Combinatorial Properties of k-CNF Connection to Upper and Lower Bounds

Mohan Paturi

University of California, San Diego

August 2015

Outline

Introduction

- Satisfiability Coding Lemma
- Sparsification Lemma
- Switching Lemma

Motivation

- Faster Satisfiability Algorithms
- Circuit Lower Bounds

Lower Bounds for Depth-3 Circuits

• Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR ($\Sigma\Pi\Sigma$) circuits. Also for depth-3 $\Sigma\Pi\Sigma_k$ circuits with bottom fan-in bounded by k

Lower Bounds for Depth-3 Circuits

- Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR ($\Sigma\Pi\Sigma$) circuits. Also for depth-3 $\Sigma\Pi\Sigma_k$ circuits with bottom fan-in bounded by k
- What was known?
 - $2^{c\sqrt{n}}$ (for c < 1/8) for computing parity (Switching Lemma)
 - 2 $2^{0.687\sqrt{n}}$ for computing parity (Top-down method)

Lower Bounds for Depth-3 Circuits

- Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR ($\Sigma\Pi\Sigma$) circuits. Also for depth-3 $\Sigma\Pi\Sigma_k$ circuits with bottom fan-in bounded by k
- What was known?
 - 2^{c√n} (for c < 1/8) for computing parity (Switching Lemma)
 2^{0.687√n} for computing parity (Top-down method)
- Parity can be computed by $O(n^{\frac{1}{4}}2^{\sqrt{n}})$ size depth-3 circuits of bottom fan-in $O(\sqrt{n})$.

Lower Bounds for Depth-3 Circuits

- Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR ($\Sigma\Pi\Sigma$) circuits. Also for depth-3 $\Sigma\Pi\Sigma_k$ circuits with bottom fan-in bounded by k
- What was known?
 - 2^{c√n} (for c < 1/8) for computing parity (Switching Lemma)
 2^{0.687√n} for computing parity (Top-down method)
- Parity can be computed by $O(n^{\frac{1}{4}}2^{\sqrt{n}})$ size depth-3 circuits of bottom fan-in $O(\sqrt{n})$.
- Better lower bounds?

Connections to Other Circuit Models

• Linear-size log-depth Boolean circuits of fan-in 2 \longrightarrow depth-3 circuits of size $2^{O(n/\log \log n)}$ and bottom fan-in $n^{o(1)}$

Connections to Other Circuit Models

- Linear-size log-depth Boolean circuits of fan-in 2 \longrightarrow depth-3 circuits of size $2^{O(n/\log \log n)}$ and bottom fan-in $n^{o(1)}$
- Linear-size log-depth series-parallel circuits $\longrightarrow \bigvee_{2^{O(n/\log d)}}$ linear size 2^d -CNF

Connections to Other Circuit Models

- Linear-size log-depth Boolean circuits of fan-in 2 \longrightarrow depth-3 circuits of size $2^{O(n/\log \log n)}$ and bottom fan-in $n^{o(1)}$
- Linear-size log-depth series-parallel circuits $\longrightarrow \bigvee_{2^{\mathcal{O}(n/\log d)}}$ linear size $2^d\text{-}\mathrm{CNF}$
- NC¹ circuits of depth k log n → depth d + 1 unbounded fan-in Boolean circuits of size 2^{n^{k/d}} and bottom fan-in n^{k/d}

A Lower Bound Problem

 Prove that for a function in NP that it cannot be computed by bottom fan-in k depth-3 circuits of size 2^{n/2} for any k

A Lower Bound Problem

- Prove that for a function in **NP** that it cannot be computed by bottom fan-in k depth-3 circuits of size $2^{n/2}$ for any k
- An even weaker open problem: proving a size lower bound of $2^{2n/k}$ on depth-3 circuits with bottom fan-in at most k. Or proving a size lower bound of $2^{2\sqrt{n}}$ for depth-3 circuits without any bottom fan-in restriction.

A Lower Bound Problem

- Prove that for a function in **NP** that it cannot be computed by bottom fan-in k depth-3 circuits of size $2^{n/2}$ for any k
- An even weaker open problem: proving a size lower bound of 2^{2n/k} on depth-3 circuits with bottom fan-in at most k. Or proving a size lower bound of 2^{2√n} for depth-3 circuits without any bottom fan-in restriction.
- A more immediate challenge: prove a 2^{n/k} size lower bound for computing parity with depth-3 circuits of bottom fan-in k and a 2√n size lower bound for circuits without any restriction on bottom fan-in

• Input: a formula or circuit F on n variables.

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for *F* : *k*-CNF, CNF, formula, **AC**⁰ circuit, **NC**¹ circuit, polynomial size circuit

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for *F* : *k*-CNF, CNF, formula, **AC**⁰ circuit, **NC**¹ circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for *F* : *k*-CNF, CNF, formula, **AC**⁰ circuit, **NC**¹ circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for *F* : *k*-CNF, CNF, formula, **AC**⁰ circuit, **NC**¹ circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is a called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and *n*, the number of variables.

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for *F* : *k*-CNF, CNF, formula, **AC**⁰ circuit, **NC**¹ circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is a called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and *n*, the number of variables.
- What is the savings for the class of *k*-CNF formulas?

- Input: a formula or circuit F on n variables.
- Check if *F* is satisfiable
- Examples for *F* : *k*-CNF, CNF, formula, **AC**⁰ circuit, **NC**¹ circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is a called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and *n*, the number of variables.
- What is the savings for the class of *k*-CNF formulas?
- Earlier (to 1997) results showed that μ is $\Omega(1/2^k)$

A Top-Down Approach for $\Sigma \Pi \Sigma_k$ Lower Bounds

• Let C is a $\Sigma \Pi \Sigma_k$ circuit with top fan-in s

A Top-Down Approach for $\Sigma \Pi \Sigma_k$ Lower Bounds

- Let C is a $\Sigma \Pi \Sigma_k$ circuit with top fan-in s
- Let C compute the parity function \longrightarrow one of the s k-CNFs must accept at least $\Omega(2^n/s)$ many inputs of odd parity and accept no input of even parity.

A Top-Down Approach for $\Sigma \Pi \Sigma_k$ Lower Bounds

- Let C is a $\Sigma \Pi \Sigma_k$ circuit with top fan-in s
- Let C compute the parity function \longrightarrow one of the s k-CNFs must accept at least $\Omega(2^n/s)$ many inputs of odd parity and accept no input of even parity.
- Argue that a *k*-CNF cannot accept too many such inputs while avoiding all inputs of even parity.

Isolated Solutions

• A satisfying solution for *F* is isolated if all its distance 1 neighbors are not solutions.

Isolated Solutions

- A satisfying solution for *F* is isolated if all its distance 1 neighbors are not solutions.
- What is the maximum number of isolated solutions for a *k*-CNF?

Isolated Solutions

- A satisfying solution for *F* is isolated if all its distance 1 neighbors are not solutions.
- What is the maximum number of isolated solutions for a *k*-CNF?
- We show that this number is at most $2^{n(1-1/k)}$

Critical Clauses

• Let *F* be a *k*-CNF and *x* be an isolated satisfying solution of *x*.

Critical Clauses

- Let F be a k-CNF and x be an isolated satisfying solution of x.
- For each variable *i* and isolated solution *x*, *F* must have a clause with exactly one true literal corresponding to the variable *i* at solution *x*.

Critical Clauses

- Let *F* be a *k*-CNF and *x* be an isolated satisfying solution of *x*.
- For each variable *i* and isolated solution *x*, *F* must have a clause with exactly one true literal corresponding to the variable *i* at solution *x*.
- Such clause is called a critical clause for the variable *i* at the solution *x*.

Compressing Isolated Satisfying Solutions

• Let F be a k-CNF and σ a permutation of $\{1, \dots, n\}$.

- Let F be a k-CNF and σ a permutation of $\{1, \dots, n\}$.
- Let $x \in \{0,1\}^n$ be an isolated satisfying solution of F
- Compression Function F_{σ} :

- Let F be a k-CNF and σ a permutation of $\{1, \dots, n\}$.
- Let $x \in \{0,1\}^n$ be an isolated satisfying solution of F
- Compression Function F_{σ} :
 - $\textbf{ 0 Permute the bits of } x \text{ according to } \sigma$

- Let F be a k-CNF and σ a permutation of $\{1, \dots, n\}$.
- Let $x \in \{0,1\}^n$ be an isolated satisfying solution of F
- Compression Function F_{σ} :
 - **(**) Permute the bits of x according to σ
 - Prove the identical clause C_{x,σ(i)} (for the variable σ(i) at x) occur before the variable σ(i) in the order σ.

- Let F be a k-CNF and σ a permutation of $\{1, \dots, n\}$.
- Let $x \in \{0,1\}^n$ be an isolated satisfying solution of F
- Compression Function F_{σ} :
 - **(**) Permute the bits of x according to σ
 - Prove the identical clause C_{x,σ(i)} (for the variable σ(i) at x) occur before the variable σ(i) in the order σ.
 - **③** $F_{\sigma}(x)$ is the resulting compressed string.

$\overline{F_{\sigma}}$ is Lossless

• We can recover x from $y = F_{\sigma}(x)$, F, and σ .

F_{σ} is Lossless

- We can recover x from $y = F_{\sigma}(x)$, F, and σ .
- Decompression Algorithm:

1
$$F_1 = F$$

2 for $i = 1, \dots, n$
3 if F_i has a clause of length one with the variable $\sigma(i)$,
4 then set the variable $\sigma(i)$ so that the clause is true
5 else set the variable $\sigma(i)$ to the next unused bit of y.
6 F_{i+1} = substitute for $\sigma(i)$ in F and simplify

Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all permutations σ) compressed length $|F_{\sigma}(x)|$ is at most n(1-1/k).

Proof Sketch: For each variable *i* with a critical clause at *x*, the probability (under a random permutation) *i* appears last among all the variables in its critical clause is at least 1/k.

Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all permutations σ) compressed length $|F_{\sigma}(x)|$ is at most n(1-1/k).

Proof Sketch: For each variable *i* with a critical clause at *x*, the probability (under a random permutation) *i* appears last among all the variables in its critical clause is at least 1/k.

The compression algorithm deletes n/k bits on average.

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

Proof Sketch:

• For every isolated solution, the average (over permutations) compressed length is at most n - n/k

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

- For every isolated solution, the average (over permutations) compressed length is at most n n/k
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most n n/k.

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

- For every isolated solution, the average (over permutations) compressed length is at most n n/k
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most n n/k.
- Hence, the number of isolated solutions is at most 2^{n(1-1/k)} using a convexity argument.

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

Proof Sketch:

- For every isolated solution, the average (over permutations) compressed length is at most n n/k
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most n n/k.
- Hence, the number of isolated solutions is at most $2^{n(1-1/k)}$ using a convexity argument.

Fact

If $\Phi: S \to \{0,1\}^*$ is a prefix-free encoding (one-to-one function) with average code length I, the $|S| \le 2^I$.

Lower Bounds for Parity

Theorem

Computing the parity function requires $2^{n/k}$ size $\Sigma \Pi \Sigma_k$ circuits.

Lower Bounds for Parity

Theorem

Computing the parity function requires $2^{n/k}$ size $\Sigma \Pi \Sigma_k$ circuits.

Theorem

Computing the parity function requires $\Omega(n^{1/4}2^{\sqrt{n}})$ size depth-3 circuits.

Parity Lower Bound for General Depth-3 Circuits

• Problem: clause lengths are not uniform.

- Problem: clause lengths are not uniform.
- Let $N_I(x)$ be the number of critical clauses of length I at the solution x.

- Problem: clause lengths are not uniform.
- Let $N_I(x)$ be the number of critical clauses of length I at the solution x.
- $\sum_{l} N_{l}(x) = n$ for an isolated solution x.

- Problem: clause lengths are not uniform.
- Let $N_I(x)$ be the number of critical clauses of length I at the solution x.
- $\sum_{l} N_{l}(x) = n$ for an isolated solution x.
- Define weight of x, $w(x) = \sum_{i=1}^{n} 1/|C_{(x,i)}| = \sum_{l} N_{l}(x)/l$.

- Problem: clause lengths are not uniform.
- Let $N_I(x)$ be the number of critical clauses of length I at the solution x.
- $\sum_{l} N_{l}(x) = n$ for an isolated solution x.
- Define weight of x, $w(x) = \sum_{i=1}^{n} 1/|C_{(x,i)}| = \sum_{l} N_{l}(x)/l$.
- Argue that for a k-CNF F, the number of isolated solutions with weight greater or equal to μ is at most 2^{n-μ}.

• Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x .

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x .

• Let
$$\mu = \sqrt{n} + \frac{\log n}{4}$$

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x .

• Let
$$\mu = \sqrt{n} + \frac{\log n}{4}$$

• $S_1 \subseteq S$ be the set of x with $w(x) \ge \mu$. $S_2 = S - S_1$ be the set of x with $w(x) < \mu$,

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x .

• Let
$$\mu = \sqrt{n} + \frac{\log n}{4}$$

- $S_1 \subseteq S$ be the set of x with $w(x) \ge \mu$. $S_2 = S S_1$ be the set of x with $w(x) < \mu$,
- Number of CNFs (level-2 AND gates) is at least $|S_1|2^{\mu-n}$.

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x .

• Let
$$\mu = \sqrt{n} + \frac{\log n}{4}$$

- $S_1 \subseteq S$ be the set of x with $w(x) \ge \mu$. $S_2 = S S_1$ be the set of x with $w(x) < \mu$,
- Number of CNFs (level-2 AND gates) is at least $|S_1|2^{\mu-n}$.
- Many clauses (level-1 OR gates) are needed to accept low-weighted isolated solutions.

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each x ∈ S, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x .

• Let
$$\mu = \sqrt{n} + \frac{\log n}{4}$$

- $S_1 \subseteq S$ be the set of x with $w(x) \ge \mu$. $S_2 = S S_1$ be the set of x with $w(x) < \mu$,
- Number of CNFs (level-2 AND gates) is at least $|S_1|2^{\mu-n}$.
- Many clauses (level-1 OR gates) are needed to accept low-weighted isolated solutions.
- A clause of length *l* can only be critical for at most *l*2^{n-l} solution-variable pairs (x, i).

• Hence, the number of clauses in all CNFs together must be at least

Lower Bound Proof

• Hence, the number of clauses in all CNFs together must be at least

$$\sum_{l=1}^{n} \sum_{x \in S_2} N_l(x) / (l2^{n-l}) = \sum_{x \in S_2} n2^{-n} \sum_{i=1}^{n} \frac{N_l(x)}{n} \frac{2^l}{l}$$
$$\geq \sum_{x \in S_2} \mu 2^{-n+n/\mu} = |S_2| \mu 2^{-n+n/\mu}$$

Lower Bound Proof

 Hence, the number of clauses in all CNFs together must be at least

$$\sum_{l=1}^{n} \sum_{x \in S_2} N_l(x) / (l2^{n-l}) = \sum_{x \in S_2} n2^{-n} \sum_{i=1}^{n} \frac{N_l(x)}{n} \frac{2^l}{l}$$
$$\geq \sum_{x \in S_2} \mu 2^{-n+n/\mu} = |S_2| \mu 2^{-n+n/\mu}$$

• Total number of gates is at least $|S_1|2^{\mu-n} + |S_2|\mu 2^{-n+n/\mu}$.

 Hence, the number of clauses in all CNFs together must be at least

$$\sum_{l=1}^{n} \sum_{x \in S_2} N_l(x) / (l2^{n-l}) = \sum_{x \in S_2} n2^{-n} \sum_{i=1}^{n} \frac{N_l(x)}{n} \frac{2^l}{l}$$
$$\geq \sum_{x \in S_2} \mu 2^{-n+n/\mu} = |S_2| \mu 2^{-n+n/\mu}$$

- Total number of gates is at least $|S_1|2^{\mu-n} + |S_2|\mu 2^{-n+n/\mu}$.
- Minimizing the count subject to the condition $|S_1| + |S_2| = 2^{n-1}$ will yield the desired bound.

k-SAT Algorithm

Algorithm **PPZ**:

- 1 Let *F* be a *k*-CNF and σ a random permutation on variables
- 2 **for** $i = 1, \dots, n$
- 3 **if** there is a unit clause for the variable $\sigma(i)$
- 4 **then** set the variable $\sigma(i)$ so that the clause true
- 5 else set the variable $\sigma(i)$ randomly
- 6 Simplify F
- 7 if F is satisfied, output the assignment

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

Proof Sketch:

• E_1 — for at least I(x)/k variables, the critical variable appears as the last variable among the variables in the critical clause

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

- E_1 for at least I(x)/k variables, the critical variable appears as the last variable among the variables in the critical clause
- *E*₂ values assigned to the variables in the **for** loop agree with *x*

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

- E_1 for at least I(x)/k variables, the critical variable appears as the last variable among the variables in the critical clause
- *E*₂ values assigned to the variables in the **for** loop agree with *x*

•
$$P(E_1) \ge 1/n$$

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

- E_1 for at least I(x)/k variables, the critical variable appears as the last variable among the variables in the critical clause
- *E*₂ values assigned to the variables in the **for** loop agree with *x*
- $P(E_1) \ge 1/n$
- $P(E_2|E_1) \ge 2^{-n+I(x)/k}$

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

- E_1 for at least I(x)/k variables, the critical variable appears as the last variable among the variables in the critical clause
- *E*₂ values assigned to the variables in the **for** loop agree with *x*
- $P(E_1) \ge 1/n$
- $P(E_2|E_1) \ge 2^{-n+I(x)/k}$
- $\mathbf{P}(x \text{ is output by } \mathbf{PPZ}) \geq \frac{1}{n} 2^{-n+I(x)/k}$

PPZ Analysis

• Let S be the set of satisfying solutions of F.

PPZ Analysis

- Let S be the set of satisfying solutions of F.
- For $x \in S$, define $value(x) = 2^{-n+l(x)}$

PPZ Analysis

- Let S be the set of satisfying solutions of F.
- For $x \in S$, define $value(x) = 2^{-n+l(x)}$
- Fact: $\sum_{x \in S} value(x) \ge 1$

۲

• Let S be the set of satisfying solutions of F.

• For
$$x \in S$$
, define $value(x) = 2^{-n+l(x)}$

• Fact:
$$\sum_{x \in S} value(x) \ge 1$$

$$P(x \text{ is output by } PPZ) \ge \sum_{x \in S} \frac{1}{n} 2^{-n+l(x)/k}$$
$$= \frac{1}{n} 2^{-n+n/k} \sum_{x \in S} 2^{(-n+l(x))/k}$$
$$\ge \frac{1}{n} 2^{-n+n/k}$$

Dense Case

Theorem

If $S \neq \emptyset$ is the set of satisfying solutions of a k-CNF F, then **PPZ** finds a satisfying assignment with probability at least $\frac{1}{n} \left(\frac{2^n}{|S|}\right)^{(1-1/k)}$

Dense Case

Theorem

If $S \neq \emptyset$ is the set of satisfying solutions of a k-CNF F, then **PPZ** finds a satisfying assignment with probability at least $\frac{1}{n} \left(\frac{2^n}{|S|}\right)^{(1-1/k)}$

Proof Sketch: Use the edge isoperimetric inequality for the hypercube to conclude that among all sets $S \subseteq \{0,1\}^n$ of a given size, the subcube of dimension $\log |S|$ minimizes the number of edges between S and \overline{S} .

• PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at *z*.

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at *z*.
- If there is more than one critical clause per variable we could get a better bound. Let (x₁ ∨ x₂ ∨ x₃) and (x₁ ∨ x₄ ∨ x₅) be critical clauses for x₁ at z = 1ⁿ.

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at *z*.
- If there is more than one critical clause per variable we could get a better bound. Let (x₁ ∨ x₂ ∨ x₃) and (x₁ ∨ x₄ ∨ x₅) be critical clauses for x₁ at z = 1ⁿ.
- The probability that x₁ is the last variable among the variables in one of its critical clauses is now at least 7/15 rather than 1/3.

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at *z*.
- If there is more than one critical clause per variable we could get a better bound. Let $(x_1 \lor \bar{x_2} \lor \bar{x_3})$ and $(x_1 \lor \bar{x_4} \lor \bar{x_5})$ be critical clauses for x_1 at $z = 1^n$.
- The probability that x₁ is the last variable among the variables in one of its critical clauses is now at least 7/15 rather than 1/3.
- In general, even if z is the only solution, there need not be more than one critical clause per variable.

Further Improvements — Resolution

Let F contain the clauses C₁ = (x₁ ∨ x̄₂ ∨ x̄₃), critical for x₁, and C₂ = (x₂ ∨ x̄₄ ∨ x̄₅), critical for x₂.

Further Improvements — Resolution

- Let F contain the clauses $C_1 = (x_1 \lor \bar{x_2} \lor \bar{x_3})$, critical for x_1 , and $C_2 = (x_2 \lor \bar{x_4} \lor \bar{x_5})$, critical for x_2 .
- By resolution, we can derive another critical clause
 (x₁ ∨ x₃ ∨ x₄ ∨ x₅) for x₁. With two critical clauses for x₁, we
 can improve the probability of the occurrence of a unit clause
 for x₁.

Further Improvements — Resolution

- Let *F* contain the clauses $C_1 = (x_1 \lor \bar{x_2} \lor \bar{x_3})$, critical for x_1 , and $C_2 = (x_2 \lor \bar{x_4} \lor \bar{x_5})$, critical for x_2 .
- By resolution, we can derive another critical clause
 (x₁ ∨ x₃ ∨ x₄ ∨ x₅) for x₁. With two critical clauses for x₁, we
 can improve the probability of the occurrence of a unit clause
 for x₁.
- Critical clauses alone will not suffice: instead of C₂, if we have C₃ = (x₂ ∨ x₁ ∨ x₄) as a critical clause for x₂, resolution will not help.

Further Improvements — Resolution

- Let *F* contain the clauses $C_1 = (x_1 \lor \bar{x_2} \lor \bar{x_3})$, critical for x_1 , and $C_2 = (x_2 \lor \bar{x_4} \lor \bar{x_5})$, critical for x_2 .
- By resolution, we can derive another critical clause
 (x₁ ∨ x₃ ∨ x₄ ∨ x₅) for x₁. With two critical clauses for x₁, we
 can improve the probability of the occurrence of a unit clause
 for x₁.
- Critical clauses alone will not suffice: instead of C₂, if we have C₃ = (x₂ ∨ x₁ ∨ x₄) as a critical clause for x₂, resolution will not help.
- In fact, we cannot have any critical clause for x_1 at z without $\bar{x_2}$ in it if 001^{n-2} is also a satisfying solution.

 We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take d = ω_n(1).

- We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take d = ω_n(1).
- If 001^{*n*-2} is not a satisfying solution, there must be another critical clause for *x*₁ at *z*.

- We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take d = ω_n(1).
- If 001^{*n*-2} is not a satisfying solution, there must be another critical clause for *x*₁ at *z*.
- There must be an unsatisfied clause at 001^{n-2} involving the literals x_1 or x_2 . Let $C_4 = (x_1 \lor x_2 \lor \bar{x_4})$ be such a clause. Resolving C_1 and C_4 , we get the critical clause $(x_1 \lor \bar{x_3} \lor \bar{x_4})$ for x_1 at z.

- We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take d = ω_n(1).
- If 001^{*n*-2} is not a satisfying solution, there must be another critical clause for *x*₁ at *z*.
- There must be an unsatisfied clause at 001^{n-2} involving the literals x_1 or x_2 . Let $C_4 = (x_1 \lor x_2 \lor \bar{x_4})$ be such a clause. Resolving C_1 and C_4 , we get the critical clause $(x_1 \lor \bar{x_3} \lor \bar{x_4})$ for x_1 at z.
- We also get another critical clause for x_1 by considering the nonsatisfying assignment $010n^{n-3}$.

PPSZ Algorithm

• A resolvable pair of clauses C_1 and C_2 is s-bounded, if $|C_1|$, $|C_2| \le s$ and $|resolvent(C_1, C_2)| \le s$.

PPSZ Algorithm

- A resolvable pair of clauses C_1 and C_2 is s-bounded, if $|C_1|$, $|C_2| \le s$ and $|resolvent(C_1, C_2)| \le s$.
- *F_s* denote the closure of the *k*-CNF under *s*-bounded resolution.

PPSZ Algorithm

- A resolvable pair of clauses C_1 and C_2 is s-bounded, if $|C_1|$, $|C_2| \le s$ and $|resolvent(C_1, C_2)| \le s$.
- *F*_s denote the closure of the *k*-CNF under *s*-bounded resolution.
- Improved k-SAT algorithm: Apply PPZ algorithm to F_s .

• For a *d*-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.

- For a *d*-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.
- Construct a critical clause tree for this calculation.

- For a *d*-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.
- Construct a critical clause tree for this calculation.
- Cuts of the critical clause tree correspond to critical clauses

- For a *d*-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.
- Construct a critical clause tree for this calculation.
- Cuts of the critical clause tree correspond to critical clauses
- Calculate the probability that a variable occurs after a cut in its critical clause tree using a recurrence relation.

Lemma

Let z be a d-isolated solution of a k-CNF and $s \ge k^d$. P(PPSZ outputs z) $\ge 2^{-(1-\frac{\mu_k}{k-1}+\epsilon(d,k))n}$.

Lemma

Let z be a d-isolated solution of a k-CNF and $s \ge k^d$. P(PPSZ outputs z) $\ge 2^{-(1-\frac{\mu_k}{k-1}+\epsilon(d,k))n}$.

Notes:

() ϵ goes to 0 as *d* goes to infinity.

Lemma

Let z be a d-isolated solution of a k-CNF and $s \ge k^d$. **P**(*PPSZ* outputs z) $\ge 2^{-(1-\frac{\mu_k}{k-1}+\epsilon(d,k))n}$.

Notes:

2

() ϵ goes to 0 as *d* goes to infinity.

$$\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j+1/k)}$$

Lemma

Let z be a d-isolated solution of a k-CNF and $s \ge k^d$. **P**(*PPSZ* outputs z) $\ge 2^{-(1-\frac{\mu_k}{k-1}+\epsilon(d,k))n}$.

Notes:

2

() ϵ goes to 0 as *d* goes to infinity.

$$\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j+1/k)}$$

③ μ_k increases with k and $\mu_{\infty} = \frac{\pi^2}{6} = 1.644 \cdots$

Lemma

Let z be a d-isolated solution of a k-CNF and $s \ge k^d$. **P**(*PPSZ* outputs z) $\ge 2^{-(1-\frac{\mu_k}{k-1}+\epsilon(d,k))n}$.

Notes:

2

() ϵ goes to 0 as *d* goes to infinity.

$$\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j+1/k)}$$

③ μ_k increases with k and $\mu_{\infty} = \frac{\pi^2}{6} = 1.644 \cdots$

• The number of *d*-isolated solutions of a *k*-CNF is at most $2^{(1-\frac{\mu_k}{k-1}+\epsilon(d,k))n}$.

Improved Lower Bounds for Depth-3 Circuits

Theorem

Let *E* be an error-correcting code of minimum distance $d > \log n$ and at least $2^{n-n/\log n}$ code words. If *C* is a $\Sigma \Pi \Sigma_k$ circuit computing the characteristic function of *E*, then *C* has at least $2^{(\frac{\mu_k}{k-1}-o(1))n}$ gates.

Improved Lower Bounds for Depth-3 Circuits

Theorem

Let E be an error-correcting code of minimum distance $d > \log n$ and at least $2^{n-n/\log n}$ code words. If C is a $\Sigma \Pi \Sigma_k$ circuit computing the characteristic function of E, then C has at least $2^{(\frac{\mu_k}{k-1}-o(1))n}$ gates.

Theorem

Let E be an error-correcting code of minimum distance $d > \log n$ and at least $2^{n-\sqrt{n}/\log n}$ code words. If C is a $\Sigma \Pi \Sigma$ circuit computing the characteristic function of E, then C has at least $2^{1.282\sqrt{n}}$ gates.

PPSZ Algorithms for general k-CNF

• If the *k*-CNF *F* has a *d*-isolated solution for $d = \omega_n(1)$, then it can be found in time $2^{n(1-\frac{\mu_k}{k-1}-o(1))}$ with constant success probability.

PPSZ Algorithms for general k-CNF

- If the *k*-CNF *F* has a *d*-isolated solution for $d = \omega_n(1)$, then it can be found in time $2^{n(1-\frac{\mu_k}{k-1}-o(1))}$ with constant success probability.
- For the general case, PPSZ obtains the same bound for k ≥ 5 and slightly weaker bounds for k = 3 and k = 4. The proof is involved.

PPSZ Algorithms for general k-CNF

- If the *k*-CNF *F* has a *d*-isolated solution for $d = \omega_n(1)$, then it can be found in time $2^{n(1-\frac{\mu_k}{k-1}-o(1))}$ with constant success probability.
- For the general case, PPSZ obtains the same bound for k ≥ 5 and slightly weaker bounds for k = 3 and k = 4. The proof is involved.
- Recently, T. Hertli presented a simpler and nicer proof to extend the PPSZ bound from the *d*-isolated case to the general case for all *k*.

How to Prove Stronger Lower Bounds for Depth-3 Circuits

• Let C be a $\Sigma \Pi \Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.

How to Prove Stronger Lower Bounds for Depth-3 Circuits

- Let C be a ΣΠΣ_k circuit of size s computing a balanced function f. Think of as s = 2^{n-o(n)}.
- Goal: to show that a 'low complexity' function *f* requires large *s*.

How to Prove Stronger Lower Bounds for Depth-3 Circuits

- Let C be a $\Sigma \Pi \Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.
- Goal: to show that a 'low complexity' function *f* requires large *s*.
- Let F be a depth-2 subcircuit (k-CNF) such that $|F^{-1}(1)| = \Omega(2^n/s) = \Omega(2^{o(n)}).$

- Let C be a $\Sigma \Pi \Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.
- Goal: to show that a 'low complexity' function *f* requires large *s*.
- Let F be a depth-2 subcircuit (k-CNF) such that $|F^{-1}(1)| = \Omega(2^n/s) = \Omega(2^{o(n)}).$
- Let *d* be the VC-dimension of $F^{-1}(1)$.

 d ≥ log(2ⁿ/s)/log n. Without loss of generality, assume that the set {1,2,...,d} is shattered when you view the elements of F⁻¹(1) as subsets of {1,2,...,n}.

- d ≥ log(2ⁿ/s)/log n. Without loss of generality, assume that the set {1,2,...,d} is shattered when you view the elements of F⁻¹(1) as subsets of {1,2,...,n}.
- Select 2^d inputs from $F^{-1}(1)$ of the form $yp_1(y)p_2(y)\cdots p_{(n-d)}(y)$ for each $y \in \{0,1\}^d$ for some degree $d \ GF(2)$ polynomials p_i in d variables. Call this set D_F .

- d ≥ log(2ⁿ/s)/log n. Without loss of generality, assume that the set {1,2,...,d} is shattered when you view the elements of F⁻¹(1) as subsets of {1,2,...,n}.
- Select 2^d inputs from F⁻¹(1) of the form yp₁(y)p₂(y) · · · p_(n-d)(y) for each y ∈ {0,1}^d for some degree d GF(2) polynomials p_i in d variables. Call this set D_F.
- *F* is constant on D_F . We argue that a random degree-2 GF(2) polynomial is constant on *D* with probability at most $2^{-\Omega(d^2)}$.

How to Prove Stronger Lower Bounds for Depth-3 Circuits

• We then want to argue that there is at least one degree 2 polynomial that is not constant on every D_F .

How to Prove Stronger Lower Bounds for Depth-3 Circuits

- We then want to argue that there is at least one degree 2 polynomial that is not constant on every D_F .
- The problem is that there are too many such sets D_F (about $2^{O(n^k)}$).

Sparsification Lemma

Lemma (Sparsification Lemma, IPZ 1997)

 \exists algorithm $A \forall k \geq 2, \epsilon \in (0, 1], \phi \in k$ -CNF with n variables, $A_{k,\epsilon}(\phi)$ outputs $\phi_1, \ldots, \phi_s \in k$ -CNF in $2^{\epsilon n}$ time such that

- S ≤ 2^{εn}; Sol(φ) = ⋃_i Sol(φ_i), where Sol(φ) is the set of satisfying assignments of φ
- ② $\forall i \in [s]$ each literal occurs ≤ $O(\frac{k}{\epsilon})^{3k}$ times in ϕ_i .

Stronger Lower Bounds for Depth-3 Circuits

Theorem

Almost all degree 2 GF(2) polynomials require $\Omega(2^{n-o(n)})$ size $\Sigma \Pi \Sigma_k$ circuits for $k = o(\log n)$.

Proof Sketch:

Sparsify each of level-2 subcircuits to get an equivalent circuit which is an OR of linear size k-CNF's. The size only goes up by a factor 2^{o(n)}.

Stronger Lower Bounds for Depth-3 Circuits

Theorem

Almost all degree 2 GF(2) polynomials require $\Omega(2^{n-o(n)})$ size $\Sigma \Pi \Sigma_k$ circuits for $k = o(\log n)$.

Proof Sketch:

- Sparsify each of level-2 subcircuits to get an equivalent circuit which is an OR of linear size k-CNF's. The size only goes up by a factor 2^{o(n)}.
- **2** There are only $\binom{O(n^k)}{O(n)} \leq n^{O(n)}$ many linear size *k*-CNFs.

Stronger Lower Bounds for Depth-3 Circuits

Theorem

Almost all degree 2 GF(2) polynomials require $\Omega(2^{n-o(n)})$ size $\Sigma \Pi \Sigma_k$ circuits for $k = o(\log n)$.

Proof Sketch:

- Sparsify each of level-2 subcircuits to get an equivalent circuit which is an OR of linear size k-CNF's. The size only goes up by a factor 2^{o(n)}.
- **2** There are only $\binom{O(n^k)}{O(n)} \leq n^{O(n)}$ many linear size *k*-CNFs.
- **③** We can now complete the previous counting argument.

Lemma (Håstad's Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

P(*Decision tree height of* $F \upharpoonright \rho > t$) $\leq (5pk)^t$

Lemma (Håstad's Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

P(Decision tree height of $F \upharpoonright \rho > t$) $\leq (5pk)^t$

Notes:

• A restriction ρ is a mapping from $\{1, 2, ..., n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable *i* is unset.

Lemma (Håstad's Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

P(Decision tree height of $F \upharpoonright \rho > t$) $\leq (5pk)^t$

- A restriction ρ is a mapping from $\{1, 2, ..., n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable *i* is unset.
- **2** $F \upharpoonright \rho$ is the *k*-CNF obtained by restricting *F* to ρ .

Lemma (Håstad's Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

P(Decision tree height of $F \upharpoonright \rho > t$) $\leq (5pk)^t$

- A restriction ρ is a mapping from $\{1, 2, ..., n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable *i* is unset.
- **2** $F \upharpoonright \rho$ is the *k*-CNF obtained by restricting *F* to ρ .
- Switching Lemma —> strong correlation bounds for approximating parity function by small depth circuits.

Lemma (Håstad's Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

P(Decision tree height of $F \upharpoonright \rho > t$) $\leq (5pk)^t$

- A restriction ρ is a mapping from $\{1, 2, ..., n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable *i* is unset.
- **2** $F \upharpoonright \rho$ is the *k*-CNF obtained by restricting *F* to ρ .
- Switching Lemma —> strong correlation bounds for approximating parity function by small depth circuits.
- Switching Lemma —> a satisfiability algorithm for small depth circuits.

Lemma (Håstad's Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

P(Decision tree height of $F \upharpoonright \rho > t$) $\leq (5pk)^t$

- A restriction ρ is a mapping from $\{1, 2, ..., n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable *i* is unset.
- **2** $F \upharpoonright \rho$ is the *k*-CNF obtained by restricting *F* to ρ .
- Switching Lemma —> strong correlation bounds for approximating parity function by small depth circuits.
- Switching Lemma —> a satisfiability algorithm for small depth circuits.
- Sequires a nontrivial extension of the Switching Lemma

Small Depth Circuits and Satisfiability Algorithm

 An (n, m, d)-circuit is a Boolean circuit on n variables with d alternating layers of AND/OR gates where each layer has at most m = cn gates.

Small Depth Circuits and Satisfiability Algorithm

- An (n, m, d)-circuit is a Boolean circuit on n variables with d alternating layers of AND/OR gates where each layer has at most m = cn gates.
- An (n, m, d, k)-circuit is an (n, m, d)-circuit where each gate at level d (bottom level) has fan-in bounded by k (instead of limiting the number of gates at level d).

Small Depth Circuits and Satisfiability Algorithm

- An (n, m, d)-circuit is a Boolean circuit on n variables with d alternating layers of AND/OR gates where each layer has at most m = cn gates.
- An (n, m, d, k)-circuit is an (n, m, d)-circuit where each gate at level d (bottom level) has fan-in bounded by k (instead of limiting the number of gates at level d).

Theorem (Satisfiability Algorithm for Small Depth Circuits)

There is a Las Vegas algorithm for deciding the satisfiability of an (n, cn, d)-circuit C with expected time at most $poly(n)|C|2^{n(1-\mu_{c,d})}$, where the savings

$$\mu_{c,d} \geq \frac{1}{(O(\log c + d\log d))^{d-1}}$$

• Let f and g be two Boolean functions on n variables. Let $q = \mathbf{P}_{x \in \{0,1\}^n}(f(x) = g(x))$

- Let f and g be two Boolean functions on n variables. Let $q = \mathbf{P}_{x \in \{0,1\}^n}(f(x) = g(x))$
- The correlation between f and g is defined as Cor(f,g) = 2q 1.

- Let f and g be two Boolean functions on n variables. Let $q = \mathbf{P}_{x \in \{0,1\}^n}(f(x) = g(x))$
- The correlation between f and g is defined as Cor(f,g) = 2q 1.
- If *F* is a class of Boolean functions, we define the correlation between *f* and *F* as Cor(*f*, *F*) = maximum correlation between *f* and some function *g* ∈ *F*.

- Let f and g be two Boolean functions on n variables. Let $q = \mathbf{P}_{x \in \{0,1\}^n}(f(x) = g(x))$
- The correlation between f and g is defined as Cor(f,g) = 2q 1.
- If *F* is a class of Boolean functions, we define the correlation between *f* and *F* as Cor(*f*, *F*) = maximum correlation between *f* and some function *g* ∈ *F*.
- If \mathcal{F} is closed under complementation, then $0 \leq Cor(f, \mathcal{F}) \leq 1$.

Correlation Bounds for Small Depth Circuits

Theorem

The correlation of parity with any (n, m, d)-circuit is at most

$$2^{-\mu_{c,d}n} = 2^{-n/(O(\log c + d\log d))^{d-1}}$$

Correlation Bounds for Small Depth Circuits

Theorem

The correlation of parity with any (n, m, d)-circuit is at most

$$2^{-\mu_{c,d}n} = 2^{-n/(O(\log c + d\log d))^{d-1}}$$

For linear size circuits where c and d are constants, the savings μ is constant and the correlation bound 2^{-Θ(n)} is strongly exponential.

Correlation Bounds for Small Depth Circuits

Theorem

The correlation of parity with any (n, m, d)-circuit is at most

$$2^{-\mu_{c,d}n} = 2^{-n/(O(\log c + d\log d))^{d-1}}$$

- For linear size circuits where c and d are constants, the savings μ is constant and the correlation bound 2^{-Θ(n)} is strongly exponential.
- Nontrivial savings and correlation bounds for circuit of size up to 2^{O(n^{1/(d-1)})}.

Further Improvements could be Hard

• If the satisfiability of an (n, m, d)-circuit can be decided in time $2^{n(1-\frac{1}{O(\log m)^{o(d)}})}$, then **NEXP** \subseteq **NC**¹.

Further Improvements could be Hard

• If the satisfiability of an (n, m, d)-circuit can be decided in time $2^{n(1-\frac{1}{O(\log m)^{o(d)}})}$, then **NEXP** \subseteq **NC**¹.

• A set of functions $g_1, \ldots, g_l : \{0, 1\}^n \to \{0, 1\}$ partitions $\{0, 1\}^n$ if $(g_i^{-1}(1))_{1 \le i \le l}$ is a partition of $\{0, 1\}^n$.

- A set of functions $g_1, \ldots, g_l : \{0,1\}^n \to \{0,1\}$ partitions $\{0,1\}^n$ if $(g_i^{-1}(1))_{1 \le i \le l}$ is a partition of $\{0,1\}^n$.
- The *i*'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i .

- A set of functions $g_1, \ldots, g_l : \{0,1\}^n \to \{0,1\}$ partitions $\{0,1\}^n$ if $(g_i^{-1}(1))_{1 \le i \le l}$ is a partition of $\{0,1\}^n$.
- The *i*'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i .
- g_i are of the form G ∧ ρ, where G is k-CNF and ρ a restriction. We denote the region R by (G, ρ).

- A set of functions $g_1, \ldots, g_l : \{0,1\}^n \to \{0,1\}$ partitions $\{0,1\}^n$ if $(g_i^{-1}(1))_{1 \le i \le l}$ is a partition of $\{0,1\}^n$.
- The *i*'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i .
- g_i are of the form G ∧ ρ, where G is k-CNF and ρ a restriction. We denote the region R by (G, ρ).
- Two circuits are equivalent in a region \mathcal{R} if $\mathcal{R} \implies (\mathcal{C} \equiv D)$.

- A set of functions $g_1, \ldots, g_l : \{0,1\}^n \to \{0,1\}$ partitions $\{0,1\}^n$ if $(g_i^{-1}(1))_{1 \le i \le l}$ is a partition of $\{0,1\}^n$.
- The *i*'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i .
- g_i are of the form $G \land \rho$, where G is k-CNF and ρ a restriction. We denote the region \mathcal{R} by (G, ρ) .
- Two circuits are equivalent in a region \mathcal{R} if $\mathcal{R} \implies (\mathcal{C} \equiv D)$.
- A set P = {(R_i = (G_i, ρ_i), C_i)} is a partitioning for a circuit C if R_i partition {0,1}ⁿ and C_i is equivalent to C in region R_i for all i.

Canonical Decision Tree

• *height*(*T*) of a decision tree *T* is the length of the longest path.

Canonical Decision Tree

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:

Canonical Decision Tree

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:
 - Fix an ordering of clauses in F

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:
 - Fix an ordering of clauses in F
 - If a clause is empty, return 0

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:
 - Fix an ordering of clauses in F
 - If a clause is empty, return 0
 - If there are no clauses, return 1

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:
 - Fix an ordering of clauses in F
 - If a clause is empty, return 0
 - If there are no clauses, return 1
 - Let C be the first clause. Query the variables in C in order

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:
 - Fix an ordering of clauses in F
 - If a clause is empty, return 0
 - If there are no clauses, return 1
 - Let C be the first clause. Query the variables in C in order
 - Sestrict *F* based on the query results and recurse.

- *height*(*T*) of a decision tree *T* is the length of the longest path.
- Canonical decision tree tree(F) for a CNF F is as follows:
 - Fix an ordering of clauses in F
 - If a clause is empty, return 0
 - If there are no clauses, return 1
 - Let C be the first clause. Query the variables in C in order
 - Sestrict *F* based on the query results and recurse.

Canonical decision tree tree(Φ) for a sequence of (F₁,..., F_l) of CNF's is as follows:

- Canonical decision tree tree(Φ) for a sequence of (F₁,..., F_l) of CNF's is as follows:
 - First construct the canonical decision tree for F_1 .

- Canonical decision tree tree(Φ) for a sequence of (F₁,..., F_l) of CNF's is as follows:
 - First construct the canonical decision tree for F_1 .
 - 2 Along each path, restrict F_2, \ldots, F_l by the results of queries and recurse.

- Canonical decision tree tree(Φ) for a sequence of (F₁,..., F_l) of CNF's is as follows:
 - First construct the canonical decision tree for F_1 .
 - 3 Along each path, restrict F_2, \ldots, F_l by the results of queries and recurse.
 - Solution Label the leaves with the tuples of the leaves from each of the trees.

- Canonical decision tree tree(Φ) for a sequence of (F₁,..., F_l) of CNF's is as follows:
 - First construct the canonical decision tree for F_1 .
 - 2 Along each path, restrict F_2, \ldots, F_l by the results of queries and recurse.
 - Solution Label the leaves with the tuples of the leaves from each of the trees.
- We say that a clause contributes variables to a path if any variable in the clause are queried when the clause gets its turn.

Extended Switching Lemma

Lemma (Extended Switching Lemma)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-CNF's (or k-DNF's) on n variables. For $p \le 1/13$, let ρ be a random restriction that leaves pn variables unset. The probability that the decision tree for Φ has a path of length > t where each F_i contributes at least one node to the path is at most $(13pk)^t$.

Switching Algorithm

Lemma (Switching Algorithm)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-DNF's on n variables. There exits a randomized algorithm which takes Φ as input and outputs a partitioning $\mathcal{P} = \{(\mathcal{R}_i, C_i)\}_{1 \le i \le s}$ for Φ such that C_i are k-CNF's in at most n/100k variables, and with high probability

Switching Algorithm

Lemma (Switching Algorithm)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-DNF's on n variables. There exits a randomized algorithm which takes Φ as input and outputs a partitioning $\mathcal{P} = \{(\mathcal{R}_i, C_i)\}_{1 \le i \le s}$ for Φ such that C_i are k-CNF's in at most n/100k variables, and with high probability $s \le \frac{2n}{100k}2^{n-\frac{n}{100k}+3^{-k}m}$

Switching Algorithm

Lemma (Switching Algorithm)

Let $\Phi = (F_1, ..., F_m)$ be a sequence of k-DNF's on n variables. There exits a randomized algorithm which takes Φ as input and outputs a partitioning $\mathcal{P} = \{(\mathcal{R}_i, C_i)\}_{1 \le i \le s}$ for Φ such that C_i are k-CNF's in at most n/100k variables, and with high probability $s \le \frac{2n}{100k}2^{n-\frac{n}{100k}+3^{-k}m}$

2 the algorithm runs in time at most $poly(n)size(\Phi)s$.

Algorithm for Depth-3 Circuits

• Satisfiability Algorithm for (n, m = cn, 3)-circuits (AND-OR-AND) running in time $2^{n(1-\frac{1}{O(\log c)^2})}$.

- Satisfiability Algorithm for (n, m = cn, 3)-circuits (AND-OR-AND) running in time $2^{n(1-\frac{1}{O(\log c)^2})}$.
- Reduce the (n, m, 3)-circuit to a small family of (n, m, 3, k)-circuits C where k = O(log c). Overhead is minimal.

- Satisfiability Algorithm for (n, m = cn, 3)-circuits (AND-OR-AND) running in time $2^{n(1-\frac{1}{O(\log c)^2})}$.
- Reduce the (n, m, 3)-circuit to a small family of (n, m, 3, k)-circuits C where k = O(log c). Overhead is minimal.
- Apply the Switching Algorithm to the family of
 Φ = (F₁,..., F_m) k-DNF's to obtain a partitioning into about
 2^{n(1-1/100k)} regions where Φ is equivalent to a sequence of
 k-CNF's in at most n/100k variables and each region is
 defined by a k-CNF in the same set of variables.

- Satisfiability Algorithm for (n, m = cn, 3)-circuits (AND-OR-AND) running in time $2^{n(1-\frac{1}{O(\log c)^2})}$.
- Reduce the (n, m, 3)-circuit to a small family of (n, m, 3, k)-circuits C where k = O(log c). Overhead is minimal.
- Apply the Switching Algorithm to the family of $\Phi = (F_1, \ldots, F_m) \ k$ -DNF's to obtain a partitioning into about $2^{n(1-\frac{1}{100k})}$ regions where Φ is equivalent to a sequence of k-CNF's in at most n/100k variables and each region is defined by a k-CNF in the same set of variables.
- For each region, collapse the levels to obtain a single *k*-CNF and take the conjunction with the defining *k*-CNF of the region.

- Satisfiability Algorithm for (n, m = cn, 3)-circuits (AND-OR-AND) running in time $2^{n(1-\frac{1}{O(\log c)^2})}$.
- Reduce the (n, m, 3)-circuit to a small family of (n, m, 3, k)-circuits C where k = O(log c). Overhead is minimal.
- Apply the Switching Algorithm to the family of
 Φ = (F₁,..., F_m) k-DNF's to obtain a partitioning into about
 2^{n(1-1/100k)} regions where Φ is equivalent to a sequence of
 k-CNF's in at most n/100k variables and each region is
 defined by a k-CNF in the same set of variables.
- For each region, collapse the levels to obtain a single *k*-CNF and take the conjunction with the defining *k*-CNF of the region.
- Apply a k-SAT algorithm to each k-CNF.

Thank You