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Example Results Statements

[cf. literature on single-dimensional linear agents]

REDUCTIONS – AUGUST 26, 2015
2



Example Results Statements

Multi-dimensional Agents: selling “red or blue” car, values i.i.d. U [0, 1]2

• second-price auction with reserve for “favorite color” ⇒ optimal.
[cf. Myerson ’81]

[cf. literature on single-dimensional linear agents]
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Example Results Statements

Multi-dimensional Agents: selling “red or blue” car, values i.i.d. U [0, 1]2

• second-price auction with reserve for “favorite color” ⇒ optimal.
[cf. Myerson ’81]

Non-linear Agents: selling item, values i.i.d. U [0, 1], common budget

• all-pay auction with reserve (and ironing top) ⇒ optimal.
[cf. Bulow, Roberts ’89]

[cf. literature on single-dimensional linear agents]
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Example Results Statements

Multi-dimensional Agents: selling “red or blue” car, values i.i.d. U [0, 1]2

• second-price auction with reserve for “favorite color” ⇒ optimal.
[cf. Myerson ’81]

• uniform posted pricing ⇒ e/(e − 1) = 1.58 approximation.
[cf. “correlation gap” Yan, ’11]

• non-identical agents,
anonymous uniform posted pricing ⇒ e approximation.

[cf. H., Roughgarden ’09; Alaei, H., Niazadeh, Pountourakis, Yuan ’15]

Non-linear Agents: selling item, values i.i.d. U [0, 1], common budget

• all-pay auction with reserve (and ironing top) ⇒ optimal.
[cf. Bulow, Roberts ’89]

[cf. literature on single-dimensional linear agents]
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Example Results Statements

Multi-dimensional Agents: selling “red or blue” car, values i.i.d. U [0, 1]2

• second-price auction with reserve for “favorite color” ⇒ optimal.
[cf. Myerson ’81]

• uniform posted pricing ⇒ e/(e − 1) = 1.58 approximation.
[cf. “correlation gap” Yan, ’11]

• non-identical agents,
anonymous uniform posted pricing ⇒ e approximation.

[cf. H., Roughgarden ’09; Alaei, H., Niazadeh, Pountourakis, Yuan ’15]

Non-linear Agents: selling item, values i.i.d. U [0, 1], common budget

• all-pay auction with reserve (and ironing top) ⇒ optimal.
[cf. Bulow, Roberts ’89]

• all-pay auction (no reserve) ⇒ n/(n − 1) approximation.
[cf. Bulow, Klemperer ’96]

[cf. literature on single-dimensional linear agents]
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.
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Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

• single-agent problem: constraint on entire allocation rule.

REDUCTIONS – AUGUST 26, 2015
3



Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

• single-agent problem: constraint on entire allocation rule.

• mutli-agent composition: stochastic weighted optimization.
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

• single-agent problem: constraint on entire allocation rule.

• mutli-agent composition: stochastic weighted optimization.

• preference assumption: none:

– remaining multi-dimensional linear (utility) preferences.

– non-linear (utility) preferences.
(e.g., risk aversion, budgets)
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Agenda

Agenda:

1. Examples of optimal single-agent mechanisms.
(derivations tomorrow)

2. Ex ante reduction (with revenue linearity)
(e.g., unit-demand U [0, 1]2)

3. Interim reduction (without revenue linearity)
(e.g., public budget U [0, 1])

REDUCTIONS – AUGUST 26, 2015
4



Agenda

Agenda:

1. Examples of optimal single-agent mechanisms.
(derivations tomorrow)

2. Ex ante reduction (with revenue linearity)
(e.g., unit-demand U [0, 1]2)

3. Interim reduction (without revenue linearity)
(e.g., public budget U [0, 1])

Goals:

• unified framework.

• highlight differences between revenue linearity and non-linearity.
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1. Examples of optimal single-agent mechanisms

[cf. Laffont, Robert ’96] [cf. Armstrong ’96]

(derivations tomorrow)



Public Budget Preferences

Public Budget Preferences: (single-dimensional non-linear)

• allocation: x ∈ [0, 1]; payment: p

• private value: t

• public budget: B.

• utility: u =

{

tx − p p ≤ B

−∞ o.w.
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Public Budget Preferences

Public Budget Preferences: (single-dimensional non-linear)

• allocation: x ∈ [0, 1]; payment: p

• private value: t

• public budget: B.

• utility: u =

{

tx − p p ≤ B

−∞ o.w.

Running example: t ∼ U [0, 1]; B = 1/4
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Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.
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Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “3/4 lottery at price 1/4”

x(t) =

{

0 t < 1/3

3/4 o.w.

+0

+1

+
0

+
1/3

+3/4

+
1

B x(t)
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Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “3/4 lottery at price 1/4”

x(t) =

{

0 t < 1/3

3/4 o.w.

+0

+1

+
0

+
1/3

+3/4

+
1

B x(t)

(b) “two-agent all-pay auction”

x(t) =

{

t t < 1/2

3/4 o.w.

+0

+1

+
0

+
1/2

+3/4

+
1

B x(t)
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Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “3/4 lottery at price 1/4”

x(t) =

{

0 t < 1/3

3/4 o.w.

+0

+1

+
0

+
1/3

+3/4

+
1

B x(t)

(b) “two-agent all-pay auction”

x(t) =

{

t t < 1/2

3/4 o.w.

+0

+1

+
0

+
1/2

+3/4

+
1

B x(t)

Question: What is optimal?
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Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “3/4 lottery at price 1/4”

x(t) =

{

0 t < 1/3

3/4 o.w.

+0

+1

+
0

+
1/3

+3/4

+
1

B x(t)

(b) “two-agent all-pay auction”

x(t) =

{

t t < 1/2

3/4 o.w.

+0

+1

+
0

+
1/2

+3/4

+
1

B x(t)

Question: What is optimal?

Answer: (a)

REDUCTIONS – AUGUST 26, 2015
7



Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “3/4 lottery at price 1/4”

x(t) =

{

0 t < 1/3

3/4 o.w.

+0

+1

+
0

+
1/3

+3/4

+
1

B x(t)

(b) “two-agent all-pay auction”

x(t) =

{

t t < 1/2

3/4 o.w.

+0

+1

+
0

+
1/2

+3/4

+
1

B x(t)

Question: What is optimal?

Answer: (a)

Thm: For t ∼ U [0, 1], revenue optimal mechanism for ex ante
constraint q̂ ≤ 1 − B is “(q̂ + B) lottery at price B.”
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Unit-demand Preferences

Unit-demand Preferences: (multi-dimensional linear)

• allocation: x = ({x}1, {x}2) with
∑

j{x}j ≤ 1; payment: p

• private value: t = ({t}1, {t}2)

• utility: u =
∑

j{t}j{x}j − p.
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Unit-demand Preferences

Unit-demand Preferences: (multi-dimensional linear)

• allocation: x = ({x}1, {x}2) with
∑

j{x}j ≤ 1; payment: p

• private value: t = ({t}1, {t}2)

• utility: u =
∑

j{t}j{x}j − p.

Running Example: t ∼ U [0, 1]2.
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Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

REDUCTIONS – AUGUST 26, 2015
9



Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “pricing item 1”

+0

+1

+
0

+
1

+
1/2

(1, 0)(0, 0)

REDUCTIONS – AUGUST 26, 2015
9



Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “pricing item 1”

+0

+1

+
0

+
1

+
1/2

(1, 0)(0, 0)

(b) “uniform lottery”

+0

+1

+
0

+
1

(1/2, 1/2)

(0, 0)
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Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “pricing item 1”

+0

+1

+
0

+
1

+
1/2

(1, 0)(0, 0)

(b) “uniform lottery”

+0

+1

+
0

+
1

(1/2, 1/2)

(0, 0)

(c) “uniform pricing”

+0

+1

+
0

+
1

+
p

1/2

+
p

1/2

(1, 0)

(0, 1)

(0, 0)
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Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “pricing item 1”

+0

+1

+
0

+
1

+
1/2

(1, 0)(0, 0)

(b) “uniform lottery”

+0

+1

+
0

+
1

(1/2, 1/2)

(0, 0)

(c) “uniform pricing”

+0

+1

+
0

+
1

+
p

1/2

+
p

1/2

(1, 0)

(0, 1)

(0, 0)

Question: What is optimal?
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Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “pricing item 1”

+0

+1

+
0

+
1

+
1/2

(1, 0)(0, 0)

(b) “uniform lottery”

+0

+1

+
0

+
1

(1/2, 1/2)

(0, 0)

(c) “uniform pricing”

+0

+1

+
0

+
1

+
p

1/2

+
p

1/2

(1, 0)

(0, 1)

(0, 0)

Question: What is optimal?

Answer: (c)
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Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability q̂; E.g., q̂ = 1/2.

(a) “pricing item 1”

+0

+1

+
0

+
1

+
1/2

(1, 0)(0, 0)

(b) “uniform lottery”

+0

+1

+
0

+
1

(1/2, 1/2)

(0, 0)

(c) “uniform pricing”

+0

+1

+
0

+
1

+
p

1/2

+
p

1/2

(1, 0)

(0, 1)

(0, 0)

Question: What is optimal?

Answer: (c)

Thm: For t ∼ U [0, 1]2, revenue optimal mechanism for ex ante

constraint q̂ is “uniform pricing at price
√

1 − max(q̂, 2/3)”.

REDUCTIONS – AUGUST 26, 2015
9



Questions?



Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.
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Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile q of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)
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Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile q of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and t ∼ F , quantile is U [0, 1].
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Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile q of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and t ∼ F , quantile is U [0, 1].

Def: (quantile) allocation rule y(·) is allocation probability of unit
measure of types sorted in non-increasing order.
(e.g., discrete type spaces: rectangles, width f(t), height x(t);
sort by height)
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Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile q of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and t ∼ F , quantile is U [0, 1].

Def: (quantile) allocation rule y(·) is allocation probability of unit
measure of types sorted in non-increasing order.
(e.g., discrete type spaces: rectangles, width f(t), height x(t);
sort by height)

public budget

+0

+1

+
0

+
1/2

+3/4

+
1

B x(t)

+0

+1

+
0

+
1/2

+3/4

+
1

y(q)
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Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile q of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and t ∼ F , quantile is U [0, 1].

Def: (quantile) allocation rule y(·) is allocation probability of unit
measure of types sorted in non-increasing order.
(e.g., discrete type spaces: rectangles, width f(t), height x(t);
sort by height)

public budget unit demand

+0

+1

+
0

+
1/2

+3/4

+
1

B x(t)

+0

+1

+
0

+
1/2

+3/4

+
1

y(q)

+0

+1

+
0

+
1

+
p

1/2

+
p

1/2

(1, 0)

(0, 1)

(0, 0)

+0

+1

+
0

+
1

+
1/2
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Interim Pricing

Interim Pricing Problem: for allocation constraint ŷ, find

• stationary transformation σ : [0, 1] → ∆([0, 1]), and
(with σ(q) ∼ U [0, 1] for q ∼ U [0, 1])

• single agent mechanism with y(q) ≤ Eσ[ŷ(σ(t))]

to maximize revenue.
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Interim Pricing

Interim Pricing Problem: for allocation constraint ŷ, find

• stationary transformation σ : [0, 1] → ∆([0, 1]), and
(with σ(q) ∼ U [0, 1] for q ∼ U [0, 1])

• single agent mechanism with y(q) ≤ Eσ[ŷ(σ(t))]

to maximize revenue.

Def: cumulative allocation rule Y (q̂) is Y (q̂) =
∫ q̂

0
y(q)dq.
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Interim Pricing

Interim Pricing Problem: for allocation constraint ŷ, find

• stationary transformation σ : [0, 1] → ∆([0, 1]), and
(with σ(q) ∼ U [0, 1] for q ∼ U [0, 1])

• single agent mechanism with y(q) ≤ Eσ[ŷ(σ(t))]

to maximize revenue.

Def: cumulative allocation rule Y (q̂) is Y (q̂) =
∫ q̂

0
y(q)dq.

Thm: y is feasible for ŷ iff Y (q̂) ≤ Ŷ (q̂) for all q̂.
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Interim Pricing

Interim Pricing Problem: for allocation constraint ŷ, find

• stationary transformation σ : [0, 1] → ∆([0, 1]), and
(with σ(q) ∼ U [0, 1] for q ∼ U [0, 1])

• single agent mechanism with y(q) ≤ Eσ[ŷ(σ(t))]

to maximize revenue.

Def: cumulative allocation rule Y (q̂) is Y (q̂) =
∫ q̂

0
y(q)dq.

Thm: y is feasible for ŷ iff Y (q̂) ≤ Ŷ (q̂) for all q̂.

Proof sketch: resampling on [a, b] is line segment on cumulative alloc.
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Interim Pricing

Interim Pricing Problem: for allocation constraint ŷ, find

• stationary transformation σ : [0, 1] → ∆([0, 1]), and
(with σ(q) ∼ U [0, 1] for q ∼ U [0, 1])

• single agent mechanism with y(q) ≤ Eσ[ŷ(σ(t))]

to maximize revenue.

Def: cumulative allocation rule Y (q̂) is Y (q̂) =
∫ q̂

0
y(q)dq.

Thm: y is feasible for ŷ iff Y (q̂) ≤ Ŷ (q̂) for all q̂.

Proof sketch: resampling on [a, b] is line segment on cumulative alloc.

+0

+1

+
0

+
1/2

+
q̂

+
q̂‡

+
1

y(q) ŷ‡(q)

ŷ(q)

ŷ†(q)
+0

+1/2

+Y (1)

+
q̂†= 0

+
1/2

+
q̂

+
q̂‡

+
1

s

Ŷ (q) Y (q)
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Interim Pricing: Examples

Example: allocation constraint ŷ(q) = 1 − q.
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Interim Pricing: Examples

Example: allocation constraint ŷ(q) = 1 − q.

public budget
“iron top; reserve bottom”

+0

+1

+
0

+
q̂‡

+
q̂†

+
1

y(q)

ŷ(q)

+0

+1

+
0

+
t̂‡

+
t̂†

+
1

B x(t)

Note: t†, t‡ depend on ŷ.
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Interim Pricing: Examples

Example: allocation constraint ŷ(q) = 1 − q.

public budget
“iron top; reserve bottom”

+0

+1

+
0

+
q̂‡

+
q̂†

+
1

y(q)

ŷ(q)

+0

+1

+
0

+
t̂‡

+
t̂†

+
1

B x(t)

Note: t†, t‡ depend on ŷ.

unit-demand
“uniform price with reserve”

+0

+1

+
0

+
2/3

+
1

ŷ(q)

y(q)

+0

+1

+
0

+
1

+
p

1/3

+
p

1/3

(0, {t}2

2)

(0, 0) ({t}2

1, 0)

Note:
√

1/3 reserve for all ŷ.
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Unit Demand Example is Revenue Linear

Properties of unit-demand example:

• interim optimal is convex combination of ex ante optimal.
⇒ revenue linearity
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Unit Demand Example is Revenue Linear

Properties of unit-demand example:

• interim optimal is convex combination of ex ante optimal.
⇒ revenue linearity
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⇒ orderability
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Unit Demand Example is Revenue Linear

Properties of unit-demand example:

• interim optimal is convex combination of ex ante optimal.
⇒ revenue linearity

• exists consistent ordering on types for all interim optimal mechs.
⇒ orderability

Def: Rev[ŷ] is interim optimal revenue for ŷ.
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Unit Demand Example is Revenue Linear

Properties of unit-demand example:

• interim optimal is convex combination of ex ante optimal.
⇒ revenue linearity

• exists consistent ordering on types for all interim optimal mechs.
⇒ orderability

Def: Rev[ŷ] is interim optimal revenue for ŷ.

Def: Agent is revenue linear if Rev[ŷ] = Rev[ŷ†] + Rev[ŷ‡] for

any ŷ = ŷ† + ŷ‡.

REDUCTIONS – AUGUST 26, 2015
14



Unit Demand Example is Revenue Linear

Properties of unit-demand example:

• interim optimal is convex combination of ex ante optimal.
⇒ revenue linearity

• exists consistent ordering on types for all interim optimal mechs.
⇒ orderability

Def: Rev[ŷ] is interim optimal revenue for ŷ.

Def: Agent is revenue linear if Rev[ŷ] = Rev[ŷ†] + Rev[ŷ‡] for

any ŷ = ŷ† + ŷ‡.

Thm: revenue linearity implies orderability.
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2. Ex Ante Reduction (with revenue linearity)

[Alaei, Fu, Haghpanah, H ’13] [cf. Myerson ’81; Bulow, Roberts ’89]



Marginal Revenue

Def:

• R(q̂) is ex ante optimal revenue for q̂;

• R(·) is revenue curve;

• R′(q̂) = d
dq̂

R(q̂) is marginal revenue.
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Marginal Revenue

Def:

• R(q̂) is ex ante optimal revenue for q̂;

• R(·) is revenue curve;

• R′(q̂) = d
dq̂

R(q̂) is marginal revenue.

Theorem: optimal revenue for ŷ is marginal revenue for ŷ.
I.e., Rev[ŷ] = E[R′(q)ŷ(q)]
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Marginal Revenue

Def:

• R(q̂) is ex ante optimal revenue for q̂;
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Def:

• R(q̂) is ex ante optimal revenue for q̂;

• R(·) is revenue curve;

• R′(q̂) = d
dq̂

R(q̂) is marginal revenue.

Theorem: optimal revenue for ŷ is marginal revenue for ŷ.
I.e., Rev[ŷ] = E[R′(q)ŷ(q)]

Proof:

• R(q̂) is optimal revenue of step function at q̂.
q̂

• ŷ(q) is convex combination of step functions. Coefficients −ŷ′(q)

• Rev[ŷ] = E[−ŷ′(q)R(q)]
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Marginal Revenue

Def:

• R(q̂) is ex ante optimal revenue for q̂;

• R(·) is revenue curve;

• R′(q̂) = d
dq̂

R(q̂) is marginal revenue.

Theorem: optimal revenue for ŷ is marginal revenue for ŷ.
I.e., Rev[ŷ] = E[R′(q)ŷ(q)]

Proof:

• R(q̂) is optimal revenue of step function at q̂.
q̂

• ŷ(q) is convex combination of step functions. Coefficients −ŷ′(q)

• Rev[ŷ] = E[−ŷ′(q)R(q)] = E[R′(q)ŷ(q)]
(by revenue linearity)
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Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)

1. map agent types to quantiles via ordering: t → q = (q1, . . . , qn)

2. calculate marginal revenues of agent quantiles: R′
i(qi)

3. serve agents to maximize total marginal revenues
∑

i R′
i(qi) · xi

4. outcome/payments for each i are from Ri(q̂i) mechanism
for “critical quantile” q̂i.
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i(qi)

3. serve agents to maximize total marginal revenues
∑

i R′
i(qi) · xi

4. outcome/payments for each i are from Ri(q̂i) mechanism
for “critical quantile” q̂i.

Theorem: marginal revenue mechanism is optimal.

Proof:

• maximizing marginal revenue point-wise also maximizes expected
marginal revenue.
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Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)

1. map agent types to quantiles via ordering: t → q = (q1, . . . , qn)

2. calculate marginal revenues of agent quantiles: R′
i(qi)

3. serve agents to maximize total marginal revenues
∑

i R′
i(qi) · xi

4. outcome/payments for each i are from Ri(q̂i) mechanism
for “critical quantile” q̂i.

Theorem: marginal revenue mechanism is optimal.

Proof:

• maximizing marginal revenue point-wise also maximizes expected
marginal revenue.

• revenue curves are concave; marginal revenue curves are monotone;
critical quantiles exist; mechanism is incentive compatible.

REDUCTIONS – AUGUST 26, 2015
17



MRM for Unit-demand Example

Example: red-blue car, types i.i.d. U [0, 1]2.
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Example:
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• Recall Thm: U [0, 1]2 agent is revenue linear;
revenue curve R(q̂) posts price (
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• Recall Thm: U [0, 1]2 agent is revenue linear;
revenue curve R(q̂) posts price (

√
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√
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• R(q̂) = q̂
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√
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√
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√
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MRM for Unit-demand Example

Example:
0 1

0

1

red-blue car, types i.i.d. U [0, 1]2.

• Recall Thm: U [0, 1]2 agent is revenue linear;
revenue curve R(q̂) posts price (

√
1 − q̂,

√
1 − q̂).

• R(q̂) = q̂
√

1 − q̂.
0 12/3

• quantile for type (tred, tblue) is q = 1 − max(tred, tblue)
2.

• Maximize
∑

i R′(qi) · xi? serve agent with smallest q ≤ 2/3.

• Marginal Revenue Mechanism: serve agent with highest maximum

value, charge second highest maximum value or reserve
√

1/3.
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MRM for Unit-demand Example

Example:
0 1

0

1

red-blue car, types i.i.d. U [0, 1]2.

• Recall Thm: U [0, 1]2 agent is revenue linear;
revenue curve R(q̂) posts price (

√
1 − q̂,

√
1 − q̂).

• R(q̂) = q̂
√

1 − q̂.
0 12/3

• quantile for type (tred, tblue) is q = 1 − max(tred, tblue)
2.

• Maximize
∑

i R′(qi) · xi? serve agent with smallest q ≤ 2/3.

• Marginal Revenue Mechanism: serve agent with highest maximum

value, charge second highest maximum value or reserve
√

1/3.

• Cor: the marginal revenue mechanism is revenue optimal.
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Part II: Solving Single-agent Problems
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Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myerson ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

• single-agent problem: constraint on entire allocation rule.

• multi-agent composition: stochastic weighted optimization.

• preference assumption: none:

– remaining multi-dimensional linear (utility) preferences.

– non-linear (utility) preferences.
(e.g., risk aversion, budgets)
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Loose Ends

1. How do you prove revenue linearity?
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• single-dimensional linear preferences have payment identity.
• multi-dimensional preferences do not have payment identity.

(b) existence of virtual values

• some multi-dimensinal preferences have virtual values.

2. Are optimal mechanisms for U [0, 1]2 are single-dimensional
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Loose Ends

1. How do you prove revenue linearity?

(a) payment identity

• single-dimensional linear preferences have payment identity.
• multi-dimensional preferences do not have payment identity.

(b) existence of virtual values

• some multi-dimensinal preferences have virtual values.

2. Are optimal mechanisms for U [0, 1]2 are single-dimensional
projection to “favorite item”?

• yes, but this must be proved. [later today]
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Approx. Ex Ante Reduction w.o. Revenue Linearity
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Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanisms.
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Challenge: optimal mechanism is not marginal revenue based.
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Observation:
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Def: A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.

Approach: relax ex post feasibility to hold in expectation, a.k.a., ex
ante relaxation.

Observation:

• optimal ex ante relaxation is marginal revenue based.

• all single-dimensional linear agent mechanisms are marginal revenue
based.

Meta-theorem: any approximation result for single-dimensional linear
agents w.r.t. the optimal ex ante relaxation extends to general agents.
(but may need to be reinterpreted)
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Approx. Ex Ante Reduction w.o. Revenue Linearity

Def: A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanisms.

Challenge: optimal mechanism is not marginal revenue based.

Approach: relax ex post feasibility to hold in expectation, a.k.a., ex
ante relaxation.

Observation:

• optimal ex ante relaxation is marginal revenue based.

• all single-dimensional linear agent mechanisms are marginal revenue
based.

Meta-theorem: any approximation result for single-dimensional linear
agents w.r.t. the optimal ex ante relaxation extends to general agents.
(but may need to be reinterpreted)

Examples: posted pricing; anonymous pricing.
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3. Interim Reduction (without revenue linearity)

[Alaei, Fu, Haghpanah, H, Malekian ’12]

[cf. Cai, Daskalakis, Weinberg ’12,’13]
[cf. Maskin, Riley ’84; Matthews ’84; Border ’91,’07; Mierendorff ’11]



Approach

Def: Interim allocation constraints ŷ (with ŷi : [0, 1] → [0, 1]) is
interim feasible if exists ex post feasible mechanism
ŷ

EP : [0, 1]n → X ⊂ [0, 1]n that induces them.
(I.e., ŷi(qi) = Eq[ŷEP

i (q) | qi]
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Approach

Def: Interim allocation constraints ŷ (with ŷi : [0, 1] → [0, 1]) is
interim feasible if exists ex post feasible mechanism
ŷ

EP : [0, 1]n → X ⊂ [0, 1]n that induces them.
(I.e., ŷi(qi) = Eq[ŷEP

i (q) | qi]

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”
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Approach

Def: Interim allocation constraints ŷ (with ŷi : [0, 1] → [0, 1]) is
interim feasible if exists ex post feasible mechanism
ŷ

EP : [0, 1]n → X ⊂ [0, 1]n that induces them.
(I.e., ŷi(qi) = Eq[ŷEP

i (q) | qi]

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”

Agenda:

• theorem proof sketch.

• understanding interim feasibility.

• characterizing ex post mechanisms.

• optimization subject to interim feasibility.
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Theorem Proof Sketch

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”
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Theorem Proof Sketch

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”

Note: program upper bounds optimal revenue.
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Theorem Proof Sketch

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”

Note: program upper bounds optimal revenue.

Lemma: For any

• ex post feasible (not incentive compatible) mechanism ŷ
EP and

• incentive compatible (not ex post feasible) mechanism y

if ex post ŷEP induces interim ŷ and yi is feasible for ŷi (for all i), then

combined mechanism exists.
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Theorem Proof Sketch

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”

Note: program upper bounds optimal revenue.

Lemma: For any

• ex post feasible (not incentive compatible) mechanism ŷ
EP and

• incentive compatible (not ex post feasible) mechanism y

if ex post ŷEP induces interim ŷ and yi is feasible for ŷi (for all i), then

combined mechanism exists.

Proof: from definition of interim pricing problem.
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Interim Feasibility: Examples

Question: Consider single-item and allocation rules:

y†

+0

+1

+
0

+
1

+1/2

y‡

+0

+1

+
0

+
1

+
1/2

Which are interim feasible:

(a) (y†, y†), (b) (y†, y‡), or (c) (y‡, y‡)?
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Which are interim feasible:

(a) (y†, y†), (b) (y†, y‡), or (c) (y‡, y‡)?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is
“double dictator” and infeasible.
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Which are interim feasible:

(a) (y†, y†), (b) (y†, y‡), or (c) (y‡, y‡)?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is
“double dictator” and infeasible.

Note: for (c), Pr[q1 or q2 is high] = 3/4 but E[alloc. to high] = 1.
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Interim Feasibility: Examples

Question: Consider single-item and allocation rules:

y†

+0

+1

+
0

+
1

+1/2

y‡

+0

+1

+
0

+
1

+
1/2

Which are interim feasible:

(a) (y†, y†), (b) (y†, y‡), or (c) (y‡, y‡)?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is
“double dictator” and infeasible.

Note: for (c), Pr[q1 or q2 is high] = 3/4 but E[alloc. to high] = 1.
(but cannot allocate to types more often than types are realized)

REDUCTIONS – AUGUST 26, 2015
26



The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F , common budget B.
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Fact: every symmetric convex optimization has symmetric optimal
solution.
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REDUCTIONS – AUGUST 26, 2015
27



The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F , common budget B.
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Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives ŷ(q) = 1 − q.

• claim: any feasible symmetric y = (y, y) is feasible for ŷ = (ŷ, ŷ).
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constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives ŷ(q) = 1 − q.

• claim: any feasible symmetric y = (y, y) is feasible for ŷ = (ŷ, ŷ).

• suppose y infeasible for ŷ, then exists q̂ with Y (q̂) > Ŷ (q̂).
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The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F , common budget B.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives ŷ(q) = 1 − q.

• claim: any feasible symmetric y = (y, y) is feasible for ŷ = (ŷ, ŷ).

• suppose y infeasible for ŷ, then exists q̂ with Y (q̂) > Ŷ (q̂).

• note Pr[qi ∈ [0, q̂]] = q̂;
Pr[∃i, qi ∈ [0, q̂]] = 1 − (1 − q̂)2 = 2q̂ − q̂2.
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The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F , common budget B.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives ŷ(q) = 1 − q.

• claim: any feasible symmetric y = (y, y) is feasible for ŷ = (ŷ, ŷ).

• suppose y infeasible for ŷ, then exists q̂ with Y (q̂) > Ŷ (q̂).

• note Pr[qi ∈ [0, q̂]] = q̂;
Pr[∃i, qi ∈ [0, q̂]] = 1 − (1 − q̂)2 = 2q̂ − q̂2.

• note Ŷ (q̂) =
R q̂

0
(1 − q)dq = q̂ − q̂2/2
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The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F , common budget B.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives ŷ(q) = 1 − q.

• claim: any feasible symmetric y = (y, y) is feasible for ŷ = (ŷ, ŷ).

• suppose y infeasible for ŷ, then exists q̂ with Y (q̂) > Ŷ (q̂).

• note Pr[qi ∈ [0, q̂]] = q̂;
Pr[∃i, qi ∈ [0, q̂]] = 1 − (1 − q̂)2 = 2q̂ − q̂2.

• note Ŷ (q̂) =
R q̂

0
(1 − q)dq = q̂ − q̂2/2

• so expected number served = 2Ŷ (q̂) = 2q̂ − q̂2

= Pr[∃i, q1 ∈ [0, q̂]] = expected number realized.
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The Symmetric Case: Interim Feasibility

Example: one item, two agents, i.i.d. F , common budget B.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives ŷ(q) = 1 − q.

• claim: any feasible symmetric y = (y, y) is feasible for ŷ = (ŷ, ŷ).

• suppose y infeasible for ŷ, then exists q̂ with Y (q̂) > Ŷ (q̂).

• note Pr[qi ∈ [0, q̂]] = q̂;
Pr[∃i, qi ∈ [0, q̂]] = 1 − (1 − q̂)2 = 2q̂ − q̂2.

• note Ŷ (q̂) =
R q̂

0
(1 − q)dq = q̂ − q̂2/2

• so expected number served = 2Ŷ (q̂) = 2q̂ − q̂2

= Pr[∃i, q1 ∈ [0, q̂]] = expected number realized.

• but Y (q̂) > Ŷ (q̂) so constraint violated for y.
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Symmetric Case: Conclusions

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.
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Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Note: “strongest quantile wins” allocation constraint is independent of
single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and
reserve prices bottom (with regularity assumption). [Laffont, Robert ’96]
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Note: almost all positive results in literature for non-linear mechanism
design are based on this fact. (e.g., budget, risk aversion.)
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Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, [Border ’91]

∑

i
Yi(q̂i) ≤ 1 −

∏

i
(1 − q̂i), ∀q̂ ∈ [0, 1]n.
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Yi(q̂i) ≤ 1 −

∏

i
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∏

i
(1 − q̂i), ∀q̂ ∈ [0, 1]n.

Proof: max-flow/min-cut argument

dictator mechanism double dictator

a

L1L2

L1H2

H1L2

H1H2

L1

L2

H2

H1

b a

L1L2

L1H2

H1L2

H1H2

L1

L2

H2

H1

b
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Note: generalizes to matroids with
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i Yi(q̂i) ≤ ES∼q̂[rank(S)].
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Thm: For single-item, allocation rules y are interim feasible iff, [Border ’91]

∑

i
Yi(q̂i) ≤ 1 −

∏

i
(1 − q̂i), ∀q̂ ∈ [0, 1]n.

Proof: max-flow/min-cut argument [cf. Aggarwal, Fiat, Goldberg, H., Immorlica, Sudan ’05]
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Note: generalizes to matroids with
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Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.
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Characterization of Ex Post Implementation

Def: a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation y can be ex post implemented by
stochastic weighted optimizer yEP. [Cai, Daskalakis, Weinberg ’13]

Proof sketch:

• discretize quantiles

• view y as “flattened” vector z in [0, 1]m (total number of types m)
defined as ziq = yi(q) (right-hand column of network flow)

• interim feasible z is convex (in fact: a polytope)

• any interim feasible z is convex combination of vertices.

• vertices are given by (deterministic) weighted optimizer.

Important Fact: ziq = Eq

ˆ

zEP
iq (q)

˜

(interim z is expectation of ex post zEP)
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Flattened Ex Post Feasibility

Ex Post Feasibility yEP(q) ∈ X (e.g. single item
∑

i yEP
i (q) ≤ 1)
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Ex Post Feasibility yEP(q) ∈ X (e.g. single item
∑

i yEP
i (q) ≤ 1)

Ex Post Flattened Feasibility:

• zEP
iq (q) = 0 if qi 6= q.

• X
n
i=1z

EP
iqi

(q) ∈ X .
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• zEP
iq (q) = 0 if qi 6= q.
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iqi
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Flattened Ex Post Feasibility

Ex Post Feasibility yEP(q) ∈ X (e.g. single item
∑

i yEP
i (q) ≤ 1)

Ex Post Flattened Feasibility:

• zEP
iq (q) = 0 if qi 6= q.

• X
n
i=1z

EP
iqi

(q) ∈ X .

Example: discretize 1 as {L,H}; discretize 2 as {M}; index HLM
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Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”
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Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

max
ŷ

X

i
Rev[ŷi]

s.t. “ŷ is interim feasible.”

Computational Tractability:

• Can optimize in general via separation oracle and sampling.
[Cai, Daskalakis, Weinberg ’12,’13]

.

• Single item: Can optimize with m2-sized linear program.
[Alaei, Fu, Haghpanah, H., Malekian ’12]

• Matroid: Can optimize as interim feasibility is polymatroid.
[Alaei, Fu, Haghpanah, H., Malekian ’12]
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Conclusions: Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myerson ’81; Bulow and Roberts ’89]

• single-agent problem: constraint on ex ante allocation probability.

• multi-agent composition: marginal revenue mechanism.

• preference assumption: revenue linearity

– single-dimensional linear (utility) preferences.

– some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

• single-agent problem: constraint on entire allocation rule.

• multi-agent composition: stochastic weighted optimization.

• preference assumption: none:

– remaining multi-dimensional linear (utility) preferences.

– non-linear (utility) preferences.
(e.g., risk aversion, budgets)
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4. Solving Public Budget Single-agent Problem

[cf. Laffont, Robert ’96; Bulow, Roberts ’89; Devanur, Ha, H. ’13]

[cf. Bulow, Klemperer ’96]



5. Solving Unit-demand Single-agent Problem

[Haghpanah, H. ’15]

[cf. Daskalakis, Deckelbaum, Tzamos ’13,’14] [cf. Wang, Tang ’14]
[cf. Giannakopoulos, Koutsoupias ’14]

[cf. Armstrong ’96; Rochet, Chone ’98]



Unit-demand Preferences

Unit-demand Preferences:

• m items.

• allocation: x = ({x}1, . . . , {x}m) with
∑

j{x}j ≤ 1;
payment: p

• private type: t = ({t}1, . . . , {t}m) in type space T = [0, 1]m

• utility: u =
∑

j t · x − p.
(t · x =

∑

j{t}j{x}j )

• distribution: t ∼ F (with density function f(t))

REDUCTIONS – AUGUST 26, 2015
36



Unit-demand Preferences

Unit-demand Preferences:

• m items.

• allocation: x = ({x}1, . . . , {x}m) with
∑

j{x}j ≤ 1;
payment: p

• private type: t = ({t}1, . . . , {t}m) in type space T = [0, 1]m

• utility: u =
∑

j t · x − p.
(t · x =

∑

j{t}j{x}j )

• distribution: t ∼ F (with density function f(t))

Examples:

• single-dimensional linear: m = 1

• two-item uniform: m = 2, t ∼ U [0, 1]2.
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Unit-demand Preferences

Unit-demand Preferences:

• m items.

• allocation: x = ({x}1, . . . , {x}m) with
∑

j{x}j ≤ 1;
payment: p

• private type: t = ({t}1, . . . , {t}m) in type space T = [0, 1]m

• utility: u =
∑

j t · x − p.
(t · x =

∑

j{t}j{x}j )

• distribution: t ∼ F (with density function f(t))

Examples:

• single-dimensional linear: m = 1

• two-item uniform: m = 2, t ∼ U [0, 1]2.

Assumption: item-symmetric distributions; wlog {t}1 ≥ {t}j .
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Motivation: Second-degree Price Discrimination

Example: red or blue car.
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Motivation: Second-degree Price Discrimination

Example: red or blue car.

Intuition: price discrimination can improve revenue if high-value
agents are more sensitive to color.

• offer high price to choose color

• offer low price for random color

Today: when high-value agents are less sensitive to color

• price discrimination is unhelpful.
(without loss to project multi-dimensional type to
single-dimensional value for favorite item)

• single-dimensinal theory gives optimal mechanism for projection.

Thm: For item-semetric distributions, favorite-item projection is optimal
if Dist t[{t}2/{t}1 | {t}1] is ordered according to {t}1 by first-order
stochastic dominance.
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Warmup: Optimal Mechanism for U [0, 1]2

Approach: solve on rays from origin; check consistency [Armstrong ’96]
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for t ∼ U [0, 1]2: c.d.f. Fmax(z) = z2; density fmax(z) = 2z.

• Condition on {t}2/{t}1 = θ and assume θ is public.

• Note Dist t[{t}1 | {t}2/{t}1 = θ] is Fmax.

• The following are isomorphic:

– single probabilistic item: value {t}1, can allocate w.p. 1, θ, or 0

– two items, value {t}1 for item 1, value θ · {t}1 for item 2.
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Approach: solve on rays from origin; check consistency [Armstrong ’96]

• Let Fmax denote Dist t[{t}1 | {t}1 > {t}2];
for t ∼ U [0, 1]2: c.d.f. Fmax(z) = z2; density fmax(z) = 2z.

• Condition on {t}2/{t}1 = θ and assume θ is public.

• Note Dist t[{t}1 | {t}2/{t}1 = θ] is Fmax.

• The following are isomorphic:

– single probabilistic item: value {t}1, can allocate w.p. 1, θ, or 0

– two items, value {t}1 for item 1, value θ · {t}1 for item 2.

• optimal auction for single probabilistic item sells deterministically by

posting price φ−1
max(0) =

√

1/3.
[“no haggling”; Stokey ’79; Myerson ’81; Riley, Zeckhauser ’83]
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Warmup: Optimal Mechanism for U [0, 1]2

Approach: solve on rays from origin; check consistency [Armstrong ’96]

• Let Fmax denote Dist t[{t}1 | {t}1 > {t}2];
for t ∼ U [0, 1]2: c.d.f. Fmax(z) = z2; density fmax(z) = 2z.

• Condition on {t}2/{t}1 = θ and assume θ is public.

• Note Dist t[{t}1 | {t}2/{t}1 = θ] is Fmax.

• The following are isomorphic:

– single probabilistic item: value {t}1, can allocate w.p. 1, θ, or 0

– two items, value {t}1 for item 1, value θ · {t}1 for item 2.

• optimal auction for single probabilistic item sells deterministically by

posting price φ−1
max(0) =

√

1/3.
[“no haggling”; Stokey ’79; Myerson ’81; Riley, Zeckhauser ’83]

• optimal auction with known θ is independent of θ; therefore, it is
optimal without knowledge of θ.

REDUCTIONS – AUGUST 26, 2015
38



Beyond Rays from Origin

Challenges for Generalization:

• must consider paths other than rays from origin
(but there are many, and most “do not work”)

• must solve mechanism design problem on general paths
(argument for rays does not generalize)
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Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue
(must maximize revenue in expectation for distribuion of types)
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Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue
(must maximize revenue in expectation for distribuion of types)

Def: function φ : T → R
m

(a) is amortization of revenue if for any IC IR mech. (x†, p†).

(E[virtual surplus] = revenue: Et

[

φ(t)·x†(t)
]

=Et

[

p†(t)
]

)

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) ∈
argmaxx† φ(t) · x† is incentive compatible.
(x is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).
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Recall: no pointwise optimal mechanism for revenue
(must maximize revenue in expectation for distribuion of types)

Def: function φ : T → R
m

(a) is amortization of revenue if for any IC IR mech. (x†, p†).

(E[virtual surplus] = revenue: Et

[

φ(t)·x†(t)
]

=Et

[

p†(t)
]

)

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) ∈
argmaxx† φ(t) · x† is incentive compatible.
(x is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.

Proof: E [p(t)] = E[φ(t) · x(t)] ≥ E
[

φ(t) · x†(t)
]

= E
[

p†(t)
]
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(a) is amortization of revenue if for any IC IR mech. (x†, p†).

(E[virtual surplus] = revenue: Et

[

φ(t)·x†(t)
]

=Et

[

p†(t)
]

)

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) ∈
argmaxx† φ(t) · x† is incentive compatible.
(x is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.

Proof: E [p(t)] = E[φ(t) · x(t)] ≥ E
[

φ(t) · x†(t)
]

= E
[

p†(t)
]

Conclusion: virtual values reduce optimization in expectation to
pointwise.
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Single-dimensional Linear (m = 1)

Lemma: φ(t) = t − 1−F (t)
f(t) is an amortization of revenue.

[Myerson ’81]
(cumulative distribution function F (·); density function f(·))
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Lemma: if φ(·) is monotone (a.k.a. F is regular), pointwise
optimization of virtual surplus is IC. [Myerson ’81]
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Single-dimensional Linear (m = 1)

Lemma: φ(t) = t − 1−F (t)
f(t) is an amortization of revenue.

[Myerson ’81]
(cumulative distribution function F (·); density function f(·))

Intuition: consider price t instead of price t + dt.

• gain: t from types in [t, t + dt) (with probability f(t)dt)

• loss: dt from types t† ≥ t + dt (with probability 1 − F (t))

• net: t f(t) dt − (1 − F (t))dt

• virtual surplus: integrate (net × allocation): E[φ(t)x(t)]

Lemma: if φ(·) is monotone (a.k.a. F is regular), pointwise
optimization of virtual surplus is IC. [Myerson ’81]

E.g., t ∼ U [0, 1]; F (t) = t; f(t) = 1; φ(t) = 2t − 1.
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General (m = 2)
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General (m = 2)

Lemma: For and IC mechanism, utility u(t) is convex and allocation
x(t) is gradient of utility ∇u(t). [Rochet ’85]
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Lemma: For and IC mechanism, utility u(t) is convex and allocation
x(t) is gradient of utility ∇u(t). [Rochet ’85]
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x(t) is gradient of utility ∇u(t). [Rochet ’85]

Amortization of Revenue: [Rochet, Chone ’98]

• write revenue = surplus − utility: E[p(t)] = E[t · x(t) − u(t)].

• integrate by parts on paths to rewrite E[u(t)] in terms of gradient
∇u(t).

• regroup as E[p(t)] = E[φ(t) · x(t)]

Note: for m = 2, a degree of freedom in chosing paths.
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General (m = 2)

Lemma: For and IC mechanism, utility u(t) is convex and allocation
x(t) is gradient of utility ∇u(t). [Rochet ’85]

Amortization of Revenue: [Rochet, Chone ’98]

• write revenue = surplus − utility: E[p(t)] = E[t · x(t) − u(t)].

• integrate by parts on paths to rewrite E[u(t)] in terms of gradient
∇u(t).

• regroup as E[p(t)] = E[φ(t) · x(t)]

Note: for m = 2, a degree of freedom in chosing paths.

Note: multi-dimensional amortizations of revenue are not generally
incentive compatible. (thus, are not generally virtual value functions)
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Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.
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Def: a mechanism is a (single-dimensional) favorite-item projection if it
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single-dimensional theory: tmax = maxj{t}j ; Fmax; fmax; φmax.
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Reverse Solving for Virtual Values

Main Idea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it
only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the
single-dimensional theory: tmax = maxj{t}j ; Fmax; fmax; φmax.

Goal: prove optimality of favorite-item projection among all mechs.

Informally: for favorite-item projection to be optimal need virtual value
of favorite item to equal virtual-value of projection.
{φ(t)}1 = φmax({t}1)

Note: pins down a degree of freedom in chosing paths.

Consistency: identify sufficient conditions on distribution by checking
consistency, i.e.,

(a) when positive, virtual value for favorite item ≥ virtual value for other item.

(b) when negative, both are negative.

REDUCTIONS – AUGUST 26, 2015
43



Results of Analysis (m = 2)
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Results of Analysis (m = 2)

Thm: The right paths for integration by parts are “equi-quantile curves”
(probability {t}2 is below path conditioned on {t}1 is constant in
{t}1)
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Results of Analysis (m = 2)

Thm: The right paths for integration by parts are “equi-quantile curves”
(probability {t}2 is below path conditioned on {t}1 is constant in
{t}1)

Thm: favorite item project is optimal if slope of equi-quantile curve at t
is at least {t}2/{t}1.
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Conclusions

multi-dimensional and non-linear mechanism design theory that mirrors
single-dimensional linear theory

1. multi- to single-agent reductions

2. marginal revenue

3. multi-dimensional virtual values
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