
Algorithms and Lower Bounds:

Some Basic Connections

Lecture 1: Circuit Analysis

Ryan Williams
Stanford University

A “conventional” view

of algorithms and complexity

• Algorithm designers

• Complexity theorists

• What makes some problems easy to solve?
When can we find an efficient algorithm?

• What makes other problems difficult?
When can we prove that a problem is not easy?

(When can we prove a lower bound on
the resources needed to solve a problem?)

The tasks of the algorithm designer and the complexity

theorist appear to be inherently opposite ones.

• Algorithm designers

• Complexity theorists

Furthermore, it is generally believed that
lower bounds are “harder” than algorithm design

• In algorithm design, we “only” have to find a single
clever algorithm that solves a problem well

• In lower bounds, we must reason about all possible
algorithms, and argue that none of them work well

This belief is strongly reflected in the literature

“Duality” Between Circuit Analysis

Algorithms and Circuit Lower Bounds

Thesis: Algorithm design can be as hard as

proving lower bounds.

There are deep connections between the two…

so deep that they are often the “same”

A typical theorem from Algorithm Design:

“Here is an algorithm A that solves my problem,

on all possible instances of the problem"

A typical theorem from Lower Bounds:

“Here is a proof P that my problem cannot be solved,

on all possible algorithms from some class"

“Duality” Between Circuit Analysis

Algorithms and Circuit Lower Bounds

Thesis: Algorithm design can be as hard as

proving lower bounds.

“Nontrivial”

Circuit Analysis Algorithm
Circuit Lower Bounds!

SAT? YES/NO

function f

Outline of the Lectures

• Circuit Analysis (Algorithms)

• Circuit Complexity (Lower Bounds)

• Connections

• NEXP not in ACC

Circuit Analysis problems are often computational problems on
circuits given as input:

Input: A logical circuit C =

Output: Some property of the function computed by C

Canonical Example: Circuit Satisfiability Problem (Circuit SAT)

Input: Logical circuit C

Decide: Is the function computed by C the “all-zeroes” function?

Of course, Circuit SAT is NP-complete

But we can still ask if there are any algorithms solving Circuit SAT
that are faster than the obvious “brute-force” algorithm which
tries all �� input settings to the � inputs of the circuit.

Circuit Analysis Problems

Generic Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {CNF formulas}

C-SAT is NP-complete, for essentially all interesting C

C-SAT is solvable in O(2n |K|) time

where |K| is the size of the circuit K

The C-SAT Problem:

Given a circuit K(x1,…,xn) ∈ C, is there an assignment

(a1, …, an) ∈ {0,1}n such that K(a1,…,an) =1 ?

Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• 3-SAT 1.308n

• 4-SAT 1.469n

• k-SAT

2n - n/O(k) time algorithms

[many authors …, Hertli ‘11]

All known cn time algorithms for k-SAT have the property that,

as k � ∞, the constant c � 2

∧

∨ ∨ ∨
∨

�� �� … �� �� �� … ��

Strong ETH: ∀� < �, ∃� ≥ � s.t. �-SAT requires ��� time

ETH: ∃� > � s.t. �-SAT requires ��� time

Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• AC0-SAT Constant-depth AND/OR/NOT

[IMP ‘12] AC0-SAT in 2n - n/(c log s)d-1
time where d = depth

s = size

AND

OROR

AND AND

�� �� �� �� �� �� �� �� �� �� �� ��

Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• ACC-SAT Constant-depth AND/OR/NOT/MODm

MOD6(��, … , ��) = 1 iff ∑ ��� is divisible by 6

[W ‘11] ACC-SAT in 2n – ne
time for circuits of size 2no(1)

where e < 1 depends on d and m

MOD6

ORMOD6

AND MOD6

�� �� �� �� �� �� �� �� �� �� �� ��

Ingredients for Solving ACC SAT

1. A known representation of ACC
[Yao ’90, Beigel-Tarui’94] Every f : {0,1}n→ {0,1} with

an ACC circuit of size s can be expressed in the form

f(x1,...,xn) = g(h(x1,...,xn))

- h is a multilinear polynomial with K monomials,
h(x1,...,xn) ∈ {0,…,K} for all (x1,...,xn) ∈ {0,1}n

- K = spoly(log s)

- g : {0,...,K} → {0,1} can be an arbitrary function

2. “Fast Fourier Transform” for multilinear polynomials:

Given a multilinear polynomial h in its coefficient

representation, the value h(x) can be computed over
all points x ∈ {0,1}n in 2n poly(n) time.

1. Polynomials Representing ACC

Very special cases:

1. Writing OR(x1, …, xn) as a g of h:

g(y) = 1 iff y > 0, h = x1 + … + xn

2. Writing AND(x1, …, xn) as a g of h

g(y) = 1 iff y = n, h = x1 + … + xn

3. Writing MODm(x1, …, xn) as a g of h…

1. Polynomials Representing ACC

A less special case:

Theorem [Razborov-Smolensky’87] For every AC0 circuit �

with � inputs, size �, and depth �, there is an efficiently

samplable distribution �(C) of polynomials of degree

log � " � over #� such that

For all � ∈ �, � �, Pr
& ~ �(�)

* � = � � > ¾.

In fact can use a “small” number S of polynomials (S = npoly(log s))

Can take MAJORITY value of all S different polynomials over #�.

Can write the “MAJORITY of XORs” as a symmetric Boolean

function. This yields the g of h’s. [Yao, Toda, Beigel-Tarui]

1. Reducing AC0[⊕] to polynomials

Theorem [Razborov-Smolensky’87] For every AC0[⊕] circuit �

with � inputs, size �, and depth �, there is an efficiently samplable

distribution �(C) of polynomials of degree log � " � over #� such

that

For all � ∈ �, � �, Pr
& ~ �(�)

* � = � � > ¾.

Proof Idea: Induction on the depth �.

NOT gate: -". �� = � + ��

XOR gate: 0"1 ��, … , �� = ∑ ��� 23� �.

OR gate: For all � ∈ �, � �, observe that

Pr
4 ∈ �,� �

"1 ��, … , �� = ∑ 4���� 23� � ≥ ½

Pick 1 ∈ #�
� ×� at random, where � = error parameter

For all � ∈ �, � �,

Pr
1

"1 ��, … , �� = 1 + ∏ � + ∑ R9,�: ��; mod 2 ≥ 1-
�

��

This is a degree-� polynomial simulating OR with error < 1/��.

2. Fast Multipoint Evaluation

Theorem: Given the 2n coefficients of a multilinear

polynomial h in n variables, the value h(x) can be
computed on all points x ∈ {0,1}n in 2n poly(n) time.

Can write h(x1, … , xn) = x1 h1(x2, …, xn) + h2(x2, …, xn)

Want a 2n table T that contains the value of h on all 2n points.

Algorithm: If n = 1 then return T = [h(0), h(1)]

Recursively compute the 2n-1 table T1 for the values of h1,

and the 2n-1 table T2 for the values of h2

Return the table T = (T2)(T1 + T2) of 2n entries

Running time has the recurrence R(2n) ≤ 2 R(2n-1) + 2n poly(n)

Corollary: We can compute g of h on all x ∈ {0,1}n

in only 2n poly(n) time

ACC Satisfiability Algorithm

Theorem For all d, m there’s an ε > 0 such that ACC[m] SAT

with depth d, n inputs, 2nε
size can be solved in 2n - Ω(nε) time

Proof:

n inputs

K = 2nO(ε)

size

n-nε inputs

C

Size
2nε

g

…

Take an OR of all assignments

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

Fast Fourier Transform
For small ε > 0, evaluate h

on all 2n - nε
assignments in

2n -nε
poly(n) time

n-nε inputs

22nε
size

h

Fast Multipoint Circuit Evaluation

Circuit SAT algorithms
Theorem If we can evaluate a circuit of size s on all 2n inputs in

2n poly(n) + poly(s) time, then Circuit-SAT is in o(2n) time

Proof:

n inputs

C

Size
2nε

Take an OR of all assignments

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

For small ε > 0, can evaluate on all

2n - nε
assignments in

2n -nε
poly(n) + poly(22nε

) time

n-nε inputs

22nε
size

Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• ACC-THR-SAT Constant-depth AND/OR/NOT/MODm

with a layer of linear threshold fns at the bottom

[W ‘14] ACC-THR-SAT is in 2n – ne
time for circuits of size 2no(1)

MOD6

AND

OR

LTF LTF LTF LTF

MOD6

[IPS’13] THR-THR-SAT in 2n(1 – e) time for circuits with O(n) wires

Circuit SAT Algorithms

• DeMorgan-Formula-SAT

Formulas over AND/OR/NOT, each gate has fan-in at most 2

[Santhanam ’10, CKKSZ ’14]

DM-Formula-SAT is in 2n-ne
time for formulas of size < n2.99

• Formulas over AND/OR/NOT/XOR with fan-in two

[Seto-Tamaki ’12, CKKSZ ’14]

Formula-SAT is in 2n-ne
time for formulas of size < n1.99

• Circuit-SAT Generic circuits over AND/OR/NOT, fan-in 2

OPEN: Can we improve on O(2n s) time ??

Let C be a class of Boolean circuits

Related to Pseudorandom Generators and Derandomization

[AW’85, Nisan’91, TX’13] AC0-CAPP is in @"A(BCD�E��) time

(n = inputs, s = size, d = depth)

[GMR’12] CNF-CAPP is in ~ @"(BCD BCD �) time for poly(n) clauses

[IMZ’12] DM-Formula-CAPP: 2ne
time for formulas of size < n2.99

Formula-CAPP: 2ne
time for formulas of size < n1.99

Uses old techniques from lower bounds!

Circuit Approximation Probability Problem

C-CAPP:

Given a circuit K(x1,…,xn) ∈ C, output v such that

|v – Pr
F

[K(x) = 1]| < 1/10

Circuit Analysis problems can also analyze functions directly:

Canonical Example:

Minimum Circuit Size Problem (MCSP) [Yablonski ’59, KC’00]

Input: 2n-bit truth table of f : {0,1}n � {0,1}, s ∈ {1,…,2n},

Decide: Is the minimum size of a circuit computing f at most �?

(Note: MCSP is in NP)

It is widely conjectured that MCSP is not in P

If in P: Would contradict conventional wisdom in cryptography

Known: [Masek’79, AHMPS’08] DNF Minimization is NP-complete

(uses lower bounds on DNF!)

Is the MCSP problem NP-complete? [MW’15]

Open: Find any improvement over exhaustive search

Circuit Analysis Problems

Circuit Minimization (MCSP) [Yablonski ’59, KC’00]

Input: Truth table of a Boolean function f, parameter �

Decide: Is the minimum size of a circuit computing f at most �?

[ABKvMR ’06] Factoring is in ZPPCircuit Min

[ABKvMR ’06] Discrete Log is in BPPCircuit Min

[Allender-Das ’14] Graph Iso is in RPCircuit Min

Some open problems:

- Find interesting problems in PMCSP

- In PMCSP can we produce a min-size circuit, given a truth table?

- How hard is MCSP for AC0 circuits?

Circuit Analysis Problems

Exponential Time Algorithms

This topic of “Algorithms for Circuits” is one tiny

part of the growing area of

Exact algorithms for NP-hard problems

This is a very active research area

with many cool open problems.

Outline of the Lectures

• Circuit Analysis (Algorithms)

• Circuit Complexity (Lower Bounds)

• Connections

• NEXP not in ACC

End of Lecture 1

