Algorithms and Lower Bounds: Some Basic Connections
Lecture 1: Circuit Analysis

Ryan Williams
Stanford University
A “conventional” view of algorithms and complexity

- Algorithm designers
- Complexity theorists

- What makes some problems easy to solve? When can we find an *efficient* algorithm?
- What makes other problems difficult? When can we prove that a problem is not easy?

(When can we prove a *lower bound on the resources needed to solve a problem*?)
The tasks of the algorithm designer and the complexity theorist appear to be inherently opposite ones.

- **Algorithm designers**
- **Complexity theorists**

Furthermore, it is generally believed that **lower bounds** are "harder" than **algorithm design**

- In algorithm design, we “only” have to find a single clever algorithm that solves a problem well
- In lower bounds, we must reason about **all possible** algorithms, and argue that none of them work well

This belief is strongly reflected in the literature.
“Duality” Between Circuit Analysis Algorithms and Circuit Lower Bounds

Thesis: Algorithm design can be *as hard as* proving lower bounds.

There are deep connections between the two... so deep that they are often the “same”

A typical theorem from Algorithm Design:
“Here is an algorithm A that solves my problem, on all possible instances of the problem"

A typical theorem from Lower Bounds:
“Here is a proof P that my problem cannot be solved, on all possible algorithms from some class"
“Duality” Between Circuit Analysis Algorithms and Circuit Lower Bounds

Thesis: Algorithm design can be *as hard as* proving lower bounds.

“Nontrivial” Circuit Analysis Algorithm

Circuit Lower Bounds!
Outline of the Lectures

- Circuit Analysis (Algorithms)
- Circuit Complexity (Lower Bounds)
- Connections
- NEXP not in ACC
Circuit Analysis Problems

Circuit Analysis problems are often computational problems on circuits given as input:

Input: A logical circuit $C = \text{[Diagram]}$

Output: Some property of the function computed by C

Canonical Example: Circuit Satisfiability Problem (Circuit SAT)

Input: Logical circuit C

Decide: Is the function computed by C the “all-zeroes” function?

Of course, Circuit SAT is NP-complete

But we can still ask if there are any algorithms solving Circuit SAT that are faster than the obvious “brute-force” algorithm which tries all 2^n input settings to the n inputs of the circuit.
Generic Circuit Satisfiability

Let C be a class of Boolean circuits

$C = \{\text{formulas}\}$, $C = \{\text{arbitrary circuits}\}$, $C = \{\text{CNF formulas}\}$

The C-SAT Problem:
Given a circuit $K(x_1, \ldots, x_n) \in C$, is there an assignment $(a_1, \ldots, a_n) \in \{0,1\}^n$ such that $K(a_1, \ldots, a_n) = 1$?

C-SAT is NP-complete, for essentially all interesting C

C-SAT is solvable in $O(2^n \ |K|)$ time
where $|K|$ is the size of the circuit K
Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

- 3-SAT: 1.308^n
- 4-SAT: 1.469^n
- k-SAT: $2^n \cdot n^{O(k)}$ time algorithms

[many authors ..., Hertli ‘11]

All known c^n time algorithms for k-SAT have the property that, as $k \to \infty$, the constant $c \to 2$

Strong ETH: $\forall \delta < 1, \exists k \geq 3$ s.t. k-SAT requires $2^{\delta n}$ time

ETH: $\exists \delta > 0$ s.t. 3-SAT requires $2^{\delta n}$ time
Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

- **AC0-SAT**
 - Constant-depth AND/OR/NOT
 - [IMP '12] AC0-SAT in \(2^n - n/(c \log s)^{d-1}\) time where \(d = \text{depth}\), \(s = \text{size}\)
Circuit SAT Algorithms

For simple enough circuits, we know of faster algorithms

- **ACC-SAT**

 Constant-depth AND/OR/NOT/MODm

 \[\text{MOD}_6(x_1, \ldots, x_t) = 1 \iff \sum_i x_i \text{ is divisible by } 6 \]

 [W '11] ACC-SAT in \(2^n - n^e\) time for circuits of size \(2^{n^{o(1)}}\)

 where \(e < 1\) depends on \(d\) and \(m\)
Ingredients for Solving ACC SAT

1. A known representation of ACC
 [Yao ’90, Beigel-Tarui’94] Every $f : \{0,1\}^n \rightarrow \{0,1\}$ with an ACC circuit of size s can be expressed in the form

 $f(x_1, \ldots, x_n) = g(h(x_1, \ldots, x_n))$

 - h is a multilinear polynomial with K monomials, $h(x_1, \ldots, x_n) \in \{0, \ldots, K\}$ for all $(x_1, \ldots, x_n) \in \{0,1\}^n$
 - $K = s^{\text{poly}(\log s)}$
 - $g : \{0, \ldots, K\} \rightarrow \{0,1\}$ can be an arbitrary function

2. “Fast Fourier Transform” for multilinear polynomials:
 Given a multilinear polynomial h in its coefficient representation, the value $h(x)$ can be computed over all points $x \in \{0,1\}^n$ in $2^n \text{ poly}(n)$ time.
1. Polynomials Representing ACC

Very special cases:

1. Writing $\text{OR}(x_1, ..., x_n)$ as a g of h:
 \[g(y) = 1 \text{ iff } y > 0, \quad h = x_1 + ... + x_n \]

2. Writing $\text{AND}(x_1, ..., x_n)$ as a g of h:
 \[g(y) = 1 \text{ iff } y = n, \quad h = x_1 + ... + x_n \]

3. Writing $\text{MOD}_m(x_1, ..., x_n)$ as a g of h...
1. Polynomials Representing ACC

A less special case:

Theorem [Razborov-Smolensky’87] For every AC0 circuit C with n inputs, size s, and depth d, there is an efficiently samplable distribution $D(C)$ of polynomials of degree $(\log s)^{O(d)}$ over \mathbb{F}_2 such that

$$\text{Pr}_{p \sim D(C)} [p(x) = C(x)] > \frac{3}{4}.$$

In fact can use a “small” number S of polynomials ($S = n^{\text{poly} (\log s)}$)

Can take MAJORITY value of all S different polynomials over \mathbb{F}_2.

Can write the “MAJORITY of XORs” as a symmetric Boolean function. This yields the g of h’s. [Yao, Toda, Beigel-Tarui]
1. Reducing AC0[⊕] to polynomials

Theorem [Razborov-Smolensky’87] For every AC0[⊕] circuit C with n inputs, size s, and depth d, there is an efficiently samplable distribution $D(C)$ of polynomials of degree $(\log s)^{O(d)}$ over \mathbb{F}_2 such that

$$\Pr_{p \sim D(C)} [p(x) = C(x)] > \frac{3}{4}.$$

Proof Idea: Induction on the depth d.

NOT gate: $\text{NOT}(x_i) = 1 + x_i$

XOR gate: $\text{XOR}(x_1, \ldots, x_n) = \sum_i x_i \mod 2$.

OR gate: For all $x \in \{0, 1\}^n$, observe that

$$\Pr_{r \in \{0,1\}^n} [\text{OR}(x_1, \ldots, x_n) = \sum_i r_i x_i \mod 2] \geq \frac{1}{2}$$

Pick $R \in \mathbb{F}_2^{k \times n}$ at random, where $k = \text{error parameter}$

For all $x \in \{0, 1\}^n$,

$$\Pr_R [\text{OR}(x_1, \ldots, x_n) = 1 + \prod_j (1 + \sum_i R_{j,i} x_i) \mod 2] \geq 1 - \frac{1}{2^k}$$

This is a degree-k polynomial simulating OR with error $< 1/2^k$.
2. Fast Multipoint Evaluation

Theorem: Given the 2^n coefficients of a multilinear polynomial h in n variables, the value $h(x)$ can be computed on all points $x \in \{0,1\}^n$ in $2^n \text{poly}(n)$ time.

Can write $h(x_1, \ldots, x_n) = x_1 h_1(x_2, \ldots, x_n) + h_2(x_2, \ldots, x_n)$

Want a 2^n table T that contains the value of h on all 2^n points.

Algorithm: If $n = 1$ then return $T = [h(0), h(1)]$

Recursively compute the 2^{n-1} table T_1 for the values of h_1, and the 2^{n-1} table T_2 for the values of h_2

Return the table $T = (T_2)(T_1 + T_2)$ of 2^n entries

Running time has the recurrence $R(2^n) \leq 2 R(2^{n-1}) + 2^n \text{poly}(n)$

Corollary: We can compute g of h on all $x \in \{0,1\}^n$ in only $2^n \text{poly}(n)$ time
ACC Satisfiability Algorithm

Theorem For all d, m there’s an $\epsilon > 0$ such that $\text{ACC}[m]$ SAT with depth d, n inputs, 2^{n^ϵ} size can be solved in $2^n - \Omega(n^\epsilon)$ time.

Proof:

Take an OR of all assignments to the first n^ϵ inputs of C.

For small $\epsilon > 0$, evaluate h on all $2^n - n^\epsilon$ assignments in $2^n - n^\epsilon$ poly(n) time.
Theorem: If we can evaluate a circuit of size s on all 2^n inputs in $2^n \text{poly}(n) + \text{poly}(s)$ time, then Circuit-SAT is in $o(2^n)$ time.

Proof:

Take an OR of all assignments to the first n^ε inputs of C.

For small $\varepsilon > 0$, can evaluate on all $2^n - n^\varepsilon$ assignments in $2^n - n^\varepsilon \text{poly}(n) + \text{poly}(2^{2n^\varepsilon})$ time.
For simple enough circuits, we know of faster algorithms

- **ACC-THR-SAT** Constant-depth AND/OR/NOT/MODm with a layer of linear threshold fns at the bottom

 - **[W ‘14]** ACC-THR-SAT is in $2^n - n^e$ time for circuits of size $2^{n^{o(1)}}$

- **THR-THR-SAT** in $2^{n(1-e)}$ time for circuits with $O(n)$ wires

 - **[IPS’13]**
Circuit SAT Algorithms

- **DeMorgan-Formula-SAT**
 Formulas over AND/OR/NOT, each gate has fan-in at most 2
 [Santhanam ’10, CKKSZ ’14]
 DM-Formula-SAT is in 2^{n-n^e} time for formulas of size $< n^{2.99}$

- Formulas over AND/OR/NOT/XOR with fan-in two
 [Seto-Tamaki ’12, CKKSZ ’14]
 Formula-SAT is in 2^{n-n^e} time for formulas of size $< n^{1.99}$

- **Circuit-SAT**
 Generic circuits over AND/OR/NOT, fan-in 2

OPEN: Can we improve on $O(2^n s)$ time ??
Let \mathcal{C} be a class of Boolean circuits

\mathcal{C}-CAPP:
Given a circuit $K(x_1, \ldots, x_n) \in \mathcal{C}$, output v such that
$$|v - \Pr_{x}[K(x) = 1]| < 1/10$$

Related to Pseudorandom Generators and Derandomization

[AW’85, Nisan’91, TX’13] AC0-CAPP is in $n^{\tilde{O}(\log^{d+4}s)}$ time
(n = inputs, s = size, d = depth)

[GMR’12] CNF-CAPP is in $n^{O(\log \log n)}$ time for poly(n) clauses

[IMZ’12] DM-Formula-CAPP: 2^{n^e} time for formulas of size $< n^{2.99}$
Formula-CAPP: 2^{n^e} time for formulas of size $< n^{1.99}$
Uses old techniques from lower bounds!
Circuit Analysis problems can also analyze functions *directly*:

Canonical Example:

Minimum Circuit Size Problem (MCSP) [Yablonski ‘59, KC’00]

Input: 2\(^n\)-bit truth table of \(f : \{0,1\}^n \rightarrow \{0,1\} \), \(s \in \{1,...,2^n\} \),

Decide: Is the minimum size of a circuit computing \(f \) at most \(s \)?

(Note: MCSP is in NP)

It is widely conjectured that MCSP is *not* in P

If in P: Would contradict conventional wisdom in cryptography

Known: [Masek’79, AHMPS’08] DNF Minimization is NP-complete *(uses lower bounds on DNF!)*

Is the MCSP problem NP-complete? [MW’15]

Open: Find *any* improvement over exhaustive search
Circuit Analysis Problems

Circuit Minimization (MCSP) [Yablonski ’59, KC’00]

Input: Truth table of a Boolean function f, parameter s

Decide: Is the minimum size of a circuit computing f at most s?

[ABKvMR ’06] Factoring is in $\text{ZPP}^\text{Circuit Min}$

[ABKvMR ’06] Discrete Log is in $\text{BPP}^\text{Circuit Min}$

[Allender-Das ’14] Graph Iso is in $\text{RP}^\text{Circuit Min}$

Some open problems:

- Find interesting problems in P^{MCSP}
- In P^{MCSP} can we produce a min-size circuit, given a truth table?
- How hard is MCSP for AC0 circuits?
Exponential Time Algorithms

This topic of “Algorithms for Circuits” is one tiny part of the growing area of

Exact algorithms for NP-hard problems

This is a very active research area with many cool open problems.
Outline of the Lectures

- Circuit Analysis (Algorithms)
- Circuit Complexity (Lower Bounds)
- Connections
- NEXP not in ACC
End of Lecture 1