Satisfiability Algorithms for Small

Depth Circuits with Symmetric Gates

Suguru TAMAKI

Kyoto University & Simons Institute

Connections Between Algorithm Design and Complexity Theory, October 1, 2015, Simons Institute, Berkeley, CA

This Talk

Is about Algorithm Design & Complexity Theory because

this workshop is about "Connections Between
Algorithm Design and Complexity Theory”

this program is about
“Fine-Grained Complexity and Algorithm Design”

Contribution (Algorithm Design)
Circuit SAT algorithms for “interesting” circuit classes

Implications (Complexity Theory)

Circuit size lower bounds (by known results)

Our Problem

Circuit Satisfiability (SAT)

=17
Input: Q
Boolean circuit C: {0,1}"— {0,1} Q'e
Output:
X &) @

Jx,C(x) =1 = Yes
Vx,C(x) =0 = No

m Canonical NPC problem @ @ @

m Solved in time poly(|C|)2" (n: #variables)
m C-SAT: input only from circuit class C
e.g. C = (k-)CNF, AC® AC°[p], ACCP, TCY NC! (Formula),...

General Research Goals

1. Design non-trivial algorithms for a stronger circuit class

Non-trivial:
super-polynomially (exponentially) faster than 2™

Stronger circuit class:
(k-)CNF c AC® c AC°[p] c ACC® € TC® € NC'C ...C CKT

2. If non-trivial algorithms exist for C-SAT, then
m improve the running time
m prove the difficulty of improvement

Why Study Circuit SAT?

1. Useful

m can encode many combinatorial problems efficiently
m (sometimes) inspires algorithms for other problems
e.g. All-Pairs Shortest Paths (APSP) [Williams'14,...]

2. Connection to circuit lower bounds
m [black box] non-trivial C-SAT algorithm = NEXP & C
[Williams'10,11,...] (NEXP: nondeterministic exponential time)
m [white box] analysis of C-SAT algorithm
= average-case lower bounds

[Santhanam'10,Seto-T'12,Chen-Kabanets-Kolokolova-Shaltiel-
Zuckerman’14,...]

Circuit Classes

(k-)CNF € AC® € AC[p] € ACCO € TC® € NCIC ... C CKT

m (k-)CNF: conjunction of disjunctions of (at most k) literals
m AC? constant-depth, unbounded-fan-in, AND/OR/NOT
m AC°[p]: AC® + mod p gates (p: prime power)
m ACCY ACY + mod m gates (m: integer = 2)
m TC® constant-depth, unbounded-fan-in,
linear threshold (THR) gates: sgn(}.’-, w;x; — 6)
m NC!: fan-in 2, fan-out 1, AND/OR/NOT(/XOR)
m CKT: fan-in 2, AND/OR/NOT(/XOR)
m C,oC,. composition of C;oC, e.g. CNF=AND°OR

(Note: assume #gates = poly(n) unless otherwise
specified) 6

Research Frontier

... © AC[p] € ACC® € ACC°THR € TC" € NC!<c ... € CKT

Non-trivial C-SAT algorithm:
m ACCP°THR with a super-poly #gates [Williams'14]

m THRoTHR with a linear #wires [Impagliazzo-Paturi-
Schneider’13,...]

Lower Bounds for C:
B majority, mod g & AC°[p] [Razborov'87,Smolensky'87]
m NEXP & ACCTHR [Williams'14]
m parity € depth-d TC® with
#wires = n*t1/3% or #gates = (n/2)Y/(2d-D

[Impagliazzo-Paturi-Saks'93]

New C-SAT algorithms

Attempts to handle TC? (probably C € ACC%THR)
m AC? with a limited #symmetric gates: g(Qj- x;)
m THRoTHR with a sub-quadratic #gates

Faster algorithms within AC°[p] (C € ACC°-THR)

m Systems of (degree-k) Polynomial Equations over GF(2)
B XORocANDoXORoANDoXOR

m ACO[p]

AC® with a limited #symmetric gates

Motivation

Think about some interesting C < TC°\ ACC°THR
l.e. C= AC® with t(n) symmetric gates”
(Note: C € ACCP%THR is not known)

Definition:

mf:{0,1}"—> {0,1} is symmetric (SYM)
if3g:Z - {0,1}, f = g(Xi=y x1)
mf:{0,1}"*> {0,1} is weighted symmetric
if39:Z - {0,1},3w; €Z,f = gQi= w;x;)

AND, OR, parity, mod m, majority are symmetric
THR (sgn(}.i=, w;x; — 8)) is weighted symmetric

10

Motivation

C= "AC° with t(n) symmetric gates”
Interesting?

m contains Max SAT when depth-2, t(n) = 1 (THRoOR)

non-trivial algorithm for Max 3-SAT is open
(cf. 207911 time algorithm for Max 2-SAT [Williams'04])

m Lower bounds:
generalized inner product (GIP) € AC® with
#symmetric gates = n1=°() or #THRs = n1/270(1)

[...,Lovett-Srinivasan'l1]

11

New C-SAT algorithms (1)

Theorem [Sakai-Seto-T-Teruyamal:
Let C= "AC® with t(n) weighted symmetric gates”
where t(n) = n°®, maximum weight 2™

There is a non-trivial deterministic algorithm for #C-SAT

(Note: we assume evaluation of symmetric gate is easy)

Corollary:

Max SAT can be solved in deterministic time 27"/ %

when #clauses = 0(n")
(Note: Max k-SAT = #clauses = 0(n¥))

12

Implications

Corollary:
Let C= "ACY with t(n) weighted symmetric gates”

Then ENP ¢ ¢

Questions:
New? Interesting?

13

Core Technical Result

Lemma:
Let C=(weighted SYM)o AND
where #ANDs = m, maximum weight w
There is a deterministic algorithm for #C-SAT
that runs in time poly(n, m, log w)2"~#@mmw)
where pu(n, m,w) = (n/log(mw))®logn/logm)

Based on Concentrated Shrinkage” & DP

(Note: Theorem follows from Lemma and transformation
AC® with symmetric gates = SYMeo AND using
[Beigel-Reingold-Spielman'91,Beigel'92,Beame-Impagliazzo-
Srinivasan'12])

14

THRoTHR with a sub-quadratic #gates

15

Motivation

Think about another interesting ¢ < TCY\ ACC°THR
l.e. C= THRoTHR

(Note: C € ACCP%THR is not known)

m C-SAT can be solved in time 2m(1=#(€)
where u(c)=1/c°©), #wires = cn
[Impagliazzo-Paturi-Schneider'13, Chen-Santhanam’15]
(non-trivial if cn = o(n log n/loglog n)

m parity € depth-d TC® with
#wires = n+1/3% or #gates = (n/2)Y/(2d-D
[Impagliazzo-Paturi-Saks'93]

16

New C-SAT algorithms (2)

Theorem [T]:
Let C= THRoTHR, where #gates = m
There is a randomized algorithm for C-SAT
that runs in time poly(n, m) 27~ #®m),

where u(n,m) = Q(n/m1/2+0(1))c, Jc < 1/5
(Note: #gates < #wires)

Questions:
Derandomization?
(coNP algorithm is enough for ENP & ©)
New lower bounds from analysis?

17

Proof Sketch

m based on the Polynomial Method in Circuit Complexity

m follow the framework for ACC°<THR [Williams'14]

m use probabilistic polynomial for THR [Srinivasan'13]

m some transformation techniques due to
[Maciel-Therien'98], [Beigel'92]

m use fast evaluation algorithm for SYM o SYM [Williams'14]

Some details later

18

Faster algorithms within ACCY

19

Motivation

(k-)CNF c ACY c AC%[p] c ACC?

C: C-SAT in time T, condition

m k-CNF: 2n(=r() (k) = 1/0(k)
[Paturi-Pudlak-Zane'97,...]

m CNF; 2n(-#) y(c) = 1/0(logc), #clauses = cn
[Schuler'05,Calabro-Impagliazzo-Paturi’06,...]

m ACO; 2n(-ued) y(c,d) = 1/0(logc + d logd) 71,
depth-d, #gates = cn [Impagliazzo-Matthews-Paturi'12]

m ACCO: 2~ #(nd) 1 (pn, d) = n1/2%@
depth-d, #gates = 2" [Williams'11]

20

New C-SAT algorithms (3)

Theorem [T-Williams]:

C: C-SAT in time T, condition

m Systems of degree-k Polynomial Equations over GF(2)
(= ANDoXORoAND, D k-CNF = ANDoOR ,):
2n(=RUD, (k) = 1/0(k)

m XORoANDoXORoANDoXOR (2 CNF = ANDoOR):
2n(1=ue)) y(c) = 1/0(logc), #ANDs = cn at depth-4

m AC°[p] (o ACY):
on(-pdm) 1 (d m) = 1/0(ogm) 71,
depth-d, #gates = m

21

Proof Sketch

m based on the Polynomial Method in Circuit Complexity
m use probabilistic polynomial for
AND /OR [Razborov'87,Smolensky'87]
AC°[p] [Kopparty-Srinivasan'12]
m use fast evaluation algorithm for polynomial [Yates,...]
m first item is essentially due to [Lokshtanov-Paturi]
(algorithm for k-CNF based on the polynomial method)
m second item is based on
degree reduction for ANDoXORoANDoXOR
extending Schuler’s width reduction for CNF

S detalls lat
ome details later 55

Algorithms via Polynomial Method

23

Polynomial Method

Example [Razborov'87,Smolensky'87]:

1. AC°[p] can be well approximated
by a low-degree GF(p) polynomial

2. majority, mod g cannot be well approximated
by a low-degree GF(p) polynomial

1+2 = majority, mod q & AC°[p]

item 1 is useful in algorithm design
(“sparse” suffices instead of "low-degree” in many cases)

24

Polynomial Method

Definition:
Let £:{0,1}"*— {0,1}

A distribution P over polynomials is
an e-error probabilistic polynomial for f
if Vx, Pr, plp(x) # f(x)] < €

deg(P) < d if Pr,.pldeg(p) <d] =1

e—error probabilistic C-circuit is defined analogously

25

Algorithm for C-SAT

Input: C:{0,1}"— {0,1},C €C

Step 1. Define €': {0,1}* ™ — {0,1},C’ € ORoC as
C'() =V yepquy C2@) (Note: [C'] = 2]C))

Step 2. Construct (1/3)-error probabilistic polynomial p
for C' in time T(n,n’, |C|)

Step 3. Evaluate p(y) for all y € {0,1}»"
in time T'(n,n’, |C|)

Step 4. repeat 2-3 0(n) times to reduce error probability

Output: truth table V of €’ such that
vy, PrlV(y) = C'()] < 27"
Running Time: O(n(T (n,n', |C)+ T'(n,n’,|C)))) 26

Ingredients for THRoTHR (1/3)

Lemma [Razborov'87,Smolensky’'87]:
There exists e-error probabilistic polynomial for AND/OR
of degree log(1/¢) and it is efficiently samplable

Lemma [Srinivasan'13]:
There exists e-error probabilistic polynomial for THR
of degree /n polylog(n/e) and it is efficiently samplable

27

Ingredients for THRoTHR (2/3)

Lemma:
XORoANDoXORoAND € XORcAND

Lemma [Maciel-Therien'98]:
THRc ACP[2] oSYM

Lemma [Beigel'92]:
ANDoSYM c weighted SYM

28

Ingredients for THReTHR (3/3)

Lemma [Williams'14]:
Let C:{0,1}"*— {0,1}, C € SYMo(weighted SYM) where
top gate has fan-in u
bottom gates have maximum weight w
such that uw < 2017
Then, truth table of C can be generated in time poly(n)2"

29

Algorithm for THRoeTHR-SAT

Input: C:{0,1}"— {0,1},C ETHRoTHR

Step 1. Define C": {0,1}'Y'— {0,1}, C € ORoC as
C'0) =V gy C2@) (Note: [C'] = 27[C])
Step 2. Construct (1/3)-error probabilistic circuit C"' for C’
C" € (XORoAND)o(XORoAND)o :-- o (XOR o AND) oSYM
Step 3. transform C"" into C""" € XOReo(weighted SYM)

Step 4. Evaluate C""(y) for all y € {0,1}*"
Step 5. Repeat 2-4 O(n) times to reduce error probability

Output: truth table of C’

30

Algorithm for THRoeTHR-SAT

Theorem [T]:
Let C= THRoTHR, where #gates = m
There is a randomized algorithm for C-SAT

that runs in time poly(n, m) 2"~ #®m),
where u(n,m) = Q(n/m1/2+0(1))c, Jc < 1/5

Questions:
Derandomization?
(coNP algorithm is enough for ENP & ©)
New lower bounds from analysis?

31

Other Techniques

32

Degree Reduction

ANDoXORoANDoXOR with #ANDs at depth-3 =m
can be computed by a decision tree such that

1. internal node queries a linear equation Ax = b?
where rank(4) = log(m/n)
2. leaf queries a system of degree-d polynomial equations
where d = log(m/n)
3. if leaf is reached after L times Yes,
the system is defined over linear space of
dimension = n — Llog(m/n)
4. #leaves reached by L times Yes

m+ L

)) (Note: L < n/log(m/n))

Is at most (
33

Degree Reduction

degree reduction for ANDoXORoANDoXOR
IS a generalization of Schuler’s width reduction for CNF

Question:
degree reduction is useful in proving
average-case lower bounds for AC°[p]?

(as Schuler’s width reduction is useful in proving
average-case lower bounds for AC°)

34

Bottom Fan-In Reduction

(weighted SYM)oAND with #ANDs = m = 0(n*)
can be computed by a decision tree such that

1. internal node queries a variable x;
2. leaf queries a (weighted SYM)oAND circuit
whose bottom fan-in = 0 (k)

3. #leaves < 2n—Vn

Question:
useful in proving average-case lower bounds

for (weighted SYM)oAND?

35

Conclusion

36

New C-SAT algorithms

Attempts to handle TC? (probably C € ACC%THR)
m AC? with a limited #weighted symmetric gates
m THRoTHR with a sub-quadratic #gates

Faster algorithms within AC°[p] (C € ACC°-THR)

m Systems of (degree-k) Polynomial Equations over GF(2)
(D k-CNF)

B XORocANDoXORoANDoXOR (D CNF)

m AC°[p] (o ACY)

37

Open Questions

m non-trivial algorithm for stronger C:
ACCPTHR € TCY € NC'c ... € CKT

e.g. ACY with more symmetric gates, THRoTHR with more
gates, THRoeTHRoTHR,... or improve:

NC! with n3 (n%) gates [Komargodski-Raz-Tal'13,..]

CKT with 3n (2.5n) gates [Chen-Kabanets'15]
m without polynomial method? (in polynomial space?)
m other lower bound techniques useful?

e.g. communication complexity, proof complexity,
mathematical programming,...

m lower bound for € < non-trivial C-SAT algorithm?

m fine-grained reduction between C-SAT and C’-SAT?
38

	Satisfiability Algorithms for Small�Depth Circuits with Symmetric Gates
	This Talk
	Our Problem
	General Research Goals
	Why Study Circuit SAT?
	Circuit Classes
	Research Frontier
	New 𝒞-SAT algorithms
	AC0 with a limited #symmetric gates
	Motivation
	Motivation
	New 𝒞-SAT algorithms (1)
	Implications
	Core Technical Result
	THR∘THR with a sub-quadratic #gates
	Motivation
	New 𝒞-SAT algorithms (2)
	Proof Sketch
	Faster algorithms within ACC0
	Motivation
	New 𝒞-SAT algorithms (3)
	Proof Sketch
	Algorithms via Polynomial Method
	Polynomial Method
	Polynomial Method
	Algorithm for 𝒞-SAT
	Ingredients for THR∘THR (1/3)
	Ingredients for THR∘THR (2/3)
	Ingredients for THR∘THR (3/3)
	Algorithm for THR∘THR-SAT
	Algorithm for THR∘THR-SAT
	Other Techniques
	Degree Reduction
	Degree Reduction
	Bottom Fan-In Reduction
	Conclusion
	New 𝒞-SAT algorithms
	Open Questions

