Multi-dimensional and Non-linear
 Mechanism Design (and Approximation)
 Part I: Multi- to Single-agent Reductions

Jason Hartline
Northwestern University
August 26, 2015

Textbook: Mechanism Design and Approximation

Chapter 8: Multi-dimensional and Non-linear Preferences (http:/ /jasonhartline.com/MDnA/; coming soon)

Example Results Statements

[cf. literature on single-dimensional linear agents]

Example Results Statements

Multi-dimensional Agents: selling "red or blue" car, values i.i.d. $U[0,1]^{2}$

- second-price auction with reserve for "favorite color" \Rightarrow optimal. [cf. Myerson '81]
[cf. literature on single-dimensional linear agents]

Example Results Statements

Multi-dimensional Agents: selling "red or blue" car, values i.i.d. $U[0,1]^{2}$

- second-price auction with reserve for "favorite color" \Rightarrow optimal. [cf. Myerson '81]

Non-linear Agents: selling item, values i.i.d. $U[0,1]$, common budget

- all-pay auction with reserve (and ironing top) \Rightarrow optimal.
[cf. Bulow, Roberts '89]
[cf. literature on single-dimensional linear agents]

Example Results Statements

Multi-dimensional Agents: selling "red or blue" car, values i.i.d. $U[0,1]^{2}$

- second-price auction with reserve for "favorite color" \Rightarrow optimal. [cf. Myerson '81]
- uniform posted pricing $\Rightarrow e /(e-1)=1.58$ approximation. [cf. "correlation gap" Yan, '11]
- non-identical agents, anonymous uniform posted pricing $\Rightarrow e$ approximation.
[cf. H., Roughgarden '09; Alaei, H., Niazadeh, Pountourakis, Yuan '15]
Non-linear Agents: selling item, values i.i.d. $U[0,1]$, common budget
- all-pay auction with reserve (and ironing top) \Rightarrow optimal.
[cf. Bulow, Roberts '89]
[cf. literature on single-dimensional linear agents]

Example Results Statements

Multi-dimensional Agents: selling "red or blue" car, values i.i.d. $U[0,1]^{2}$

- second-price auction with reserve for "favorite color" \Rightarrow optimal. [cf. Myerson '81]
- uniform posted pricing $\Rightarrow e /(e-1)=1.58$ approximation. [cf. "correlation gap" Yan, '11]
- non-identical agents, anonymous uniform posted pricing $\Rightarrow e$ approximation.
[cf. H., Roughgarden '09; Alaei, H., Niazadeh, Pountourakis, Yuan '15]
Non-linear Agents: selling item, values i.i.d. $U[0,1]$, common budget
- all-pay auction with reserve (and ironing top) \Rightarrow optimal.
[cf. Bulow, Roberts '89]
- all-pay auction (no reserve) $\Rightarrow n /(n-1)$ approximation.
[cf. Bulow, Klemperer '96]
[cf. literature on single-dimensional linear agents]

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

- single-agent problem: constraint on entire allocation rule.

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

- single-agent problem: constraint on entire allocation rule.
- mutli-agent composition: stochastic weighted optimization.

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

- single-agent problem: constraint on entire allocation rule.
- mutli-agent composition: stochastic weighted optimization.
- preference assumption: none:
- remaining multi-dimensional linear (utility) preferences.
- non-linear (utility) preferences.
(e.g., risk aversion, budgets)

Agenda

Agenda:

1. Examples of optimal single-agent mechanisms. (derivations tomorrow)
2. Ex ante reduction (with revenue linearity) (e.g., unit-demand $U[0,1]^{2}$)
3. Interim reduction (without revenue linearity)
(e.g., public budget $U[0,1]$)

Agenda

Agenda:

1. Examples of optimal single-agent mechanisms. (derivations tomorrow)
2. Ex ante reduction (with revenue linearity) (e.g., unit-demand $U[0,1]^{2}$)
3. Interim reduction (without revenue linearity)
(e.g., public budget $U[0,1]$)

Goals:

- unified framework.
- highlight differences between revenue linearity and non-linearity.

1. Examples of optimal single-agent mechanisms
[cf. Laffont, Robert '96] [cf. Armstrong '96]
(derivations tomorrow)

Public Budget Preferences

Public Budget Preferences: (single-dimensional non-linear)

- allocation: $x \in[0,1]$; payment: p
- private value: t
- public budget: B.
- utility: $u= \begin{cases}t x-p & p \leq B \\ -\infty & \text { o.w. }\end{cases}$

Public Budget Preferences

Public Budget Preferences: (single-dimensional non-linear)

- allocation: $x \in[0,1]$; payment: p
- private value: t
- public budget: B.
- utility: $u= \begin{cases}t x-p & p \leq B \\ -\infty & \text { o.w. }\end{cases}$

Running example: $t \sim U[0,1] ; B=1 / 4$

Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.

Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.
(a) "3/4 lottery at price $1 / 4$ "

$$
x(t)= \begin{cases}0 & t<1 / 3 \\ 3 / 4 & \text { o.w. }\end{cases}
$$

Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.
(a) "3/4 lottery at price $1 / 4$ "

$$
x(t)= \begin{cases}0 & t<1 / 3 \\ 3 / 4 & \text { o.w }\end{cases}
$$

(b) "two-agent all-pay auction"

$$
x(t)= \begin{cases}t & t<1 / 2 \\ 3 / 4 & \text { o.w. }\end{cases}
$$

Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.
(a) "3/4 lottery at price $1 / 4$ "

$$
x(t)= \begin{cases}0 & t<1 / 3 \\ 3 / 4 & \text { o.w. }\end{cases}
$$

(b) "two-agent all-pay auction"

$$
x(t)= \begin{cases}t & t<1 / 2 \\ 3 / 4 & \text { o.w. }\end{cases}
$$

Question: What is optimal?

Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.
(a) "3/4 lottery at price $1 / 4$ "

$$
x(t)= \begin{cases}0 & t<1 / 3 \\ 3 / 4 & \text { o.w }\end{cases}
$$

(b) "two-agent all-pay auction"

$$
x(t)= \begin{cases}t & t<1 / 2 \\ 3 / 4 & \text { o.w. }\end{cases}
$$

Question: What is optimal?
Answer: (a)

Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability \hat{q}; E.g., $\hat{q}=1 / 2$.
(a) "3/4 lottery at price $1 / 4$ "

$$
x(t)= \begin{cases}0 & t<1 / 3 \\ 3 / 4 & \text { o.w }\end{cases}
$$

(b) "two-agent all-pay auction"

$$
x(t)= \begin{cases}t & t<1 / 2 \\ 3 / 4 & \text { o.w. }\end{cases}
$$

Question: What is optimal?
Answer: (a)
Thm: For $t \sim U[0,1]$, revenue optimal mechanism for ex ante constraint $\hat{q} \leq 1-B$ is " $(\hat{q}+B)$ lottery at price B."

Unit-demand Preferences

Unit-demand Preferences: (multi-dimensional linear)

- allocation: $x=\left(\{x\}_{1},\{x\}_{2}\right)$ with $\sum_{j}\{x\}_{j} \leq 1$; payment: p
- private value: $t=\left(\{t\}_{1},\{t\}_{2}\right)$
- utility: $u=\sum_{j}\{t\}_{j}\{x\}_{j}-p$.

Unit-demand Preferences

Unit-demand Preferences: (multi-dimensional linear)

- allocation: $x=\left(\{x\}_{1},\{x\}_{2}\right)$ with $\sum_{j}\{x\}_{j} \leq 1$; payment: p
- private value: $t=\left(\{t\}_{1},\{t\}_{2}\right)$
- utility: $u=\sum_{j}\{t\}_{j}\{x\}_{j}-p$.

Running Example: $t \sim U[0,1]^{2}$.

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.
(a) "pricing item 1"

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability \hat{q}; E.g., $\hat{q}=1 / 2$.
(a) "pricing item 1"

(b) "uniform lottery"

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability $\hat{q} ;$ E.g., $\hat{q}=1 / 2$.
(a) "pricing item 1"

(b) "uniform lottery"

(c) "uniform pricing"

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability \hat{q}; E.g., $\hat{q}=1 / 2$.
(a) "pricing item 1"

(b) "uniform lottery"

(c) "uniform pricing"

Question: What is optimal?

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability \hat{q}; E.g., $\hat{q}=1 / 2$.
(a) "pricing item 1"

(b) "uniform lottery"

(c) "uniform pricing"

Question: What is optimal?
Answer: (c)

Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability \hat{q}; E.g., $\hat{q}=1 / 2$.
(a) "pricing item 1"

(b) "uniform lottery"

(c) "uniform pricing"

Question: What is optimal?
Answer: (c)
Thm: For $t \sim U[0,1]^{2}$, revenue optimal mechanism for ex ante constraint \hat{q} is "uniform pricing at price $\sqrt{1-\max (\hat{q}, 2 / 3)}$ ".

Questions?

Quantile and Allocation Rules

Def: (type) allocation rule $x(t)$ is probability type is served.

Quantile and Allocation Rules

Def: (type) allocation rule $x(t)$ is probability type is served.
Def: quantile q of a type is measure of types with higher allocation probability (i.e., strength relative to distribution according to mechanism; break ties randomly)

Quantile and Allocation Rules

Def: (type) allocation rule $x(t)$ is probability type is served.
Def: quantile q of a type is measure of types with higher allocation probability (i.e., strength relative to distribution according to mechanism; break ties randomly)
Note: for any mechanism and $t \sim F$, quantile is $U[0,1]$.

Quantile and Allocation Rules

Def: (type) allocation rule $x(t)$ is probability type is served.
Def: quantile q of a type is measure of types with higher allocation probability (i.e., strength relative to distribution according to mechanism; break ties randomly)

Note: for any mechanism and $t \sim F$, quantile is $U[0,1]$.
Def: (quantile) allocation rule $y(\cdot)$ is allocation probability of unit measure of types sorted in non-increasing order. (e.g., discrete type spaces: rectangles, width $f(t)$, height $x(t)$; sort by height)

Quantile and Allocation Rules

Def: (type) allocation rule $x(t)$ is probability type is served.
Def: quantile q of a type is measure of types with higher allocation probability (i.e., strength relative to distribution according to mechanism; break ties randomly)

Note: for any mechanism and $t \sim F$, quantile is $U[0,1]$.
Def: (quantile) allocation rule $y(\cdot)$ is allocation probability of unit measure of types sorted in non-increasing order. (e.g., discrete type spaces: rectangles, width $f(t)$, height $x(t)$; sort by height)

Quantile and Allocation Rules

Def: (type) allocation rule $x(t)$ is probability type is served.
Def: quantile q of a type is measure of types with higher allocation probability (i.e., strength relative to distribution according to mechanism; break ties randomly)
Note: for any mechanism and $t \sim F$, quantile is $U[0,1]$.
Def: (quantile) allocation rule $y(\cdot)$ is allocation probability of unit measure of types sorted in non-increasing order. (e.g., discrete type spaces: rectangles, width $f(t)$, height $x(t)$; sort by height)

Interim Pricing

Interim Pricing Problem: for allocation constraint \hat{y}, find

- stationary transformation $\sigma:[0,1] \rightarrow \Delta([0,1])$, and (with $\sigma(q) \sim U[0,1]$ for $q \sim U[0,1]$)
- single agent mechanism with $y(q) \leq \mathbf{E}_{\sigma}[\hat{y}(\sigma(t))]$
to maximize revenue.

Interim Pricing

Interim Pricing Problem: for allocation constraint \hat{y}, find

- stationary transformation $\sigma:[0,1] \rightarrow \Delta([0,1])$, and (with $\sigma(q) \sim U[0,1]$ for $q \sim U[0,1]$)
- single agent mechanism with $y(q) \leq \mathbf{E}_{\sigma}[\hat{y}(\sigma(t))]$
to maximize revenue.
Def: cumulative allocation rule $Y(\hat{q})$ is $Y(\hat{q})=\int_{0}^{\hat{q}} y(q) \mathrm{d} q$.

Interim Pricing

Interim Pricing Problem: for allocation constraint \hat{y}, find

- stationary transformation $\sigma:[0,1] \rightarrow \Delta([0,1])$, and (with $\sigma(q) \sim U[0,1]$ for $q \sim U[0,1]$)
- single agent mechanism with $y(q) \leq \mathbf{E}_{\sigma}[\hat{y}(\sigma(t))]$
to maximize revenue.
Def: cumulative allocation rule $Y(\hat{q})$ is $Y(\hat{q})=\int_{0}^{\hat{q}} y(q) \mathrm{d} q$.
Thm: y is feasible for \hat{y} iff $Y(\hat{q}) \leq \hat{Y}(\hat{q})$ for all \hat{q}.

Interim Pricing

Interim Pricing Problem: for allocation constraint \hat{y}, find

- stationary transformation $\sigma:[0,1] \rightarrow \Delta([0,1])$, and (with $\sigma(q) \sim U[0,1]$ for $q \sim U[0,1]$)
- single agent mechanism with $y(q) \leq \mathbf{E}_{\sigma}[\hat{y}(\sigma(t))]$
to maximize revenue.
Def: cumulative allocation rule $Y(\hat{q})$ is $Y(\hat{q})=\int_{0}^{\hat{q}} y(q) \mathrm{d} q$.
Thm: y is feasible for \hat{y} iff $Y(\hat{q}) \leq \hat{Y}(\hat{q})$ for all \hat{q}.
Proof sketch: resampling on $[a, b]$ is line segment on cumulative alloc.

Interim Pricing

Interim Pricing Problem: for allocation constraint \hat{y}, find

- stationary transformation $\sigma:[0,1] \rightarrow \Delta([0,1])$, and (with $\sigma(q) \sim U[0,1]$ for $q \sim U[0,1]$)
- single agent mechanism with $y(q) \leq \mathbf{E}_{\sigma}[\hat{y}(\sigma(t))]$
to maximize revenue.
Def: cumulative allocation rule $Y(\hat{q})$ is $Y(\hat{q})=\int_{0}^{\hat{q}} y(q) \mathrm{d} q$.
Thm: y is feasible for \hat{y} iff $Y(\hat{q}) \leq \hat{Y}(\hat{q})$ for all \hat{q}.
Proof sketch: resampling on $[a, b]$ is line segment on cumulative alloc.

Example: allocation constraint $\hat{y}(q)=1-q$.

Interim Pricing: Examples

Example: allocation constraint $\hat{y}(q)=1-q$.

Note: $t^{\dagger}, t^{\ddagger}$ depend on \hat{y}.

Interim Pricing: Examples

Example: allocation constraint $\hat{y}(q)=1-q$.

Note: $t^{\dagger}, t^{\ddagger}$ depend on \hat{y}.

Note: $\sqrt{1 / 3}$ reserve for all \hat{y}.

Unit Demand Example is Revenue Linear

Properties of unit-demand example:

- interim optimal is convex combination of ex ante optimal.
\Rightarrow revenue linearity

Unit Demand Example is Revenue Linear

Properties of unit-demand example:

- interim optimal is convex combination of ex ante optimal.
\Rightarrow revenue linearity
- exists consistent ordering on types for all interim optimal mechs.
\Rightarrow orderability

Unit Demand Example is Revenue Linear

Properties of unit-demand example:

- interim optimal is convex combination of ex ante optimal.
\Rightarrow revenue linearity
- exists consistent ordering on types for all interim optimal mechs. \Rightarrow orderability

Def: $\boldsymbol{R e v}[\hat{y}]$ is interim optimal revenue for \hat{y}.

Unit Demand Example is Revenue Linear

Properties of unit-demand example:

- interim optimal is convex combination of ex ante optimal.
\Rightarrow revenue linearity
- exists consistent ordering on types for all interim optimal mechs. \Rightarrow orderability
$\operatorname{Def}: \operatorname{Rev}[\hat{y}]$ is interim optimal revenue for \hat{y}.
Def: Agent is revenue linear if $\boldsymbol{\operatorname { R e v }}[\hat{y}]=\boldsymbol{\operatorname { R e v }}\left[\hat{y}^{\dagger}\right]+\boldsymbol{\operatorname { R e v }}\left[\hat{y}^{\ddagger}\right]$ for any $\hat{y}=\hat{y}^{\dagger}+\hat{y}^{\ddagger}$.

Unit Demand Example is Revenue Linear

Properties of unit-demand example:

- interim optimal is convex combination of ex ante optimal.
\Rightarrow revenue linearity
- exists consistent ordering on types for all interim optimal mechs. \Rightarrow orderability

Def: $\boldsymbol{\operatorname { R e v }}[\hat{y}]$ is interim optimal revenue for \hat{y}.
Def: Agent is revenue linear if $\boldsymbol{\operatorname { R e v }}[\hat{y}]=\boldsymbol{\operatorname { R e v }}\left[\hat{y}^{\dagger}\right]+\boldsymbol{\operatorname { R e v }}\left[\hat{y}^{\ddagger}\right]$ for any $\hat{y}=\hat{y}^{\dagger}+\hat{y}^{\ddagger}$.

Thm: revenue linearity implies orderability.
2. Ex Ante Reduction (with revenue linearity)
[Alaei, Fu, Haghpanah, H '13] [cf. Myerson '81; Bulow, Roberts '89]

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Theorem: optimal revenue for \hat{y} is marginal revenue for \hat{y}. l.e., $\operatorname{Rev}[\hat{y}]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Theorem: optimal revenue for \hat{y} is marginal revenue for \hat{y}. l.e., $\operatorname{Rev}[\hat{y}]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$

Proof:

- $R(\hat{q})$ is optimal revenue of step function at \hat{q}.

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Theorem: optimal revenue for \hat{y} is marginal revenue for \hat{y}. l.e., $\operatorname{Rev}[\hat{y}]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$

Proof:

- $R(\hat{q})$ is optimal revenue of step function at \hat{q}.

- $\hat{y}(q)$ is convex combination of step functions.

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Theorem: optimal revenue for \hat{y} is marginal revenue for \hat{y}. I.e., $\operatorname{Rev}[\hat{y}]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$

Proof:

- $R(\hat{q})$ is optimal revenue of step function at \hat{q}.

- $\hat{y}(q)$ is convex combination of step functions. Coefficients $-\hat{y}^{\prime}(q)$

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Theorem: optimal revenue for \hat{y} is marginal revenue for \hat{y}. l.e., $\operatorname{Rev}[\hat{y}]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$

Proof:

- $R(\hat{q})$ is optimal revenue of step function at \hat{q}.

- $\hat{y}(q)$ is convex combination of step functions. Coefficients $-\hat{y}^{\prime}(q)$
- $\boldsymbol{\operatorname { R e v }}[\hat{y}]=\mathbf{E}\left[-\hat{y}^{\prime}(q) R(q)\right]$ (by revenue linearity)

Marginal Revenue

Def:

- $R(\hat{q})$ is ex ante optimal revenue for \hat{q};
- $R(\cdot)$ is revenue curve;
- $R^{\prime}(\hat{q})=\frac{\mathrm{d}}{\mathrm{d} \hat{q}} R(\hat{q})$ is marginal revenue.

Theorem: optimal revenue for \hat{y} is marginal revenue for \hat{y}. l.e., $\boldsymbol{\operatorname { R e v }}[\hat{y}]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$

Proof:

- $R(\hat{q})$ is optimal revenue of step function at \hat{q}.

- $\hat{y}(q)$ is convex combination of step functions. Coefficients $-\hat{y}^{\prime}(q)$
- $\boldsymbol{\operatorname { R e v }}[\hat{y}]=\mathbf{E}\left[-\hat{y}^{\prime}(q) R(q)\right]=\mathbf{E}\left[R^{\prime}(q) \hat{y}(q)\right]$ (by revenue linearity)

Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)

1. map agent types to quantiles via ordering: $\boldsymbol{t} \rightarrow \boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)$
2. calculate marginal revenues of agent quantiles: $R_{i}^{\prime}\left(q_{i}\right)$
3. serve agents to maximize total marginal revenues $\sum_{i} R_{i}^{\prime}\left(q_{i}\right) \cdot x_{i}$
4. outcome/payments for each i are from $R_{i}\left(\hat{q}_{i}\right)$ mechanism for "critical quantile" \hat{q}_{i}.

Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)

1. map agent types to quantiles via ordering: $\boldsymbol{t} \rightarrow \boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)$
2. calculate marginal revenues of agent quantiles: $R_{i}^{\prime}\left(q_{i}\right)$
3. serve agents to maximize total marginal revenues $\sum_{i} R_{i}^{\prime}\left(q_{i}\right) \cdot x_{i}$
4. outcome/payments for each i are from $R_{i}\left(\hat{q}_{i}\right)$ mechanism for "critical quantile" \hat{q}_{i}.

Theorem: marginal revenue mechanism is optimal.

Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)

1. map agent types to quantiles via ordering: $\boldsymbol{t} \rightarrow \boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)$
2. calculate marginal revenues of agent quantiles: $R_{i}^{\prime}\left(q_{i}\right)$
3. serve agents to maximize total marginal revenues $\sum_{i} R_{i}^{\prime}\left(q_{i}\right) \cdot x_{i}$
4. outcome/payments for each i are from $R_{i}\left(\hat{q}_{i}\right)$ mechanism for "critical quantile" \hat{q}_{i}.

Theorem: marginal revenue mechanism is optimal.

Proof:

- maximizing marginal revenue point-wise also maximizes expected marginal revenue.

Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)

1. map agent types to quantiles via ordering: $\boldsymbol{t} \rightarrow \boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)$
2. calculate marginal revenues of agent quantiles: $R_{i}^{\prime}\left(q_{i}\right)$
3. serve agents to maximize total marginal revenues $\sum_{i} R_{i}^{\prime}\left(q_{i}\right) \cdot x_{i}$
4. outcome/payments for each i are from $R_{i}\left(\hat{q}_{i}\right)$ mechanism for "critical quantile" \hat{q}_{i}.

Theorem: marginal revenue mechanism is optimal.

Proof:

- maximizing marginal revenue point-wise also maximizes expected marginal revenue.
- revenue curves are concave; marginal revenue curves are monotone; critical quantiles exist; mechanism is incentive compatible.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear; revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear; revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.
- $R(\hat{q})=\hat{q} \sqrt{1-\hat{q}}$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear; revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.
- $R(\hat{q})=\hat{q} \sqrt{1-\hat{q}}$.

- quantile for type $\left(t_{\text {red }}, t_{\text {blue }}\right)$ is $q=1-\max \left(t_{\text {red }}, t_{\text {blue }}\right)^{2}$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear; revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.
- $R(\hat{q})=\hat{q} \sqrt{1-\hat{q}}$.

- quantile for type $\left(t_{\text {red }}, t_{\text {blue }}\right)$ is $q=1-\max \left(t_{\text {red }}, t_{\text {blue }}\right)^{2}$.
- Maximize $\sum_{i} R^{\prime}\left(q_{i}\right) \cdot x_{i}$?

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear; revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.
- $R(\hat{q})=\hat{q} \sqrt{1-\hat{q}}$.

- quantile for type $\left(t_{\text {red }}, t_{\text {blue }}\right)$ is $q=1-\max \left(t_{\text {red }}, t_{\text {blue }}\right)^{2}$.
- Maximize $\sum_{i} R^{\prime}\left(q_{i}\right) \cdot x_{i}$? serve agent with smallest $q \leq 2 / 3$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear;
revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.
- $R(\hat{q})=\hat{q} \sqrt{1-\hat{q}}$.

- quantile for type $\left(t_{\text {red }}, t_{\text {blue }}\right)$ is $q=1-\max \left(t_{\text {red }}, t_{\text {blue }}\right)^{2}$.
- Maximize $\sum_{i} R^{\prime}\left(q_{i}\right) \cdot x_{i}$? serve agent with smallest $q \leq 2 / 3$.
- Marginal Revenue Mechanism: serve agent with highest maximum value, charge second highest maximum value or reserve $\sqrt{1 / 3}$.

MRM for Unit-demand Example

Example: red-blue car, types i.i.d. $U[0,1]^{2}$.

- Recall Thm: $U[0,1]^{2}$ agent is revenue linear;
revenue curve $R(\hat{q})$ posts price $(\sqrt{1-\hat{q}}, \sqrt{1-\hat{q}})$.
- $R(\hat{q})=\hat{q} \sqrt{1-\hat{q}}$.

- quantile for type $\left(t_{\text {red }}, t_{\text {blue }}\right)$ is $q=1-\max \left(t_{\text {red }}, t_{\text {blue }}\right)^{2}$.
- Maximize $\sum_{i} R^{\prime}\left(q_{i}\right) \cdot x_{i}$? serve agent with smallest $q \leq 2 / 3$.
- Marginal Revenue Mechanism: serve agent with highest maximum value, charge second highest maximum value or reserve $\sqrt{1 / 3}$.
- Cor: the marginal revenue mechanism is revenue optimal.

Multi-dimensional and Non-Linear Mechanism Design (and Approximation)
 Part II: Solving Single-agent Problems

Jason Hartline
Northwestern University
August 27, 2015

Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myerson '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

- single-agent problem: constraint on entire allocation rule.
- multi-agent composition: stochastic weighted optimization.
- preference assumption: none:
- remaining multi-dimensional linear (utility) preferences.
- non-linear (utility) preferences.
(e.g., risk aversion, budgets)

Loose Ends

1. How do you prove revenue linearity?

Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

- single-dimensional linear preferences have payment identity.
- multi-dimensional preferences do not have payment identity.

Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

- single-dimensional linear preferences have payment identity.
- multi-dimensional preferences do not have payment identity.
(b) existence of virtual values
- some multi-dimensinal preferences have virtual values.

Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

- single-dimensional linear preferences have payment identity.
- multi-dimensional preferences do not have payment identity.
(b) existence of virtual values
- some multi-dimensinal preferences have virtual values.

2. Are optimal mechanisms for $U[0,1]^{2}$ are single-dimensional projection to "favorite item"?

Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

- single-dimensional linear preferences have payment identity.
- multi-dimensional preferences do not have payment identity.
(b) existence of virtual values
- some multi-dimensinal preferences have virtual values.

2. Are optimal mechanisms for $U[0,1]^{2}$ are single-dimensional projection to "favorite item"?

- yes, but this must be proved. [later today]

Approx. Ex Ante Reduction w.o. Revenue Linearity

Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every agent like a convex combination of ex ante optimal mechanisms.

Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.

Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.
Approach: relax ex post feasibility to hold in expectation, a.k.a., ex ante relaxation.

Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.
Approach: relax ex post feasibility to hold in expectation, a.k.a., ex ante relaxation.

Observation:

- optimal ex ante relaxation is marginal revenue based.
- all single-dimensional linear agent mechanisms are marginal revenue based.

Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.
Approach: relax ex post feasibility to hold in expectation, a.k.a., ex ante relaxation.

Observation:

- optimal ex ante relaxation is marginal revenue based.
- all single-dimensional linear agent mechanisms are marginal revenue based.

Meta-theorem: any approximation result for single-dimensional linear agents w.r.t. the optimal ex ante relaxation extends to general agents. (but may need to be reinterpreted)

Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.
Approach: relax ex post feasibility to hold in expectation, a.k.a., ex ante relaxation.

Observation:

- optimal ex ante relaxation is marginal revenue based.
- all single-dimensional linear agent mechanisms are marginal revenue based.

Meta-theorem: any approximation result for single-dimensional linear agents w.r.t. the optimal ex ante relaxation extends to general agents. (but may need to be reinterpreted)

Examples: posted pricing; anonymous pricing.
3. Interim Reduction (without revenue linearity)
[Alaei, Fu, Haghpanah, H, Malekian '12]
[cf. Cai, Daskalakis, Weinberg '12,'13]
[cf. Maskin, Riley '84; Matthews '84; Border '91,'07; Mierendorff '11]

Approach

Def: Interim allocation constraints $\hat{\boldsymbol{y}}$ (with $\hat{y}_{i}:[0,1] \rightarrow[0,1]$) is interim feasible if exists ex post feasible mechanism
$\hat{\boldsymbol{y}}^{E P}:[0,1]^{n} \rightarrow \mathcal{X} \subset[0,1]^{n}$ that induces them.
(I.e., $\hat{y}_{i}\left(q_{i}\right)=\mathbf{E}_{\boldsymbol{q}}\left[\hat{y}_{i}^{E P}(\boldsymbol{q}) \mid q_{i}\right]$

Approach

Def: Interim allocation constraints $\hat{\boldsymbol{y}}$ (with $\hat{y}_{i}:[0,1] \rightarrow[0,1]$) is interim feasible if exists ex post feasible mechanism
$\hat{\boldsymbol{y}}^{E P}:[0,1]^{n} \rightarrow \mathcal{X} \subset[0,1]^{n}$ that induces them.
(I.e., $\hat{y}_{i}\left(q_{i}\right)=\mathbf{E}_{\boldsymbol{q}}\left[\hat{y}_{i}^{E P}(\boldsymbol{q}) \mid q_{i}\right]$

Thm: The optimal revenue is given by the program

s.t. " \hat{y} is interim feasible."

Approach

Def: Interim allocation constraints $\hat{\boldsymbol{y}}$ (with $\hat{y}_{i}:[0,1] \rightarrow[0,1]$) is interim feasible if exists ex post feasible mechanism
$\hat{\boldsymbol{y}}^{E P}:[0,1]^{n} \rightarrow \mathcal{X} \subset[0,1]^{n}$ that induces them.
(I.e., $\hat{y}_{i}\left(q_{i}\right)=\mathbf{E}_{q}\left[\hat{y}_{i}^{E P}(\boldsymbol{q}) \mid q_{i}\right]$

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{y}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{\boldsymbol{y}} \text { is interim feasible." }
\end{aligned}
$$

Agenda:

- theorem proof sketch.
- understanding interim feasibility.
- characterizing ex post mechanisms.
- optimization subject to interim feasibility.

Theorem Proof Sketch

Thm: The optimal revenue is given by the program

$\max _{\hat{\boldsymbol{y}}} \sum_{i} \boldsymbol{\operatorname { R e v }}\left[\hat{y}_{i}\right]$

s.t. " $\hat{\boldsymbol{y}}$ is interim feasible."

Theorem Proof Sketch

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{\boldsymbol{y}}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{\boldsymbol{y}} \text { is interim feasible." }
\end{aligned}
$$

Note: program upper bounds optimal revenue.

Theorem Proof Sketch

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{y}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{y} \text { is interim feasible." }
\end{aligned}
$$

Note: program upper bounds optimal revenue.
Lemma: For any

- ex post feasible (not incentive compatible) mechanism $\hat{\boldsymbol{y}}^{E P}$ and
- incentive compatible (not ex post feasible) mechanism \boldsymbol{y}
if ex post $\hat{\boldsymbol{y}}^{E P}$ induces interim $\hat{\boldsymbol{y}}$ and y_{i} is feasible for \hat{y}_{i} (for all i), then combined mechanism exists.

Theorem Proof Sketch

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{y}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{\boldsymbol{y}} \text { is interim feasible." }
\end{aligned}
$$

Note: program upper bounds optimal revenue.
Lemma: For any

- ex post feasible (not incentive compatible) mechanism $\hat{\boldsymbol{y}}^{E P}$ and
- incentive compatible (not ex post feasible) mechanism \boldsymbol{y}
if ex post $\hat{\boldsymbol{y}}^{E P}$ induces interim $\hat{\boldsymbol{y}}$ and y_{i} is feasible for \hat{y}_{i} (for all i), then combined mechanism exists.

Proof: from definition of interim pricing problem.

Interim Feasibility: Examples

Question: Consider single-item and allocation rules:

Which are interim feasible:
(a) $\left(y^{\dagger}, y^{\dagger}\right)$,
(b) $\left(y^{\dagger}, y^{\ddagger}\right)$, or
(c) $\left(y^{\ddagger}, y^{\ddagger}\right)$?

Interim Feasibility: Examples

Question: Consider single-item and allocation rules:

Which are interim feasible:
(a) $\left(y^{\dagger}, y^{\dagger}\right)$,
(b) $\left(y^{\dagger}, y^{\ddagger}\right)$, or
(c) $\left(y^{\ddagger}, y^{\ddagger}\right)$?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is "double dictator" and infeasible.

Interim Feasibility: Examples

Question: Consider single-item and allocation rules:

Which are interim feasible:
(a) $\left(y^{\dagger}, y^{\dagger}\right)$,
(b) $\left(y^{\dagger}, y^{\ddagger}\right)$, or
(c) $\left(y^{\ddagger}, y^{\ddagger}\right)$?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is "double dictator" and infeasible.

Note: for (c), $\operatorname{Pr}\left[q_{1}\right.$ or q_{2} is high $]=3 / 4$ but $\mathbf{E}[$ alloc. to high $]=1$.

Interim Feasibility: Examples

Question: Consider single-item and allocation rules:

Which are interim feasible:
(a) $\left(y^{\dagger}, y^{\dagger}\right)$,
(b) $\left(y^{\dagger}, y^{\ddagger}\right)$, or
(c) $\left(y^{\ddagger}, y^{\ddagger}\right)$?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is "double dictator" and infeasible.

Note: for (c), $\operatorname{Pr}\left[q_{1}\right.$ or q_{2} is high $]=3 / 4$ but $\mathbf{E}[$ alloc. to high $]=1$. (but cannot allocate to types more often than types are realized)

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

- claim: any feasible symmetric $\boldsymbol{y}=(y, y)$ is feasible for $\hat{\boldsymbol{y}}=(\hat{y}, \hat{y})$.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

- claim: any feasible symmetric $\boldsymbol{y}=(y, y)$ is feasible for $\hat{\boldsymbol{y}}=(\hat{y}, \hat{y})$.
- suppose y infeasible for \hat{y}, then exists \hat{q} with $Y(\hat{q})>\hat{Y}(\hat{q})$.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

- claim: any feasible symmetric $\boldsymbol{y}=(y, y)$ is feasible for $\hat{\boldsymbol{y}}=(\hat{y}, \hat{y})$.
- suppose y infeasible for \hat{y}, then exists \hat{q} with $Y(\hat{q})>\hat{Y}(\hat{q})$.
- note $\operatorname{Pr}\left[q_{i} \in[0, \hat{q}]\right]=\hat{q}$;

$$
\operatorname{Pr}\left[\exists i, q_{i} \in[0, \hat{q}]\right]=1-(1-\hat{q})^{2}=2 \hat{q}-\hat{q}^{2} .
$$

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

- claim: any feasible symmetric $\boldsymbol{y}=(y, y)$ is feasible for $\hat{\boldsymbol{y}}=(\hat{y}, \hat{y})$.
- suppose y infeasible for \hat{y}, then exists \hat{q} with $Y(\hat{q})>\hat{Y}(\hat{q})$.
- note $\operatorname{Pr}\left[q_{i} \in[0, \hat{q}]\right]=\hat{q}$;

$$
\operatorname{Pr}\left[\exists i, q_{i} \in[0, \hat{q}]\right]=1-(1-\hat{q})^{2}=2 \hat{q}-\hat{q}^{2} .
$$

- note $\hat{Y}(\hat{q})=\int_{0}^{\hat{q}}(1-q) \mathrm{d} q=\hat{q}-\hat{q}^{2} / 2$

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

- claim: any feasible symmetric $\boldsymbol{y}=(y, y)$ is feasible for $\hat{\boldsymbol{y}}=(\hat{y}, \hat{y})$.
- suppose y infeasible for \hat{y}, then exists \hat{q} with $Y(\hat{q})>\hat{Y}(\hat{q})$.
- note $\operatorname{Pr}\left[q_{i} \in[0, \hat{q}]\right]=\hat{q}$;

$$
\operatorname{Pr}\left[\exists i, q_{i} \in[0, \hat{q}]\right]=1-(1-\hat{q})^{2}=2 \hat{q}-\hat{q}^{2} .
$$

- note $\hat{Y}(\hat{q})=\int_{0}^{\hat{q}}(1-q) \mathrm{d} q=\hat{q}-\hat{q}^{2} / 2$
- so expected number served $=2 \hat{Y}(\hat{q})=2 \hat{q}-\hat{q}^{2}$
$=\operatorname{Pr}\left[\exists i, q_{1} \in[0, \hat{q}]\right]=$ expected number realized.

The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F, common budget B.
Fact: every symmetric convex optimization has symmetric optimal solution.

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.
Proof: e.g., for $n=2$, strongest quantile wins gives $\hat{y}(q)=1-q$.

- claim: any feasible symmetric $\boldsymbol{y}=(y, y)$ is feasible for $\hat{\boldsymbol{y}}=(\hat{y}, \hat{y})$.
- suppose y infeasible for \hat{y}, then exists \hat{q} with $Y(\hat{q})>\hat{Y}(\hat{q})$.
- note $\operatorname{Pr}\left[q_{i} \in[0, \hat{q}]\right]=\hat{q}$;

$$
\operatorname{Pr}\left[\exists i, q_{i} \in[0, \hat{q}]\right]=1-(1-\hat{q})^{2}=2 \hat{q}-\hat{q}^{2} .
$$

- note $\hat{Y}(\hat{q})=\int_{0}^{\hat{q}}(1-q) \mathrm{d} q=\hat{q}-\hat{q}^{2} / 2$
- so expected number served $=2 \hat{Y}(\hat{q})=2 \hat{q}-\hat{q}^{2}$
$=\operatorname{Pr}\left[\exists i, q_{1} \in[0, \hat{q}]\right]=$ expected number realized.
- but $Y(\hat{q})>\hat{Y}(\hat{q})$ so constraint violated for y.

Symmetric Case: Conclusions

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.

Symmetric Case: Conclusions

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.

Note: "strongest quantile wins" allocation constraint is independent of single-agent problems.

Symmetric Case: Conclusions

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.

Note: "strongest quantile wins" allocation constraint is independent of single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and reserve prices bottom (with regularity assumption). [Laffont, Robert '96]

Symmetric Case: Conclusions

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.

Note: "strongest quantile wins" allocation constraint is independent of single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and reserve prices bottom (with regularity assumption). [Laffont, Robert '96]

Symmetric Case: Conclusions

Lemma: "strongest quantile wins" is optimal ex post feasible allocation constraint for program.

Note: "strongest quantile wins" allocation constraint is independent of single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and reserve prices bottom (with regularity assumption). [Laffont, Robert '96]

Note: almost all positive results in literature for non-linear mechanism design are based on this fact. (e.g., budget, risk aversion.)

Characterization of Interim Feasibility

Thm: For single-item, allocation rules \boldsymbol{y} are interim feasible iff, [Border '91]

$$
\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq 1-\prod_{i}\left(1-\hat{q}_{i}\right), \quad \forall \hat{\boldsymbol{q}} \in[0,1]^{n} .
$$

Characterization of Interim Feasibility

Thm: For single-item, allocation rules \boldsymbol{y} are interim feasible iff, [Border '91]

$$
\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq 1-\prod_{i}\left(1-\hat{q}_{i}\right), \quad \forall \hat{\boldsymbol{q}} \in[0,1]^{n} .
$$

Proof: max-flow/min-cut argument
dictator mechanism

Characterization of Interim Feasibility

Thm: For single-item, allocation rules \boldsymbol{y} are interim feasible iff, [Border '91]

$$
\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq 1-\prod_{i}\left(1-\hat{q}_{i}\right), \quad \forall \hat{\boldsymbol{q}} \in[0,1]^{n} .
$$

Proof: max-flow/min-cut argument
dictator mechanism

Capacities: a to $\boldsymbol{q}: f(\boldsymbol{q}) ; \quad \boldsymbol{q}$ to $q_{i}: f(\boldsymbol{q}) ; \quad q_{i}$ to $b: y_{i}\left(q_{i}\right)$

Characterization of Interim Feasibility

Thm: For single-item, allocation rules \boldsymbol{y} are interim feasible iff, [Border '91]

$$
\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq 1-\prod_{i}\left(1-\hat{q}_{i}\right), \quad \forall \hat{\boldsymbol{q}} \in[0,1]^{n} .
$$

Proof: max-flow/min-cut argument

Capacities: a to $\boldsymbol{q}: f(\boldsymbol{q}) ; \quad \boldsymbol{q}$ to $q_{i}: f(\boldsymbol{q}) ; \quad q_{i}$ to $b: y_{i}\left(q_{i}\right)$

Characterization of Interim Feasibility

Thm: For single-item, allocation rules \boldsymbol{y} are interim feasible iff, [Border '91]

$$
\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq 1-\prod_{i}\left(1-\hat{q}_{i}\right), \quad \forall \hat{\boldsymbol{q}} \in[0,1]^{n} .
$$

Proof: max-flow/min-cut argument
dictator mechanism

double dictator

Capacities: a to $\boldsymbol{q}: f(\boldsymbol{q}) ; \quad \boldsymbol{q}$ to $q_{i}: f(\boldsymbol{q}) ; \quad q_{i}$ to $b: y_{i}\left(q_{i}\right)$
Note: generalizes to matroids with $\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq \mathbf{E}_{S \sim \hat{\boldsymbol{q}}}[\operatorname{rank}(S)]$.
[Alaei, Fu, Haghpanah, H., Malekian '12]

Characterization of Interim Feasibility

Thm: For single-item, allocation rules \boldsymbol{y} are interim feasible iff, [Border '91]

$$
\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq 1-\prod_{i}\left(1-\hat{q}_{i}\right), \quad \forall \hat{\boldsymbol{q}} \in[0,1]^{n} .
$$

Capacities: a to $\boldsymbol{q}: f(\boldsymbol{q}) ; \quad \boldsymbol{q}$ to $q_{i}: f(\boldsymbol{q}) ; \quad q_{i}$ to $b: y_{i}\left(q_{i}\right)$
Note: generalizes to matroids with $\sum_{i} Y_{i}\left(\hat{q}_{i}\right) \leq \mathbf{E}_{S \sim \hat{\boldsymbol{q}}}[\operatorname{rank}(S)]$.
[Alaei, Fu, Haghpanah, H., Malekian '12]

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Proof sketch:

- discretize quantiles

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Proof sketch:

- discretize quantiles
- view \boldsymbol{y} as "flattened" vector \boldsymbol{z} in $[0,1]^{m}$ defined as $z_{i q}=y_{i}(q)$
(right-hand column of network flow)

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Proof sketch:

- discretize quantiles
- view \boldsymbol{y} as "flattened" vector \boldsymbol{z} in $[0,1]^{m}$
(total number of types m) defined as $z_{i q}=y_{i}(q)$
(right-hand column of network flow)

Important Fact: $z_{i q}=\mathbf{E}_{\boldsymbol{q}}\left[z_{i q}^{E P}(\boldsymbol{q})\right]$ (interim z is expectation of ex post $z^{E P}$)

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Proof sketch:

- discretize quantiles
- view \boldsymbol{y} as "flattened" vector \boldsymbol{z} in $[0,1]^{m}$ defined as $z_{i q}=y_{i}(q)$ (right-hand column of network flow)
- interim feasible \boldsymbol{z} is convex (in fact: a polytope)
\square
Important Fact: $z_{i q}=\mathbf{E}_{\boldsymbol{q}}\left[z_{i q}^{E P}(\boldsymbol{q})\right]$ (interim z is expectation of ex post $z^{E P}$)

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Proof sketch:

- discretize quantiles
- view \boldsymbol{y} as "flattened" vector \boldsymbol{z} in $[0,1]^{m}$ (total number of types m) defined as $z_{i q}=y_{i}(q)$ (right-hand column of network flow)
- interim feasible \boldsymbol{z} is convex (in fact: a polytope)
- any interim feasible \boldsymbol{z} is convex combination of vertices.

$$
\text { Important Fact: } z_{i q}=\mathbf{E}_{\boldsymbol{q}}\left[z_{i q}^{E P}(\boldsymbol{q})\right] \quad \text { (interim } z \text { is expectation of ex post } z^{E P} \text {) }
$$

Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation \boldsymbol{y} can be ex post implemented by stochastic weighted optimizer $\boldsymbol{y}^{E P}$. [Cai, Daskalakis, Weinberg '13]

Proof sketch:

- discretize quantiles
- view \boldsymbol{y} as "flattened" vector \boldsymbol{z} in $[0,1]^{m}$
(total number of types m) defined as $z_{i q}=y_{i}(q)$ (right-hand column of network flow)
- interim feasible \boldsymbol{z} is convex (in fact: a polytope)
- any interim feasible \boldsymbol{z} is convex combination of vertices.
- vertices are given by (deterministic) weighted optimizer.

$$
\text { Important Fact: } z_{i q}=\mathbf{E}_{\boldsymbol{q}}\left[z_{i q}^{E P}(\boldsymbol{q})\right] \quad \text { (interim } z \text { is expectation of ex post } z^{E P} \text {) }
$$

Flattened Ex Post Feasibility

Ex Post Feasibility $\boldsymbol{y}^{E P}(\boldsymbol{q}) \in \mathcal{X} \quad\left(\right.$ e.g. single item $\left.\sum_{i} y_{i}^{E P}(q) \leq 1\right)$

Flattened Ex Post Feasibility

Ex Post Feasibility $\boldsymbol{y}^{E P}(\boldsymbol{q}) \in \mathcal{X} \quad$ (e.g. single item $\left.\sum_{i} y_{i}^{E P}(q) \leq 1\right)$

Ex Post Flattened Feasibility:

- $z_{i q}^{E P}(\boldsymbol{q})=0$ if $q_{i} \neq q$.
- $\mathrm{X}_{i=1}^{n} z_{i q_{i}}^{E P}(\boldsymbol{q}) \in \mathcal{X}$.

Flattened Ex Post Feasibility

Ex Post Feasibility $\boldsymbol{y}^{E P}(\boldsymbol{q}) \in \mathcal{X} \quad$ (e.g. single item $\left.\sum_{i} y_{i}^{E P}(q) \leq 1\right)$

Ex Post Flattened Feasibility:

- $z_{i q}^{E P}(\boldsymbol{q})=0$ if $q_{i} \neq q$.
- $X_{i=1}^{n} z_{i q_{i}}^{E P}(\boldsymbol{q}) \in \mathcal{X}$.

Example: discretize 1 as $\{L, H\}$; discretize 2 as $\{M\}$; index $H L M$

Flattened Ex Post Feasibility

Ex Post Feasibility $\boldsymbol{y}^{E P}(\boldsymbol{q}) \in \mathcal{X} \quad$ (e.g. single item $\left.\sum_{i} y_{i}^{E P}(q) \leq 1\right)$

Ex Post Flattened Feasibility:

- $z_{i q}^{E P}(\boldsymbol{q})=0$ if $q_{i} \neq q$.
- $X_{i=1}^{n} z_{i q_{i}}^{E P}(\boldsymbol{q}) \in \mathcal{X}$.

Example: discretize 1 as $\{L, H\}$; discretize 2 as $\{M\}$; index $H L M$

$\boldsymbol{q}=(H, M)$

$\boldsymbol{q}=(L, M)$

Flattened Ex Post Feasibility

Ex Post Feasibility $\boldsymbol{y}^{E P}(\boldsymbol{q}) \in \mathcal{X} \quad$ (e.g. single item $\left.\sum_{i} y_{i}^{E P}(q) \leq 1\right)$

Ex Post Flattened Feasibility:

- $z_{i q}^{E P}(\boldsymbol{q})=0$ if $q_{i} \neq q$.
- $X_{i=1}^{n} z_{i q_{i}}^{E P}(\boldsymbol{q}) \in \mathcal{X}$.

Example: discretize 1 as $\{L, H\}$; discretize 2 as $\{M\}$; index $H L M$

$\boldsymbol{q}=(H, M)$

$\boldsymbol{q}=(L, M)$

interim

Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

s.t. " \hat{y} is interim feasible."

Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

s.t. " \hat{y} is interim feasible."

Computational Tractability:

Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{y}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{\boldsymbol{y}} \text { is interim feasible." }
\end{aligned}
$$

Computational Tractability:

- Can optimize in general via separation oracle and sampling.
[Cai, Daskalakis, Weinberg '12,'13]

Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{y}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{\boldsymbol{y}} \text { is interim feasible." }
\end{aligned}
$$

Computational Tractability:

- Can optimize in general via separation oracle and sampling.
[Cai, Daskalakis, Weinberg '12,'13]
- Single item: Can optimize with m^{2}-sized linear program.
[Alaei, Fu, Haghpanah, H., Malekian '12]

Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

$$
\begin{aligned}
& \max _{\hat{y}} \sum_{i} \operatorname{Rev}\left[\hat{y}_{i}\right] \\
& \text { s.t. " } \hat{\boldsymbol{y}} \text { is interim feasible." }
\end{aligned}
$$

Computational Tractability:

- Can optimize in general via separation oracle and sampling.
[Cai, Daskalakis, Weinberg '12,'13]
- Single item: Can optimize with m^{2}-sized linear program.
[Alaei, Fu, Haghpanah, H., Malekian '12]
- Matroid: Can optimize as interim feasibility is polymatroid.
[Alaei, Fu, Haghpanah, H., Malekian '12]

Conclusions: Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myerson '81; Bulow and Roberts '89]

- single-agent problem: constraint on ex ante allocation probability.
- multi-agent composition: marginal revenue mechanism.
- preference assumption: revenue linearity
- single-dimensional linear (utility) preferences.
- some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

- single-agent problem: constraint on entire allocation rule.
- multi-agent composition: stochastic weighted optimization.
- preference assumption: none:
- remaining multi-dimensional linear (utility) preferences.
- non-linear (utility) preferences.
(e.g., risk aversion, budgets)

4. Solving Public Budget Single-agent Problem

[cf. Laffont, Robert '96; Bulow, Roberts '89; Devanur, Ha, H. '13]
[cf. Bulow, Klemperer '96]
5. Solving Unit-demand Single-agent Problem
[Haghpanah, H. '15]
[cf. Daskalakis, Deckelbaum, Tzamos '13,'14] [cf. Wang, Tang '14] [cf. Giannakopoulos, Koutsoupias '14]
[cf. Armstrong '96; Rochet, Chone '98]

Unit-demand Preferences

Unit-demand Preferences:

- m items.
- allocation: $x=\left(\{x\}_{1}, \ldots,\{x\}_{m}\right)$ with $\sum_{j}\{x\}_{j} \leq 1$; payment: p
- private type: $t=\left(\{t\}_{1}, \ldots,\{t\}_{m}\right)$ in type space $\mathcal{T}=[0,1]^{m}$
- utility: $u=\sum_{j} t \cdot x-p$.
$\left(t \cdot x=\sum_{j}\{t\}_{j}\{x\}_{j}\right)$
- distribution: $t \sim F$ (with density function $f(t)$)

Unit-demand Preferences

Unit-demand Preferences:

- m items.
- allocation: $x=\left(\{x\}_{1}, \ldots,\{x\}_{m}\right)$ with $\sum_{j}\{x\}_{j} \leq 1$; payment: p
- private type: $t=\left(\{t\}_{1}, \ldots,\{t\}_{m}\right)$ in type space $\mathcal{T}=[0,1]^{m}$
- utility: $u=\sum_{j} t \cdot x-p$. $\left(t \cdot x=\sum_{j}\{t\}_{j}\{x\}_{j}\right)$
- distribution: $t \sim F$ (with density function $f(t)$)

Examples:

- single-dimensional linear: $m=1$
- two-item uniform: $m=2, t \sim U[0,1]^{2}$.

Unit-demand Preferences

Unit-demand Preferences:

- m items.
- allocation: $x=\left(\{x\}_{1}, \ldots,\{x\}_{m}\right)$ with $\sum_{j}\{x\}_{j} \leq 1$; payment: p
- private type: $t=\left(\{t\}_{1}, \ldots,\{t\}_{m}\right)$ in type space $\mathcal{T}=[0,1]^{m}$
- utility: $u=\sum_{j} t \cdot x-p$. $\left(t \cdot x=\sum_{j}\{t\}_{j}\{x\}_{j}\right)$
- distribution: $t \sim F$ (with density function $f(t)$)

Examples:

- single-dimensional linear: $m=1$
- two-item uniform: $m=2, t \sim U[0,1]^{2}$.

Assumption: item-symmetric distributions; wlog $\{t\}_{1} \geq\{t\}_{j}$.

Motivation: Second-degree Price Discrimination

Example: red or blue car.

Motivation: Second-degree Price Discrimination

Example: red or blue car.
Intuition: price discrimination can improve revenue if high-value agents are more sensitive to color.

- offer high price to choose color
- offer low price for random color

Motivation: Second-degree Price Discrimination

Example: red or blue car.
Intuition: price discrimination can improve revenue if high-value agents are more sensitive to color.

- offer high price to choose color
- offer low price for random color

Today: when high-value agents are less sensitive to color

- price discrimination is unhelpful.
(without loss to project multi-dimensional type to single-dimensional value for favorite item)
- single-dimensinal theory gives optimal mechanism for projection.

Motivation: Second-degree Price Discrimination

Example: red or blue car.
Intuition: price discrimination can improve revenue if high-value agents are more sensitive to color.

- offer high price to choose color
- offer low price for random color

Today: when high-value agents are less sensitive to color

- price discrimination is unhelpful.
(without loss to project multi-dimensional type to single-dimensional value for favorite item)
- single-dimensinal theory gives optimal mechanism for projection.

Thm: For item-semetric distributions, favorite-item projection is optimal if $\operatorname{Dist}_{t}\left[\{t\}_{2} /\{t\}_{1} \mid\{t\}_{1}\right]$ is ordered according to $\{t\}_{1}$ by first-order stochastic dominance.

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

Warmup: Optimal Mechanism for $U[0,1]^{2}$

Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$;

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$; for $t \sim U[0,1]^{2}$: c.d.f. $F_{\max }(z)=z^{2}$; density $f_{\max }(z)=2 z$.

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$; for $t \sim U[0,1]^{2}$: c.d.f. $F_{\max }(z)=z^{2}$; density $f_{\max }(z)=2 z$.
- Condition on $\{t\}_{2} /\{t\}_{1}=\theta$ and assume θ is public.

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote Dist $_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$; for $t \sim U[0,1]^{2}$: c.d.f. $F_{\max }(z)=z^{2}$; density $f_{\max }(z)=2 z$.
- Condition on $\{t\}_{2} /\{t\}_{1}=\theta$ and assume θ is public.
- Note $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{2} /\{t\}_{1}=\theta\right]$ is $F_{\text {max }}$.

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$; for $t \sim U[0,1]^{2}$: c.d.f. $F_{\max }(z)=z^{2}$; density $f_{\max }(z)=2 z$.
- Condition on $\{t\}_{2} /\{t\}_{1}=\theta$ and assume θ is public.
- Note $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{2} /\{t\}_{1}=\theta\right]$ is $F_{\text {max }}$.
- The following are isomorphic:
- single probabilistic item: value $\{t\}_{1}$, can allocate w.p. $1, \theta$, or 0
- two items, value $\{t\}_{1}$ for item 1 , value $\theta \cdot\{t\}_{1}$ for item 2.

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$; for $t \sim U[0,1]^{2}$: c.d.f. $F_{\max }(z)=z^{2}$; density $f_{\max }(z)=2 z$.
- Condition on $\{t\}_{2} /\{t\}_{1}=\theta$ and assume θ is public.
- Note $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{2} /\{t\}_{1}=\theta\right]$ is $F_{\text {max }}$.
- The following are isomorphic:
- single probabilistic item: value $\{t\}_{1}$, can allocate w.p. $1, \theta$, or 0
- two items, value $\{t\}_{1}$ for item 1 , value $\theta \cdot\{t\}_{1}$ for item 2.
- optimal auction for single probabilistic item sells deterministically by posting price $\phi_{\max }^{-1}(0)=\sqrt{1 / 3}$.
["no haggling"; Stokey '79; Myerson '81; Riley, Zeckhauser '83]

Warmup: Optimal Mechanism for $U[0,1]^{2}$
Approach: solve on rays from origin; check consistency [Armstrong '96]

- Let $F_{\text {max }}$ denote $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{1}>\{t\}_{2}\right]$; for $t \sim U[0,1]^{2}$: c.d.f. $F_{\max }(z)=z^{2}$; density $f_{\max }(z)=2 z$.
- Condition on $\{t\}_{2} /\{t\}_{1}=\theta$ and assume θ is public.
- Note $\operatorname{Dist}_{t}\left[\{t\}_{1} \mid\{t\}_{2} /\{t\}_{1}=\theta\right]$ is $F_{\text {max }}$.
- The following are isomorphic:
- single probabilistic item: value $\{t\}_{1}$, can allocate w.p. $1, \theta$, or 0
- two items, value $\{t\}_{1}$ for item 1 , value $\theta \cdot\{t\}_{1}$ for item 2.
- optimal auction for single probabilistic item sells deterministically by posting price $\phi_{\max }^{-1}(0)=\sqrt{1 / 3}$.
["no haggling"; Stokey '79; Myerson '81; Riley, Zeckhauser '83]
- optimal auction with known θ is independent of θ; therefore, it is optimal without knowledge of θ.

Beyond Rays from Origin

Challenges for Generalization:

- must consider paths other than rays from origin
(but there are many, and most "do not work")
- must solve mechanism design problem on general paths (argument for rays does not generalize)

Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue (must maximize revenue in expectation for distribuion of types)

Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue (must maximize revenue in expectation for distribuion of types)

Def: function $\phi: \mathcal{T} \rightarrow \mathbb{R}^{m}$
(a) is amortization of revenue if for any IC IR mech. $\left(x^{\dagger}, p^{\dagger}\right)$. $\left(\mathbf{E}[\right.$ virtual surplus $]=$ revenue: $\left.\mathbf{E}_{t}\left[\phi(t) \cdot x^{\dagger}(t)\right]=\mathbf{E}_{t}\left[p^{\dagger}(t)\right]\right)$
(b) is incentive compatible if pointwise virtual surplus maximizer $x(t) \in$ $\operatorname{argmax}_{x^{\dagger}} \phi(t) \cdot x^{\dagger}$ is incentive compatible.
(x is IC if exists p such that (x, p) is IC)
(c) is virtual value if (a) and (b).

Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue (must maximize revenue in expectation for distribuion of types)

Def: function $\phi: \mathcal{T} \rightarrow \mathbb{R}^{m}$
(a) is amortization of revenue if for any IC IR mech. $\left(x^{\dagger}, p^{\dagger}\right)$. $\left(\mathbf{E}[\right.$ virtual surplus $]=$ revenue: $\left.\mathbf{E}_{t}\left[\phi(t) \cdot x^{\dagger}(t)\right]=\mathbf{E}_{t}\left[p^{\dagger}(t)\right]\right)$
(b) is incentive compatible if pointwise virtual surplus maximizer $x(t) \in$ $\operatorname{argmax}_{x^{\dagger}} \phi(t) \cdot x^{\dagger}$ is incentive compatible.
(x is IC if exists p such that (x, p) is IC)
(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.

Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue (must maximize revenue in expectation for distribuion of types)

Def: function $\phi: \mathcal{T} \rightarrow \mathbb{R}^{m}$
(a) is amortization of revenue if for any IC IR mech. $\left(x^{\dagger}, p^{\dagger}\right)$. $\left(\mathbf{E}[\right.$ virtual surplus $]=$ revenue: $\left.\mathbf{E}_{t}\left[\phi(t) \cdot x^{\dagger}(t)\right]=\mathbf{E}_{t}\left[p^{\dagger}(t)\right]\right)$
(b) is incentive compatible if pointwise virtual surplus maximizer $x(t) \in$ $\operatorname{argmax}_{x^{\dagger}} \phi(t) \cdot x^{\dagger}$ is incentive compatible.
(x is IC if exists p such that (x, p) is IC)
(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.

$$
\text { Proof: } \mathbf{E}[p(t)]=\mathbf{E}[\phi(t) \cdot x(t)] \geq \mathbf{E}\left[\phi(t) \cdot x^{\dagger}(t)\right]=\mathbf{E}\left[p^{\dagger}(t)\right]
$$

Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue (must maximize revenue in expectation for distribuion of types)

Def: function $\phi: \mathcal{T} \rightarrow \mathbb{R}^{m}$
(a) is amortization of revenue if for any IC IR mech. $\left(x^{\dagger}, p^{\dagger}\right)$.
$\left(\mathbf{E}[\right.$ virtual surplus $]=$ revenue: $\left.\mathbf{E}_{t}\left[\phi(t) \cdot x^{\dagger}(t)\right]=\mathbf{E}_{t}\left[p^{\dagger}(t)\right]\right)$
(b) is incentive compatible if pointwise virtual surplus maximizer $x(t) \in$ $\operatorname{argmax}_{x^{\dagger}} \phi(t) \cdot x^{\dagger}$ is incentive compatible.
(x is IC if exists p such that (x, p) is IC)
(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.
Proof: $\mathbf{E}[p(t)]=\mathbf{E}[\phi(t) \cdot x(t)] \geq \mathbf{E}\left[\phi(t) \cdot x^{\dagger}(t)\right]=\mathbf{E}\left[p^{\dagger}(t)\right]$
Conclusion: virtual values reduce optimization in expectation to pointwise.

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue. (cumulative distribution function $F(\cdot)$; density function $f(\cdot g)^{[M y e r s o n ~ ' 81] ~}$

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue.
(cumulative distribution function $F(\cdot)$; density function $f(\cdot g)^{[M y e r s o n ~ ' 81] ~}$
Intuition: consider price t instead of price $t+\mathrm{d} t$.

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue.
(cumulative distribution function $F(\cdot)$; density function $f(\cdot g)^{[M y e r s o n ~ ' 81] ~}$
Intuition: consider price t instead of price $t+\mathrm{d} t$.

- gain: t from types in $[t, t+\mathrm{d} t$) (with probability $f(t) \mathrm{d} t)$

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue.
(cumulative distribution function $F(\cdot)$; density function $f(.9 \text { My })^{\text {Merson '81] }}$
Intuition: consider price t instead of price $t+\mathrm{d} t$.

- gain: t from types in $[t, t+\mathrm{d} t$) (with probability $f(t) \mathrm{d} t)$
- loss: $\mathrm{d} t$ from types $t^{\dagger} \geq t+\mathrm{d} t \quad$ (with probability $1-F(t)$)

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue.
(cumulative distribution function $F(\cdot)$; density function $f(\cdot 9)^{[M y e r s o n}$ '81]
Intuition: consider price t instead of price $t+\mathrm{d} t$.

- gain: t from types in $[t, t+\mathrm{d} t$) (with probability $f(t) \mathrm{d} t)$
- loss: $\mathrm{d} t$ from types $t^{\dagger} \geq t+\mathrm{d} t \quad$ (with probability $1-F(t)$)
- net: $t f(t) \mathrm{d} t-(1-F(t)) \mathrm{d} t$

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue.
(cumulative distribution function $F(\cdot)$; density function $f(. f \text {) })^{\text {Myerson '81] }}$
Intuition: consider price t instead of price $t+\mathrm{d} t$.

- gain: t from types in $[t, t+\mathrm{d} t$) (with probability $f(t) \mathrm{d} t)$
- loss: $\mathrm{d} t$ from types $t^{\dagger} \geq t+\mathrm{d} t \quad$ (with probability $1-F(t)$)
- net: $t f(t) \mathrm{d} t-(1-F(t)) \mathrm{d} t$
- virtual surplus: integrate (net \times allocation): $\mathbf{E}[\phi(t) x(t)]$

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue. (cumulative distribution function $F(\cdot)$; density function $f\left(\cdot[9)^{[M y e r s o n ~ ' 81] ~}\right.$

Intuition: consider price t instead of price $t+\mathrm{d} t$.

- gain: t from types in $[t, t+\mathrm{d} t$) (with probability $f(t) \mathrm{d} t)$
- loss: $\mathrm{d} t$ from types $t^{\dagger} \geq t+\mathrm{d} t \quad$ (with probability $1-F(t)$)
- net: $t f(t) \mathrm{d} t-(1-F(t)) \mathrm{d} t$
- virtual surplus: integrate (net \times allocation): $\mathbf{E}[\phi(t) x(t)]$

Lemma: if $\phi(\cdot)$ is monotone (a.k.a. F is regular), pointwise optimization of virtual surplus is IC.

Single-dimensional Linear $(m=1)$

Lemma: $\phi(t)=t-\frac{1-F(t)}{f(t)}$ is an amortization of revenue.
(cumulative distribution function $F(\cdot)$; density function $f(\cdot g)^{[M y e r s o n ~ ' 81] ~}$
Intuition: consider price t instead of price $t+\mathrm{d} t$.

- gain: t from types in $[t, t+\mathrm{d} t$) (with probability $f(t) \mathrm{d} t)$
- loss: $\mathrm{d} t$ from types $t^{\dagger} \geq t+\mathrm{d} t \quad$ (with probability $1-F(t)$)
- net: $t f(t) \mathrm{d} t-(1-F(t)) \mathrm{d} t$
- virtual surplus: integrate (net \times allocation): $\mathbf{E}[\phi(t) x(t)]$

Lemma: if $\phi(\cdot)$ is monotone (a.k.a. F is regular), pointwise optimization of virtual surplus is IC.
E.g., $t \sim U[0,1] ; \quad F(t)=t ; \quad f(t)=1 ; \quad \phi(t)=2 t-1$.

General $(m=2)$

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

Amortization of Revenue: [Rochet, Chone '98]

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

Amortization of Revenue: [Rochet, Chone '98]

- write revenue $=$ surplus - utility: $\mathbf{E}[p(t)]=\mathbf{E}[t \cdot x(t)-u(t)]$.

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

Amortization of Revenue: [Rochet, Chone '98]

- write revenue $=$ surplus - utility: $\mathbf{E}[p(t)]=\mathbf{E}[t \cdot x(t)-u(t)]$.
- integrate by parts on paths to rewrite $\mathbf{E}[u(t)]$ in terms of gradient $\nabla u(t)$.

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

Amortization of Revenue: [Rochet, Chone '98]

- write revenue $=$ surplus - utility: $\mathbf{E}[p(t)]=\mathbf{E}[t \cdot x(t)-u(t)]$.
- integrate by parts on paths to rewrite $\mathbf{E}[u(t)]$ in terms of gradient $\nabla u(t)$.
- regroup as $\mathbf{E}[p(t)]=\mathbf{E}[\phi(t) \cdot x(t)]$

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

Amortization of Revenue: [Rochet, Chone '98]

- write revenue $=$ surplus - utility: $\mathbf{E}[p(t)]=\mathbf{E}[t \cdot x(t)-u(t)]$.
- integrate by parts on paths to rewrite $\mathbf{E}[u(t)]$ in terms of gradient $\nabla u(t)$.
- regroup as $\mathbf{E}[p(t)]=\mathbf{E}[\phi(t) \cdot x(t)]$

Note: for $m=2$, a degree of freedom in chosing paths.

General $(m=2)$

Lemma: For and IC mechanism, utility $u(t)$ is convex and allocation $x(t)$ is gradient of utility $\nabla u(t)$. [Rochet ' 85]

Amortization of Revenue: [Rochet, Chone '98]

- write revenue $=$ surplus - utility: $\mathbf{E}[p(t)]=\mathbf{E}[t \cdot x(t)-u(t)]$.
- integrate by parts on paths to rewrite $\mathbf{E}[u(t)]$ in terms of gradient $\nabla u(t)$.
- regroup as $\mathbf{E}[p(t)]=\mathbf{E}[\phi(t) \cdot x(t)]$

Note: for $m=2$, a degree of freedom in chosing paths.
Note: multi-dimensional amortizations of revenue are not generally incentive compatible. (thus, are not generally virtual value functions)

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it only serve the agent her favorite item (or nothing).

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the single-dimensional theory: $t_{\text {max }}=\max _{j}\{t\}_{j} ; F_{\max } ; f_{\max } ; \phi_{\max }$.

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the single-dimensional theory: $t_{\text {max }}=\max _{j}\{t\}_{j} ; F_{\max } ; f_{\max } ; \phi_{\max }$.
Goal: prove optimality of favorite-item projection among all mechs.

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the single-dimensional theory: $t_{\max }=\max _{j}\{t\}_{j} ; F_{\max } ; f_{\max } ; \phi_{\max }$.
Goal: prove optimality of favorite-item projection among all mechs.
Informally: for favorite-item projection to be optimal need virtual value of favorite item to equal virtual-value of projection.
$\{\phi(t)\}_{1}=\phi_{\max }\left(\{t\}_{1}\right)$

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the single-dimensional theory: $t_{\max }=\max _{j}\{t\}_{j} ; F_{\max } ; f_{\max } ; \phi_{\max }$.
Goal: prove optimality of favorite-item projection among all mechs.
Informally: for favorite-item projection to be optimal need virtual value of favorite item to equal virtual-value of projection.
$\{\phi(t)\}_{1}=\phi_{\max }\left(\{t\}_{1}\right)$
Note: pins down a degree of freedom in chosing paths.

Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the single-dimensional theory: $t_{\text {max }}=\max _{j}\{t\}_{j} ; F_{\max } ; f_{\max } ; \phi_{\max }$.
Goal: prove optimality of favorite-item projection among all mechs.
Informally: for favorite-item projection to be optimal need virtual value of favorite item to equal virtual-value of projection.
$\{\phi(t)\}_{1}=\phi_{\max }\left(\{t\}_{1}\right)$
Note: pins down a degree of freedom in chosing paths.
Consistency: identify sufficient conditions on distribution by checking consistency, i.e.,
(a) when positive, virtual value for favorite item \geq virtual value for other item.
(b) when negative, both are negative.

Results of Analysis $(m=2)$

Thm: The right paths for integration by parts are "equi-quantile curves" (probability $\{t\}_{2}$ is below path conditioned on $\{t\}_{1}$ is constant in $\left.\{t\}_{1}\right)$

Results of Analysis $(m=2)$

Thm: The right paths for integration by parts are "equi-quantile curves" (probability $\{t\}_{2}$ is below path conditioned on $\{t\}_{1}$ is constant in $\left.\{t\}_{1}\right)$

Thm: favorite item project is optimal if slope of equi-quantile curve at t is at least $\{t\}_{2} /\{t\}_{1}$.

Conclusions

multi-dimensional and non-linear mechanism design theory that mirrors single-dimensional linear theory

1. multi- to single-agent reductions
2. marginal revenue
3. multi-dimensional virtual values
