
Algorithms and Lower Bounds:

Some Basic Connections
Lecture 2: Circuit Complexity and

Connections

Ryan Williams
Stanford University

Outline

• Circuit Analysis Algorithms (Last Time)

“Algorithms for Circuits”

• Circuit Complexity (Today)

• Connections

• NEXP not in ACC

Circuit Complexity of Infinite Languages

Allow a distinct logical circuit A� to run on inputs of length �

… … … …

P/poly = Class of problems solvable with a circuit family {A�}

such that ∃�	 � 1 ∀� , the size of A� is at most �k

A1 A10 A100 A1000
A10000

In this model, programs have infinite-length descriptions

{
� | the �th Turing machine halts on blank tape} ∈ P/poly

The usual techniques of computability theory are

essentially powerless for understanding P/poly

“Circuits for Algorithms”

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

Most Boolean functions require huge circuits!

Theorem [Shannon ‘49] W.h.p., a randomly chosen function
f : {0,1}n →→→→ {0,1} requires a circuit of size at least 2n/n

The key obstacle: Non-uniformity can be very powerful!

What “uniform” algorithms can be simulated in P/poly?

Can huge uniform classes (like PSPACE, EXP, NEXP)

be simulated with small non-uniform classes (like P/poly)?

“Circuits for Algorithms”

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

Most Boolean functions require huge circuits!

Theorem [Shannon ‘49] W.h.p., a randomly chosen function
f : {0,1}n →→→→ {0,1} requires a circuit of size at least 2n/n

OPEN PROBLEM: Is NEXP ⊂⊂⊂⊂ P/poly?

Can all problems with exponentially long solutions

be solved with polynomial size circuit families?

Given “infinite” preprocessing time,

can one construct small-size circuits solving NEXP problems?

What “uniform” algorithms can be simulated in P/poly?

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

In other words, the SAT problem cannot be in P/poly

Conjecture: NP ⊄⊄⊄⊄ P/poly

The proof of this would be a first step to concrete numerical

tradeoffs between sizes of inputs and sizes of computations.

What “uniform” algorithms can be simulated in P/poly?

“Circuits for Algorithms”

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

Kolmogorov’s Hypothesis:

P has O(n)-size circuits

This would be remarkable…

In fact, if this could be proved true,

then a proof of P ≠ NP would follow!

(If P=NP then P does not have O(n)-size circuits.)

What “uniform” algorithms can be simulated in P/poly?

“Circuits for Algorithms”

“Circuits for Algorithms”
The “circuits for algorithms” questions have interesting

consequences, regardless of how they’re resolved.

[Karp-Lipton-Meyer ‘80] EXP⊂⊂⊂⊂ P/poly ⇒⇒⇒⇒ P ≠≠≠≠ NP

Folklore Theorem

If every problem in 2O(n) time has circuits smaller than 1.99n size

for infinitely many input lengths, then P ≠≠≠≠ NP

[BFNW ’90] EXP ⊄⊄⊄⊄ P/poly ⇒⇒⇒⇒ Pseudorandom generators

Theorem [Impagliazzo-Wigderson ‘97]

If some problem in 2O(n) time needs circuits larger than 1.99n

for almost all input lengths, then P = BPP

Theorem [IKW ’01] NEXP ⊄⊄⊄⊄ P/poly ⇒⇒⇒⇒

Can simulate MA in NSUBEXP

Outline

• Circuit Analysis Algorithms (Last Time)

“Algorithms for Circuits”

• Circuit Complexity (Today)

• Connections

• NEXP not in ACC

Connections

Algorithms for Circuits (Circuit Analysis):

Designing faster circuit-analysis algorithms

Circuits for Algorithms (Circuit Complexity):

Designing small circuits to simulate complex algorithms

Can we use one of these tasks to inform the other task?

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

[Karp-Lipton-Meyer ‘80]

Suppose we had extremely efficient circuit-analysis algorithms.

Then we could prove that there are problems

solvable by an algorithm in 2n time that are not in P/poly

P = NP ⇒⇒⇒⇒ There are problems in EXP

(Circuit SAT in P) which are not in P/poly

(Circuit Minimization in P)

This is an interesting conditional statement, but it has limited

utility, since we do not believe the hypothesis is true!

[Kabanets-Cai ’00]

Studied consequences of MCSP in P

Input: Truth table of a Boolean function f, parameter s

Question: Does f have a circuit of size at most s?

If MCSP is in P, then

1. EXPNP requires maximum circuit complexity

(new circuit lower bounds)

2. BPP = ZPP

3. Discrete Log, Factoring, Graph Iso [AD’14] are in BPP

4. No strong pseudorandom functions (or PRGs)

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

The Natural Proofs Barrier [Razborov-Rudich ‘94]

Suppose while proving a circuit lower bound,

you construct a polytime algorithm that can:

distinguish many functions not computable with the circuits

from all “easy” functions that are computable with the circuits

(MCSP is “kind of” in P)

Then these circuits are too weak to support pseudorandom fns.

If we believe it’s possible to prove lower bounds which are

strong enough for crypto, then we must also believe that

“natural proofs” cannot establish results like P ≠ NP

Unfortunately, most known arguments for

strong circuit lower bounds can be “naturalized”

[Kabanets-Impagliazzo ‘04] Arithmetic complexity

Arithmetic formulae: Analogous to Boolean formulae, except

operations are + and * over ℤ instead of OR and AND over {0,1}

Polynomial Identity Testing (PIT): Given two arithmetic formulas

F and G, do F and G represent the same polynomial?

Examples: (x + y)2 = x2 + y2 + 2xy

(x2 + a2)·(y2 + b2) = (x·y – a·b)2 + (x·b + a·y)2

There are efficient randomized algorithms for PIT, but no

efficient deterministic algorithms are known

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

[Kabanets-Impagliazzo ‘04] Arithmetic complexity

Polynomial Identity Testing (PIT): Given two arithmetic formulas

F and G, do F and G represent the same polynomial?

Theorem [KI’04]

Deterministic efficient algorithms for Polynomial Identity Testing

⇒ ⇒ ⇒ ⇒ Arithmetic Formula Size Lower Bounds!

(NEXP not in P/poly, or the Permanent does not have

arithmetic formulas of polynomial size)

Efficient algorithms for analyzing arithmetic formulas

imply

limits on representing explicit polynomials with small formulas!

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

x1 Size =nc

xn

SAT and Lower Bounds [W’10,’11,’13]

A slightly faster algorithm for CCCC-SAT

⇒ Lower bounds against CCCC circuits

O(2n /n10)

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size =nc

xn

Faster Algorithms Lower Bounds

Faster “Algorithms for Circuits”

An algorithm for:

• Circuit SAT in O(2n/n10)

(n inputs and nk gates)

• Formula SAT in O(2n/n10)

• ACC SAT in O(2n/n10)

• Given a circuit C that’s either
UNSAT, or has ≥ 2n-1 satisfying

assignments, determine which,

in O(2n/n10) time

(A Promise-BPP problem)

No “Circuits for Algorithms”

Would imply:

• NEXP ⊄⊄⊄⊄ P/poly

• NEXP ⊄⊄⊄⊄ (non-uniform) NC1

• NEXP ⊄⊄⊄⊄ ACC

NEXP ⊄⊄⊄⊄ P/poly

