Algorithms and Lower Bounds:

Some Basic Connections
Lecture 3: Circuit Complexity and

Connections - PART lI

Ryan Williams

SAT and Lower Bounds [W’10,’11,’13]

A slightly faster algorithm for C-SAT
= Lower bounds against C circuits

0
1
0
1
1
0
1
0
1
0
0

= I A5 NN
|2, . \ N
o \ ‘T 22
= e 204>
e ¢ AN
~ \ \ \
% 27 }—L \J2— Y
i aan T Sl
129 .
\¢
| 30} N
e N\)3t
E
1] r
s
e "
> e

Faster Algorithms = Lower Bounds

Faster “Algorithms for Circuits” No “Circuits for Algorithms”

An algorithm for: Would imply:
e Circuit SAT in O(2"/n*9)
* NEXP & P/pol
(n inputs and nk gates) & P/poly

 Formula SAT in O(2"/n?0) * NEXP (non-uniform) NC1

« ACCSAT in O(2"/n'9) * NEXP & ACC

e Given a circuit C that’s either
UNSAT, or has > 2" satisfying

assignments, determine which, NEXP < P/poly
in O(2"/n'%) time
(A Promise-BPP problem)

Converse: Can interesting circuit lower bounds tell us
something about circuit-analysis algorithms?

Many well-known connections between
circuit lower bounds and derandomization
e.g. EXP & P/poly = BPP is in SUBEXP

For restricted circuits, sometimes the techniques used to prove
circuit lower bounds can be used to derive faster SAT algorithms

Example: Boolean formulas over AND, OR, NOT, fan-in 2
[Subbotovskaya ‘61] MOD2 on n bits cannot be computed with
n14999 sjze Boolean formulas with AND, OR, NOT gates

[Santhanam’11] Satisfiabiity of O(n)-size Boolean formulas with
AND and OR gates can be solved in o(2") time

Converse: Can interesting circuit lower bounds tell us
something about circuit-analysis algorithms?

For restricted circuits, sometimes the techniques used to prove
circuit lower bounds can be used to derive faster SAT algorithms
[CKKSZ14] “Mining circuit lower bound proofs for meta-algs”

Can “mine circuit lower bound proofs” for other algorithms!
[W’14] [AWY’15], [AW’15] applied the polynomial method of
R-S to yield faster algorithms for many problems:

3
L3 [] n []
Solve all-pairs shortest paths in ~JTogn time

Find a disjoint pair of sets among a set system
Compute partial match queries in batch

Evaluate a CNF formula on many chosen assignments
Find a longest common substring with don’t cares
Solve 0-1 Integer LP faster than 2™ time

Find a closest pair of points in the Hamming metric

Are interesting circuit lower bounds
to interesting circuit-analysis algorithms?

[Impagliazzo-Kabanets-Wigderson’02]
There are “non-trivial” CAPP algorithms
IF AND ONLY IF

NEXP is not in P/poly

What does non-trivial mean?
We call a nondeterministic algorithm A “non-trivial for CAPP” if:
- Forevery &, A(C) runs in 2™° time on circuits C of size n
and uses n¢ bits of advice
- For infinitely many n, there’s > 1 accepting computation path
on all C of size n, and every accepting path outputs a value v
within 1/10 of the acceptance probability of C

Are interesting circuit lower bounds equivalent
to interesting circuit-analysis algorithms?

[W’13]

There are “non-trivial” algorithms for MCSP
IF AND ONLY IF

NEXP is not in P/poly

What does non-trivial mean?

We call an algorithm A “non-trivial for MCSP” if for all k,

- A(f) runs in poly(2™) time on any Boolean function f of 2" bits
and uses n bits of advice
For infinitely many n, there is a Boolean function f of 2™ bits
such that A(f) outputs 1, and for all f computable with an n’
size circuit, A(f) outputs O

as Data Design

[CW’15]

Let f:{0,1}* — {0,1} be a desired function.
Let C be some “simple” class of Boolean circuits.

Define C-Test For f to be the problem:
Input: A circuit C from C; n(C) = number of inputs to C
Decide: Does C compute frestricted to {0,1}"(¢)?

This is a very well-motivated problem from practice!
We have a specification f and want to verify if C meets it

as Data Design

Define C-Test For f to be the problem:
Input: A circuit C from C; let n(C) = number of inputs to C
Decide: Does C compute f restricted to {0,1}"(€)?

We gauge the complexity of C-Test For f by measuring the
number of inputs needed to test if a given circuit computes f:

The data complexity of the C-Test For fis a functionT: N - N

T(s) := the minimum number of labeled examples (x, f(x))
necessary and sufficient to determine for all C € C of

size s whether C computes f on all n(C)-bit inputs

This is also well-motivated! Small data complexity means we can
rapidly determine if C computes f

as Data Design

Theorem: For every function f: {0,1}* — {0,1},

Lower Bounds on the data complexity of C-Test For f
are equivalent to

Upper Bounds on the C circuit complexity of f

Theorem: For every function f: {0,1}* — {0,1},

Upper Bounds on the data complexity of C-Test For f
are equivalent to

Lower Bounds on the C circuit complexity of f

These “duals” provide an “alternate universe” where
inputs become the “computational model” and
circuits become the “inputs”

as Data Design

For example, the following are equivalent:
1) NP & P/poly (resp. NP & i.o. P/poly)

2) For every € > 0 and for infinitely many s
(resp. for every s), the data complexity of
testing size-s circuits for SAT is at most

0(2%)

OPEN: Can we use data complexity to recover
new proofs of old circuit lower bounds?

as Data Design

Let £:{0,1}* — {0,1}, and let S(n) = 2n for all n.
“Data Complexity of Testing Size-s Circuits for f”
= Min number of inputs needed to distinguish:
- circuits of size s computing a slice of f
- circuits of size s that don’t.

Thm: If f € SIZE(S(n)), then the data complexity of

-1
testing size-s circuits for f is ZQ(S (S)), a.e.

Thm: If f & SIZE(Zn : S(n)), then the data complexity
of testing size-s circuits for f is at most

0 (25_1(5) + S5 1(s)-s*log s) i.0.

ldeas Behind The Proofs

Thm: If f € SIZE(S(n)), then the data complexity of testing

-1
size-s circuits for f is ZQ(S (S)), a.e.

e fE€ SIZE(S(n)) implies that for every n-bit input x, there is a
circuit of size S(n) + n which disagrees with f only at x.

e [t follows that every test set for f on circuits of size S(n) + n
has cardinality at least 2™.

Thm:If f & SIZE(Zn : S(n)), then the data complexity of testing
size-s circuits for f is at most O (25_1(5) + S 1(s) - s*log S) i.o.
Use “small counterexample” sets: can get an O(S(n) log S(n))
size test set for all circuits of size S(n) with n inputs.

For size-s circuits where n is “too large” to compute f, we have
small test sets. For size-s circuits with n “small enough”, it
becomes possible to compute f within size s.

General Questions
To Think More About

How can algorithms help prove ?

How can properties of circuits be turned into algorithms for
analyzing them?

How can help design algorithms?

e \We can make progress on both algorithms
and lower bounds by studying them as a unit

e Next, an explicit example of algorithms
proving lower bounds: NEXP vs ACC

Definition: ACC Circuits

An ACC circuit family { C_ } has the properties:
* Every C_ takes n bits of input and outputs a bit
* Thereis a fixed d such that every C_ has depth at most d
* There is a fixed m such that the gates of C_ are
AND, OR, NOT, MODm (unbounded fan-in)
MODm(x,,...,x,) =1 iff X x. is divisible by m

Remarks
1. The default size of C_ is polynomial in n
2. Strength: thisis a non-uniform model of computation
(can compute some undecidable languages)
3. Weakness: ACC circuits can be efficiently simulated by
constant-layer neural networks

