Algorithms and Lower Bounds: Basic Connections

Lecture 4: NEXP not in ACC

Ryan Williams
Stanford University
Definition: ACC Circuits

An ACC circuit family \{C_n\} has the properties:
• Every \(C_n\) takes \(n\) bits of input and outputs a bit
• There is a fixed \(d\) such that every \(C_n\) has depth at most \(d\)
• There is a fixed \(m\) such that the gates of \(C_n\) are AND, OR, NOT, MOD\(m\) (unbounded fan-in)

\[\text{MOD}_m(x_1,\ldots,x_t) = 1 \iff \sum_i x_i \text{ is divisible by } m\]

Remarks
1. The default size of \(C_n\) is polynomial in \(n\)
2. **Strength:** this is a non-uniform model of computation (can compute some undecidable languages)
3. **Weakness:** ACC circuits can be efficiently simulated by constant-layer neural networks
Where does ACC come from?

Prove $P \not= NP$ by proving $NP \not\subset P/poly$.
The simple combinatorial nature of circuits should make it easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Håstad (early 80’s)
- $MOD2 \not\in AC0$ [i.e., $n^{O(1)}$ size ACC with *only* AND, OR, NOT]

Razborov, Smolensky (late 80’s)
- $MOD3 \not\in (AC0 \text{ with } MOD2 \text{ gates})$
- For $p \neq q$ prime, $MODp \not\in (AC0 \text{ with } MODq \text{ gates})$

Barrington (late 80’s) Suggested ACC as the next step

Conjecture Majority $\not\in$ ACC
Conjecture (early 90’s) $NP \subset$ ACC
Conjecture (late 90’s) $NEXP \subset$ ACC
ACC Lower Bounds

\(\text{EXP}^{\text{NP}} = \text{Exponential Time with an NP oracle}\)

\(\text{NEXP} = \text{Nondeterministic Exponential Time}\)

Theorem 1 There is a problem \(Q\) in \(\text{EXP}^{\text{NP}}\) such that for every \(d, m\) there is an \(\varepsilon > 0\) such that \(Q\) does not have \(\text{ACC}\) circuits with \(\text{MOD}_m\) gates, depth \(d\), and size \(2^{n\varepsilon}\)

Theorem 2 There is a problem \(Q\) in \(\text{NEXP}\) such that \(Q\) does not have \(n^{\text{poly}(\log n)}\) size \(\text{ACC}\) circuits of any constant depth

Remark Compare with the following:

[MS 70’s] \(\text{EXP}^{(\text{NP}^{\text{NP}})}\) doesn’t have \(o(2^n/n)\) size circuits

[K82] \(\text{NEXP}^{\text{NP}} \not\subset \text{SIZE}(n^{\text{poly}(\log n)})\)

[BFT’98] \(\text{MA-EXP} \not\subset \text{SIZE}(n^{\text{poly}(\log n)})\)
Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply lower bounds against ACC

Theorem (Example)
If ACC-SAT with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time (for all constant depths and moduli), then EXPNP doesn’t have $2^{n^{o(1)}}$ size ACC circuits.

2. Design faster ACC-SAT algorithms!

Theorem For all d, m there’s an $\epsilon > 0$ such that ACC-SAT on circuits with n inputs, depth d, MODm gates, and 2^{n^ϵ} size can be solved in $2^n - \Omega(n^\epsilon)$ time
Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time, then EXPNP doesn’t have $2^{n^{o(1)}}$ size ACC circuits.

Proof Idea Show that if both:

• ACC-SAT with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time
• EXPNP has $2^{n^{o(1)}}$ size ACC circuits

then $\text{NTIME}[2^n] \subseteq \text{NTIME}[o(2^n)]$ (a contradiction)

Work with a “compressed” version of the 3SAT problem:

Exponentially long formulas are encoded with polynomial-size circuits
Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time, then EXP^{NP} isn’t in $2^{n^{o(1)}}$ size ACC.

For a circuit $C : \{0,1\}^n \rightarrow \{0,1\}$, let $\text{tt}(C)$ be its truth table: the output of C on all 2^n assignments, in lex. order

Succinct 3SAT: *Given a circuit C, is tt(C) a satisfiable 3CNF?*

Theorem [GW, PY ’80s] Succinct 3SAT is NEXP-complete.

Succinct 3SAT is in NEXP: evaluate circuit C on all possible assignments, and solve the resulting 3SAT instance

Succinct 3SAT is NEXP-hard. Follows from:

“For all $L \in \text{NP}$, there’s a $\text{TIME}[\text{poly}(\log n)]$ reduction from L to 3SAT”

Padding ⇒ “For all $L \in \text{NEXP}$, there is a $\text{TIME}[\text{poly}(n)]$ reduction from L to exponentially-long 3SAT”

The $\text{TIME}[\text{poly}(n)]$ reduction can be described with a circuit!
Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time, then \exp^{NP} isn’t in $2^{n^{o(1)}}$ size ACC.

For a circuit $C : \{0,1\}^n \rightarrow \{0,1\}$, let $tt(C)$ be its truth table: the output of C on all 2^n assignments, in lex. order

Succinct 3SAT: Given a circuit C, is $tt(C)$ a satisfiable 3CNF?

Lemma 1 [..., JMV’15] For all $L \in \text{NTIME}[2^n]$, there is a polytime reduction R_L from L to Succinct 3SAT such that:
- $x \in L \Leftrightarrow R_L(x) = C_x$ encodes a satisfiable 3CNF formula
- C_x is ACC, has size n^{10}, and $n + 4 \log n$ inputs, where $n = |x|$

Corollary Succinct 3SAT for ACC circuits of n inputs & n^{10} size is in nondet $2^n \ poly(n)$ time but not in nondet $\frac{2^n}{n^5}$ time.

(Otherwise, we’d contradict the nondet. time hierarchy!)
Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time, then EXP^{NP} isn’t in $2^{n^{o(1)}}$ size ACC.

Succinct 3SAT: Given a circuit C, is $\tt(C)$ a satisfiable 3CNF?

Say that **Succinct 3SAT has ACC satisfying assignments** if for every C such that $\tt(C)$ is a satisfiable 3CNF, there is an ACC circuit D of $2^{|C|^{o(1)}}$ size such that $\tt(D)$ is a variable assignment that satisfies $\tt(C)$.

Succinct 3SAT has ACC satisfying assignments
≡ “All satisfiable formulas which are compressible have a satisfying assignment which is somewhat compressible”

Lemma 2 If EXP^{NP} has $2^{n^{o(1)}}$ size ACC circuits then **Succinct 3SAT has ACC satisfying assignments**
Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time, then EXP^{NP} isn’t in $2^{n^{o(1)}}$ size ACC.

Succinct 3SAT: *Given a circuit C, is $\text{tt}(C)$ a satisfiable 3CNF?*

Lemma 2 If EXP^{NP} has $2^{n^{o(1)}}$ size ACC circuits then Succinct 3SAT has ACC satisfying assignments

Proof The following can be computed in EXP^{NP}:

On input (C, i), use an NP oracle and binary search to find the lexicographically first satisfying assignment to $\text{tt}(C)$. Output the i-th bit of this assignment.

By assumption: there is a $2^{|C|^{o(1)}}$ size ACC circuit $D(C, i)$ which outputs the i-th bit of a satisfying assignment to $\text{tt}(C)$.

Now for any circuit C', define the circuit $E(i) := D(C', i)$ Then E has $2^{|C|^{o(1)}}$ size, and $\text{tt}(E)$ satisfies $\text{tt}(C')$
Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time, then EXP^{NP} isn’t in $2^{n^{o(1)}}$ size ACC.

An overview:

Assume “fast” ACC-SAT and small ACC circuits for EXP^{NP}
Use to solve Succinct3SAT in $\text{NTIME}[2^n/n^5]$
(contradiction!)

Outline of Succinct3SAT algorithm:

Given a Succinct3SAT instance C (an ACC circuit)

1. Guess a small ACC circuit Y encoding a satisfying assignment for the exponentially-long 3CNF $\text{tt}(C)$
 (which exists, by Lemma 2 and small circuits for EXP^{NP})

2. Use “fast” Circuit-SAT algorithm to check that $\text{tt}(D)$ satisfies $\text{tt}(C)$ in $O(2^n/n^5)$ time
Given Succinct3SAT instance **C** (an ACC circuit of *n* inputs)

Nondeterministically guess ACC circuit **Y** of $2^{n^{o(1)}}$ size

Y(j) is intended to output the *j*-th bit of a satisfying assignment for **φ**

Construct the following circuit **D** of $2^{n^{o(1)}}$ size:

Output 1 iff the assignment encoded by **Y** does not satisfy the *i*-th clause of **φ**

Outputs assignments to the variables *a*, *b*, *c* of **φ**

Outputs the *i*-th clause of 3CNF **φ**

Using ACC-SAT algorithm: determine satisfiability of **D** in $o(2^n)$ time!
Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply lower bounds against ACC

Theorem (Example)
If ACC-SAT with n inputs and $2^{n^{o(1)}}$ size is in $O(2^n/n^{10})$ time (for all constant depths and moduli), then EXP^{NP} doesn’t have $2^{n^{o(1)}}$ size ACC circuits.

2. Design faster ACC-SAT algorithms!

Theorem For all d, m there’s an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, depth d, MODm gates, and 2^{n^ε} size can be solved in $2^n - \Omega(n^\varepsilon)$ time
Ingredients for Solving ACC SAT

1. A known representation of ACC
 [Yao ’90, Beigel-Tarui’94] Every ACC function
 \(f : \{0,1\}^n \rightarrow \{0,1\} \) can be expressed in the form
 \[
 f(x_1, \ldots, x_n) = g(h(x_1, \ldots, x_n))
 \]
 - \(h \) is a multilinear polynomial with \(K \) monomials,
 \(h(x_1, \ldots, x_n) \in \{0, \ldots, K\} \) for all \((x_1, \ldots, x_n) \in \{0,1\}^n \)
 - \(K \) is not “too large” (quasipolynomial in circuit size)
 - \(g : \{0, \ldots, K\} \rightarrow \{0,1\} \) can be an arbitrary function

2. “Fast Fourier Transform” for multilinear polynomials:
 Given a multilinear polynomial \(h \) in its coefficient representation, the value \(h(x) \) can be computed over all points \(x \in \{0,1\}^n \) in \(2^n \text{ poly}(n) \) time.
ACC Satisfiability Algorithm

Theorem For all d, m there’s an $\epsilon > 0$ such that $\text{ACC}[m]$ SAT with depth d, n inputs, 2^{n^ϵ} size can be solved in $2^n - \Omega(n^\epsilon)$ time.

Proof:
- $K = 2^{n^{O(\epsilon)}}$
- Take an OR of all assignments to the first n^ϵ inputs of C
- Beigel and Tarui
- Fast Fourier Transform
- For small $\epsilon > 0$, evaluate h on all 2^{n-n^ϵ} assignments in $2^{n-n^\epsilon}\text{poly}(n)$ time.
Theorem If ACC SAT with n inputs, \(n^{O(1)}\) size is in \(O(2^n/n^{10})\) time, then **NEXP doesn’t have** \(n^{O(1)}\) size ACC circuits.

Proceed just as with EXP\(^NP\), but use the following lemma:

Lemma [IKW’02] If NEXP \(\subseteq P/poly\) then Succinct 3SAT has poly-size circuits encoding satisfying assignments.

The proof applies work on “hardness versus randomness”

1. If EXP \(\subseteq P/poly\) then EXP = MA [BFNW93]

2. If Succinct 3SAT does *not* have polysize SAT assignment circuits, then in \(i.o.-NTIME[2^n]/n\) we can *guess a function with high circuit complexity and verify it* – *just guess a satisfying assignment to a hard Succinct3SAT instance*!

Can derandomize MA infinitely often with n bits of advice:

\[\text{EXP} = \text{MA} \subseteq \text{i.o.-NTIME}[2^n]/n \subseteq \text{i.o.-SIZE}(n^k)\]

(this is a contradiction)
Theorem If ACC SAT with n inputs, $n^{O(1)}$ size is in $O(2^n/n^{10})$ time, then **NEXP doesn’t have** $n^{O(1)}$ size ACC circuits.

Proceed just as with EXP$^\text{NP}$, but use the following lemma:

Lemma [IKW’02] If NEXP $\subseteq P/poly$ then Succinct 3SAT has poly-size circuits encoding satisfying assignments.

Lemma If P \subseteq ACC then all poly-size *unrestricted* circuit families have equivalent poly-size ACC circuit families.

Corollary If NEXP \subseteq ACC then Succinct 3SAT has poly-size ACC circuits encoding satisfying assignments.

This is all we need for the previous proof to go through. Also works for quasipolynomial size circuits.
Weak Derandomization Suffices

Theorem 2 Suppose we are given a circuit C with n inputs, and are promised that it is either *unsatisfiable*, or at least $\frac{1}{2}$ of its assignments are satisfying. Determine which. If this is in $O(2^n/n^{10})$ time then $\text{NEXP} \not\subseteq \text{P/poly}$.

Proof Idea: Same as before, but replace the reduction from L to Succinct3SAT with a succinct PCP reduction.

Lemma 3 [BGHSV’05] For all $L \in \text{NTIME}(2^n)$,

there is a reduction S_L from L to MAX CSP such that:

- $x \in L \implies$ All constraints of $S_L(x)$ are satisfiable
- $x \notin L \implies$ At most $\frac{1}{2}$ of the constraints are satisfiable

1. $|S_L(x)| = 2^n \text{ poly}(n)$
2. The i-th constraint of $S_L(x)$ is computable in poly(n) time.
Remark on a Nice Property of ACC

Thm: Given an ACC circuit C of size S and n inputs, the truth table of C can be produced in $2^n \text{poly}(n) + 2^{\text{poly}(\log S)}$ time.

The main result of this lecture is that this property suffices to separate NEXP from ACC.

Morally, this property should be enough to get $\text{EXP} \not\subseteq \text{ACC}$

Observation: Let $L \in \text{TIME}[4^n] \setminus \text{TIME}[3^n]$. Then the truth table of $L \cap \{0,1\}^n$ cannot be produced in $o(3^n)$ time.

The non-uniformity of ACC prevents us from directly proving EXP lower bounds. But perhaps $\text{NP} \neq \text{uniform-ACC}$

Q: Is there $L \in \text{TIME}[3^n]$ such that generating the 2^n-length truth table of L on n-bit inputs requires $\omega(3^n)$ time?
Future Progress

• Replace NEXP with simpler complexity classes
 May need to improve on exhaustive search for more complex problems

Open Problem *Does faster* COUNTING *of satisfying assignments for circuits imply stronger lower bounds?*

• Replace ACC with stronger circuits
 Design SAT algorithms for stronger circuits!
 Using PCP Theorem: can weaken the hypotheses

Open Problem *Can Boolean formulas of size s be evaluated on all n-variable assignments in $\text{poly}(s) + 2^n \text{poly}(n)$ time?*

• Find more connections between algorithms and lower bounds!