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A “conventional” view 

of algorithms and complexity

• Algorithm designers

• Complexity theorists

• What makes some problems easy to solve? 
When can we find an efficient algorithm?

• What makes other problems difficult?
When can we prove that a problem is not easy?

(When can we prove a lower bound on
the resources needed to solve a problem?)



The tasks of the algorithm designer and the complexity 

theorist appear to be inherently opposite ones.

• Algorithm designers

• Complexity theorists

Furthermore, it is generally believed that 
lower bounds are “harder” than algorithm design

• In algorithm design, we “only” have to find a single 
clever algorithm that solves a problem well

• In lower bounds, we must reason about all possible
algorithms, and argue that none of them work well

This belief is strongly reflected in the literature



“Duality” Between Circuit Analysis 

Algorithms and Circuit Lower Bounds

Thesis:  Algorithm design can be as hard as

proving lower bounds. 

There are deep connections between the two…

so deep that they are often the “same”

A typical theorem from Algorithm Design:

“Here is an algorithm A that solves my problem, 

on all possible instances of the problem"

A typical theorem from Lower Bounds:

“Here is a proof P that my problem cannot be solved, 

on all possible algorithms from some class"



“Duality” Between Circuit Analysis 

Algorithms and Circuit Lower Bounds

Thesis:  Algorithm design can be as hard as

proving lower bounds. 

“Nontrivial”

Circuit Analysis Algorithm
Circuit Lower Bounds!

SAT? YES/NO

function f



Outline of the Lectures

• Circuit Analysis (Algorithms)

• Circuit Complexity (Lower Bounds)

• Connections

• NEXP not in ACC



Circuit Analysis problems are often computational problems on
circuits given as input:

Input: A logical circuit C =

Output: Some property of the function computed by C

Canonical Example: Circuit Satisfiability Problem (Circuit SAT)

Input: Logical circuit C

Decide: Is the function computed by C the “all-zeroes” function? 

Of course, Circuit SAT is NP-complete

But we can still ask if there are any algorithms solving Circuit SAT 
that are faster than the obvious “brute-force” algorithm which 
tries all �� input settings to the � inputs of the circuit.

Circuit Analysis Problems



Generic Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {CNF formulas}

C-SAT is NP-complete, for essentially all interesting C

C-SAT is solvable in O(2n |K|) time

where |K| is the size of the circuit K

The C-SAT Problem:

Given a circuit  K(x1,…,xn) ∈ C, is there an assignment

(a1, …, an) ∈ {0,1}n such that  K(a1,…,an) =1 ?



Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• 3-SAT 1.308n

• 4-SAT 1.469n

• k-SAT

2n - n/O(k)  time algorithms

[many authors …, Hertli ‘11]

All known cn time algorithms for k-SAT have the property that,

as k � ∞, the constant c � 2

∧
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Strong ETH: ∀� < �, ∃� ≥ � s.t. �-SAT requires ��� time

ETH: ∃� > � s.t. �-SAT requires ��� time



Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• AC0-SAT Constant-depth AND/OR/NOT

[IMP ‘12]  AC0-SAT  in 2n - n/(c log s)d-1
time where d = depth

s = size

AND

OROR

AND AND

��    �� �� �� �� �� �� �� �� �� �� ��



Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• ACC-SAT Constant-depth AND/OR/NOT/MODm

MOD6(��, … , ��) = 1   iff ∑ ��� is divisible by 6

[W ‘11]  ACC-SAT  in 2n – ne
time for circuits of size 2no(1)

where e < 1 depends on d and m

MOD6

ORMOD6

AND MOD6

��    �� �� �� �� �� �� �� �� �� �� ��



Ingredients for Solving ACC SAT

1. A known representation of ACC
[Yao ’90, Beigel-Tarui’94] Every f : {0,1}n→ {0,1} with 

an ACC circuit of size s can be expressed in the form  

f(x1,...,xn) = g(h(x1,...,xn))

- h is a multilinear polynomial with K monomials,  
h(x1,...,xn) ∈ {0,…,K}  for all (x1,...,xn) ∈ {0,1}n

- K = spoly(log s)

- g : {0,...,K}  → {0,1} can be an arbitrary function

2. “Fast Fourier Transform” for multilinear polynomials: 

Given a multilinear polynomial h in its coefficient 

representation, the value h(x) can be computed over 
all points x ∈ {0,1}n in 2n poly(n) time.



1. Polynomials Representing ACC

Very special cases:

1. Writing OR(x1, …, xn) as a g of h: 

g(y) = 1 iff y > 0,  h = x1 + … + xn

2. Writing AND(x1, …, xn) as a g of h

g(y) = 1 iff y = n,  h = x1 + … + xn

3. Writing MODm(x1, …, xn) as a g of h…



1. Polynomials Representing ACC

A less special case:

Theorem [Razborov-Smolensky’87]  For every AC0 circuit �

with � inputs, size �, and depth �, there is an efficiently 

samplable distribution �(C) of polynomials of degree 

log � " � over #� such that

For all � ∈ �, � �,  Pr
& ~ �(�)

* � =  � � > ¾.

In fact can use a “small” number S of polynomials (S = npoly(log s))

Can take MAJORITY value of all S different polynomials over #�. 

Can write the “MAJORITY of XORs” as a symmetric Boolean 

function. This yields the g of h’s. [Yao, Toda, Beigel-Tarui]



1. Reducing AC0[⊕] to polynomials

Theorem [Razborov-Smolensky’87]  For every AC0[⊕] circuit �

with � inputs, size �, and depth �, there is an efficiently samplable

distribution �(C) of polynomials of degree log � " � over #� such 

that

For all � ∈ �, � �,  Pr
& ~ �(�)

* � =  � � > ¾.

Proof Idea: Induction on the depth �.

NOT gate: -". �� =  � +  ��

XOR gate: 0"1 ��, … , �� = ∑ ��� 23� �.

OR gate: For all � ∈ �, � �, observe that

Pr
4 ∈ �,� �

"1 ��, … , �� =  ∑ 4���� 23� � ≥ ½ 

Pick 1 ∈ #�
� ×� at random, where � = error parameter

For all � ∈ �, � �,

Pr
1

"1 ��, … , �� = 1 + ∏ � + ∑ R9,�: ��; mod 2 ≥ 1-
�

��

This is a degree-� polynomial simulating OR with error < 1/��.



2. Fast Multipoint Evaluation

Theorem: Given the 2n coefficients of a multilinear

polynomial h in n variables, the value h(x) can be 
computed on all points x ∈ {0,1}n in 2n poly(n) time.

Can write  h(x1, … , xn) = x1 h1(x2, …, xn) + h2(x2, …, xn)

Want a 2n table T that contains the value of h on all 2n points.

Algorithm:  If n = 1 then return T = [h(0), h(1)]

Recursively compute the 2n-1 table T1 for the values of h1, 

and the 2n-1 table T2 for the values of h2

Return the table T = (T2)(T1 + T2) of 2n entries  

Running time has the recurrence R(2n) ≤ 2 R(2n-1)  +  2n poly(n)

Corollary: We can compute g of h on all x ∈ {0,1}n 

in only 2n poly(n) time



ACC Satisfiability Algorithm

Theorem For all d, m there’s an ε > 0 such that ACC[m]  SAT 

with depth d, n inputs, 2nε
size can be solved in 2n - Ω(nε)  time

Proof:

n inputs

K = 2nO(ε) 

size

n-nε inputs

C

Size 
2nε

g

…

Take an OR of all assignments 

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

Fast Fourier Transform
For small ε > 0, evaluate h 

on all 2n - nε
assignments in 

2n -nε
poly(n)  time

n-nε inputs

22nε
size

h



Fast Multipoint Circuit Evaluation 

Circuit SAT algorithms
Theorem If we can evaluate a circuit of size s on all 2n inputs in 

2n poly(n) + poly(s) time, then Circuit-SAT is in o(2n) time

Proof:

n inputs

C

Size 
2nε

Take an OR of all assignments 

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

For small ε > 0, can evaluate on all 

2n - nε
assignments in  

2n -nε
poly(n) + poly(22nε

) time

n-nε inputs

22nε
size



Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

• ACC-THR-SAT     Constant-depth AND/OR/NOT/MODm

with a layer of linear threshold fns at the bottom

[W ‘14]  ACC-THR-SAT  is in 2n – ne
time for circuits of size 2no(1)

MOD6

AND

OR

LTF LTF LTF LTF

MOD6

[IPS’13] THR-THR-SAT  in 2n(1 – e) time for circuits with O(n) wires



Circuit SAT Algorithms

• DeMorgan-Formula-SAT     

Formulas over AND/OR/NOT, each gate has fan-in at most 2 

[Santhanam ’10, CKKSZ ’14] 

DM-Formula-SAT  is in 2n-ne 
time for formulas of size < n2.99

• Formulas over AND/OR/NOT/XOR with fan-in two

[Seto-Tamaki ’12, CKKSZ ’14]  

Formula-SAT  is in 2n-ne 
time for formulas of size < n1.99

• Circuit-SAT Generic circuits over AND/OR/NOT, fan-in 2

OPEN: Can we improve on O(2n s) time ??



Let C be a class of Boolean circuits

Related to Pseudorandom Generators and Derandomization

[AW’85, Nisan’91, TX’13] AC0-CAPP is in @"A(BCD�E��) time

(n = inputs, s = size, d = depth)

[GMR’12] CNF-CAPP is in ~ @"(BCD BCD �) time for poly(n) clauses

[IMZ’12] DM-Formula-CAPP: 2ne  
time for formulas of size < n2.99

Formula-CAPP: 2ne  
time for formulas of size < n1.99

Uses old techniques from lower bounds!

Circuit Approximation Probability Problem 

C-CAPP:

Given a circuit  K(x1,…,xn) ∈ C, output v such that 

|v – Pr
F

[K(x) = 1]| < 1/10



Circuit Analysis problems can also analyze functions directly:

Canonical Example: 

Minimum Circuit Size Problem (MCSP) [Yablonski ’59, KC’00]

Input: 2n-bit truth table of f : {0,1}n � {0,1}, s ∈ {1,…,2n},

Decide: Is the minimum size of a circuit computing f at most �?

(Note: MCSP is in NP)

It is widely conjectured that MCSP is not in P

If in P: Would contradict conventional wisdom in cryptography

Known: [Masek’79, AHMPS’08] DNF Minimization is NP-complete 

(uses lower bounds on DNF!)

Is the MCSP problem NP-complete? [MW’15]

Open: Find any improvement over exhaustive search

Circuit Analysis Problems



Circuit Minimization (MCSP) [Yablonski ’59, KC’00]

Input: Truth table of a Boolean function f, parameter �

Decide: Is the minimum size of a circuit computing f at most �?

[ABKvMR ’06] Factoring is in ZPPCircuit Min

[ABKvMR ’06] Discrete Log is in BPPCircuit Min

[Allender-Das ’14] Graph Iso is in RPCircuit Min

Some open problems:

- Find interesting problems in PMCSP

- In PMCSP can we produce a min-size circuit, given a truth table?

- How hard is MCSP for AC0 circuits?

Circuit Analysis Problems



Exponential Time Algorithms

This topic of “Algorithms for Circuits” is one tiny 

part of the growing area of 

Exact algorithms for NP-hard problems

This is a very active research area 

with many cool open problems.



Outline of the Lectures

• Circuit Analysis (Algorithms)

• Circuit Complexity (Lower Bounds)

• Connections

• NEXP not in ACC



End of Lecture 1


