useful in proving
average-case lower bounds for AC0[𝑝𝑝]?

(as Schuler’s width reduction is useful in proving
average-case lower bounds for AC0)

34

Bottom Fan-In Reduction
(weighted SYM)∘AND with #ANDs = 𝑚𝑚 = 𝑂𝑂(𝑛𝑛𝑘𝑘)
can be computed by a decision tree such that

1. internal node queries a variable 𝑥𝑥𝑖𝑖
2. leaf queries a (weighted SYM)∘AND circuit

whose bottom fan-in = 𝑂𝑂(𝑘𝑘)
3. #leaves ≤ 2𝑛𝑛− 𝑛𝑛

Question:
useful in proving average-case lower bounds
for (weighted SYM)∘AND?

35

Conclusion

36

New 𝒞𝒞-SAT algorithms
Attempts to handle TC0 (probably 𝒞𝒞 ⊈ ACC0∘THR)
∎ AC0 with a limited #weighted symmetric gates
∎ THR∘THR with a sub-quadratic #gates

Faster algorithms within AC0[𝑝𝑝] (𝒞𝒞 ⊆ ACC0∘THR)
∎ Systems of (degree-𝑘𝑘) Polynomial Equations over GF(2)

(⊃ 𝑘𝑘-CNF)
∎ XOR∘AND∘XOR∘AND∘XOR (⊃ CNF)
∎ AC0[𝑝𝑝] (⊃ AC0)

37

Open Questions
∎ non-trivial algorithm for stronger 𝒞𝒞:

ACC0∘THR ⊆ TC0 ⊆ NC1⊆ … ⊆ CKT
e.g. AC0 with more symmetric gates, THR∘THR with more

gates, THR∘THR∘THR,… or improve:
NC1 with 𝑛𝑛3 (𝑛𝑛2) gates [Komargodski-Raz-Tal'13,…]

CKT with 3𝑛𝑛 (2.5𝑛𝑛) gates [Chen-Kabanets’15]

∎ without polynomial method? (in polynomial space?)
∎ other lower bound techniques useful?

e.g. communication complexity, proof complexity,
mathematical programming,…
∎ lower bound for 𝒞𝒞⟺ non-trivial 𝒞𝒞-SAT algorithm?
∎ fine-grained reduction between 𝒞𝒞-SAT and 𝒞𝒞’-SAT?

38

	Satisfiability Algorithms for Small�Depth Circuits with Symmetric Gates
	This Talk
	Our Problem
	General Research Goals
	Why Study Circuit SAT?
	Circuit Classes
	Research Frontier
	New 𝒞-SAT algorithms
	AC0 with a limited #symmetric gates
	Motivation
	Motivation
	New 𝒞-SAT algorithms (1)
	Implications
	Core Technical Result
	THR∘THR with a sub-quadratic #gates
	Motivation
	New 𝒞-SAT algorithms (2)
	Proof Sketch
	Faster algorithms within ACC0
	Motivation
	New 𝒞-SAT algorithms (3)
	Proof Sketch
	Algorithms via Polynomial Method
	Polynomial Method
	Polynomial Method
	Algorithm for 𝒞-SAT
	Ingredients for THR∘THR (1/3)
	Ingredients for THR∘THR (2/3)
	Ingredients for THR∘THR (3/3)
	Algorithm for THR∘THR-SAT
	Algorithm for THR∘THR-SAT
	Other Techniques
	Degree Reduction
	Degree Reduction
	Bottom Fan-In Reduction
	Conclusion
	New 𝒞-SAT algorithms
	Open Questions

