
Algorithms and Lower Bounds:

Some Basic Connections
Lecture 3: Circuit Complexity and

Connections - PART II

Ryan Williams
Stanford University

x1 Size =nc

xn

SAT and Lower Bounds [W’10,’11,’13]

A slightly faster algorithm for CCCC-SAT

⇒ Lower bounds against CCCC circuits

O(2n /n10)

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size =nc

xn

Faster Algorithms Lower Bounds

Faster “Algorithms for Circuits”

An algorithm for:

• Circuit SAT in O(2n/n10)

(n inputs and nk gates)

• Formula SAT in O(2n/n10)

• ACC SAT in O(2n/n10)

• Given a circuit C that’s either
UNSAT, or has ≥ 2n-1 satisfying

assignments, determine which,

in O(2n/n10) time

(A Promise-BPP problem)

No “Circuits for Algorithms”

Would imply:

• NEXP ⊄⊄⊄⊄ P/poly

• NEXP ⊄⊄⊄⊄ (non-uniform) NC1

• NEXP ⊄⊄⊄⊄ ACC

NEXP ⊄⊄⊄⊄ P/poly

Converse: Can interesting circuit lower bounds tell us

something about circuit-analysis algorithms?

Many well-known connections between

circuit lower bounds and derandomization

e.g. EXP ⊄⊄⊄⊄ P/poly ⇒⇒⇒⇒ BPP is in SUBEXP

For restricted circuits, sometimes the techniques used to prove

circuit lower bounds can be used to derive faster SAT algorithms

Example: Boolean formulas over AND, OR, NOT, fan-in 2

[Subbotovskaya ‘61] MOD2 on n bits cannot be computed with

n1.4999 size Boolean formulas with AND, OR, NOT gates

[Santhanam’11] Satisfiabiity of O(n)-size Boolean formulas with

AND and OR gates can be solved in o(2n) time

Converse: Can interesting circuit lower bounds tell us

something about circuit-analysis algorithms?

For restricted circuits, sometimes the techniques used to prove

circuit lower bounds can be used to derive faster SAT algorithms

[CKKSZ14] “Mining circuit lower bound proofs for meta-algs”

Can “mine circuit lower bound proofs” for other algorithms!

[W’14] [AWY’15], [AW’15] applied the polynomial method of

R-S to yield faster algorithms for many problems:

� Solve all-pairs shortest paths in
��

� ����
time

� Find a disjoint pair of sets among a set system

� Compute partial match queries in batch

� Evaluate a CNF formula on many chosen assignments

� Find a longest common substring with don’t cares

� Solve 0-1 Integer LP faster than �� time

� Find a closest pair of points in the Hamming metric

Are interesting circuit lower bounds equivalent

to interesting circuit-analysis algorithms?

[Impagliazzo-Kabanets-Wigderson’02]

There are “non-trivial” CAPP algorithms

IF AND ONLY IF

NEXP is not in P/poly

What does non-trivial mean?

We call a nondeterministic algorithm A “non-trivial for CAPP” if:

- For every �, A(C) runs in 2
�
time on circuits C of size �

and uses � bits of advice

- For infinitely many �, there’s ≥ 1 accepting computation path

on all C of size �, and every accepting path outputs a value �

within 1/10 of the acceptance probability of C

Are interesting circuit lower bounds equivalent

to interesting circuit-analysis algorithms?

[W ’13]

There are “non-trivial” algorithms for MCSP

IF AND ONLY IF

NEXP is not in P/poly

What does non-trivial mean?

We call an algorithm A “non-trivial for MCSP” if for all k,

- A(f) runs in poly(2
) time on any Boolean function f of 2
 bits

and uses n bits of advice

- For infinitely many n, there is a Boolean function f of 2
 bits

such that A(f) outputs 1, and for all f computable with an ��

size circuit, A(f) outputs 0

Contrast with Natural Proofs!

Lower Bounds as Data Design

[CW’15] New equivalence between algs + complexity

Let f : {0,1}* → {0,1} be a desired function.

Let C be some “simple” class of Boolean circuits.

Define CCCC-Test For f to be the problem:

Input: A circuit C from CCCC; n(C) = number of inputs to C

Decide: Does C compute f restricted to {0,1}n(C)?

This is a very well-motivated problem from practice!

We have a specification f and want to verify if C meets it

Lower Bounds as Data Design

Define CCCC-Test For f to be the problem:

Input: A circuit C from CCCC; let n(C) = number of inputs to C

Decide: Does C compute f restricted to {0,1}n(C)?

We gauge the complexity of CCCC-Test For f by measuring the
number of inputs needed to test if a given circuit computes f:

The data complexity of the CCCC-Test For f is a function T : ℕℕℕℕ → ℕℕℕℕ

T(s) := the minimum number of labeled examples (x, f(x))
necessary and sufficient to determine for all C ∈ C C C C of
size s whether C computes f on all n(C)-bit inputs

This is also well-motivated! Small data complexity means we can
rapidly determine if C computes f

Lower Bounds as Data Design

Theorem: For every function f : {0,1}* → {0,1},

Lower Bounds on the data complexity of CCCC-Test For f

are equivalent to

Upper Bounds on the C C C C circuit complexity of f

Theorem: For every function f : {0,1}* → {0,1},

Upper Bounds on the data complexity of CCCC-Test For f

are equivalent to

Lower Bounds on the C C C C circuit complexity of f

These “duals” provide an “alternate universe” where
inputs become the “computational model” and

circuits become the “inputs”

Lower Bounds as Data Design

For example, the following are equivalent:

1) NP ⊄ P/poly (resp. NP ⊄ i.o. P/poly)

2) For every � > 0 and for infinitely many �

(resp. for every �), the data complexity of

testing size-� circuits for SAT is at most

� ���

OPEN: Can we use data complexity to recover

new proofs of old circuit lower bounds?

Lower Bounds as Data Design

Let �: 0,1 ∗ → 0,1 , and let ! � ≥ 2� for all �.

“Data Complexity of Testing Size-s Circuits for f”

= Min number of inputs needed to distinguish:

- circuits of size s computing a slice of f

- circuits of size s that don’t.

Thm: If " ∈ SIZE # � , then the data complexity of

testing size-� circuits for � is �
$ #%& �

, a.e.

Thm: If " ∉ SIZE �� · # � , then the data complexity

of testing size-� circuits for � is at most

� �#%& � + #*& � · �� +,- � i.o.

Ideas Behind The Proofs

Thm: If " ∈ SIZE # � , then the data complexity of testing

size-� circuits for � is �
$ #%& �

, a.e.

• " ∈ SIZE # � implies that for every �-bit input ., there is a

circuit of size ! � + � which disagrees with � only at ..

• It follows that every test set for f on circuits of size !(�) + �

has cardinality at least 2
.

Thm: If " ∉ SIZE �� · # � , then the data complexity of testing

size-� circuits for � is at most � �#%& � + #*& � · �� +,- � i.o.

Use “small counterexample” sets: can get an O(S(n) log S(n))

size test set for all circuits of size S(n) with n inputs.

For size-s circuits where n is “too large” to compute f, we have

small test sets. For size-s circuits with n “small enough”, it

becomes possible to compute f within size s.

General Questions

To Think More About

How can algorithms help prove lower bounds?
How can properties of circuits be turned into algorithms for

analyzing them?

How can lower bounds help design algorithms?

• We can make progress on both algorithms

and lower bounds by studying them as a unit

• Next, an explicit example of algorithms

proving lower bounds: NEXP vs ACC

Definition: ACC Circuits

An ACC circuit family { Cn } has the properties:

• Every Cn takes n bits of input and outputs a bit

• There is a fixed d such that every Cn has depth at most d

• There is a fixed m such that the gates of Cn are

AND, OR, NOT, MODm (unbounded fan-in)

MODm(x1,…,xt) = 1 iff ∑∑∑∑i xi is divisible by m

Remarks

1. The default size of Cn is polynomial in n

2. Strength: this is a non-uniform model of computation

(can compute some undecidable languages)

3. Weakness: ACC circuits can be efficiently simulated by

constant-layer neural networks

