

 $A = m \times n$ nonnegative matrix and $b \in \mathbb{R}^m_+$ with b >> 0.

 $\mathcal{P} = \{ x \in \mathbb{R}^n_+ : Ax \le b \}.$

Each row $i \in [m]$ of A has a strict order \succ_i over the set of columns j for which $a_{ij} > 0$.

A vector $x \in \mathcal{P}$ dominates column r if there exists a row i such that $\sum_j a_{ij}x_j = b_i$, $a_{ir} > 0$ and $k \succeq_i r$ for all $k \in [n]$ such that $a_{ik} > 0$ and $x_k > 0$.

 \mathcal{P} has an extreme point that dominates every column of A.

Complete Bipartite Graph

 $D \cup H$ = set of vertices (single doctors and hospitals with capacity 1)

E =complete set of edges

 $\delta(v) \subseteq E$ set of edges incident to $v \in D \cup H$

Each $v \in D \cup H$ has a strict ordering \succ_v over edges in $\delta(v)$

Let $x_e = 1$ if we select edge e = (d, h) and 0 otherwise.

Selecting edge e = (d, h) corresponds to matching doctor d to hospital h.

The convex hull of all feasible matchings is given by

$$\sum_{e\in\delta(m{
u})}x_e\leq 1\;orallm{
u}\in D\cup H$$

A matching x is blocked by a pair e = (d, h) if

1.
$$x_e = 0$$

2.
$$h \succ_d h'$$
 where $x_{dh'} = 1$, and,

3.
$$d \succ_h d'$$
 where $x_{d'h} = 1$.

A matching x is called stable if it cannot be blocked by any pair.

4

Stable Matching

 $A = m \times n$ nonnegative matrix and $b \in \mathbb{R}^m_+$ with b >> 0.

 $\sum_{e \in \delta(v)} x_e \leq 1 \,\,\forall v \in D \cup H$

Each row $i \in [m]$ of A has a strict order \succ_i over the set of columns j for which $a_{ij} > 0$.

Each $v \in D \cup H$ has a strict ordering \succ_v over edges in $\delta(v)$.

 $x \in \mathcal{P}$ dominates column r if $\exists i$ such that $\sum_j a_{ij}x_j = b_i$ and $k \succeq_i r$ for all $k \in [n]$ such that $a_{ik} > 0$ and $x_k > 0$.

For all $e \in E$ there is a $v \in D \cup H$ such that $e \in \delta(v)$ and

$$\sum_{f\succ_v e} x_f + x_e = 1$$

Non-Bipartite Graph

- V = set of vertices
- E =complete set of edges

 $\delta(v) \subseteq E$ set of edges incident to $v \in V$

Each $v \in V$ has a strict ordering \succ_v over edges in $\delta(v)$

Stable Roomates

Let $x_e = 1$ if we select edge e = (u, v) and 0 otherwise.

The integer points of

$$\sum_{e \in \delta(v)} x_e \leq 1 \; \forall v \in V$$

form a matching.

A matching x is blocked by a pair e = (u, v) if

1.
$$x_e = 0$$

2. $u \succ_v u'$ where $x_{vu'} = 1$, and
3. $v \succ_u v'$ where $x_{v'u} = 1$.

A matching x is stable if it cannot be blocked by any pair.

・ロト ・回ト ・ヨト ・ヨト

The extreme points of

$$\sum_{e\in\delta(v)}x_e\leq 1\; orall v\in V,\; x_e\geq 0\; orall e\in E$$

are 1/2 fractional ($x_e = 0, 1, 1/2$).

If $x_e = 1/2$ in one extreme point it takes that value in all extreme points.

Edges that correspond to $x_e = 1/2$ lie on odd cycles.

Stable Partition of (V, E) is a subset P of edges such that

- 1. Each component of P is either an edge or an odd cycle.
- 2. Each cycle $\{e_1, e_2, \ldots, e_k\}$ of *P* satisfies the following:

$$e_1 \succ_{v_k} e_k \succ_{v_{k-1}} e_{k-1} \ldots \succ_{v_3} e_3 \succ_{v_2} e_2 \succ_{v_1} e_1$$

'odd preference cycle'

3. $\forall e \in E \setminus P$, there exists vertex v covered by P and incident to e such that $f \succ_v e$ for all $f \in P \cap \delta(v)$.

Scarf's lemma: existence of stable partition.

Stable Partition

 $A = m \times n$ nonnegative matrix and $b \in \mathbb{R}^m_+$ with b >> 0.

 $\sum_{e \in \delta(v)} x_e \leq 1 \,\, \forall v \in V$

Each row $i \in [m]$ of A has a strict order \succ_i over the set of columns j for which $a_{ij} > 0$.

Each $v \in V$ has a strict ordering \succ_v over edges in $\delta(v)$.

 $x \in \mathcal{P}$ dominates column r if $\exists i$ such that $\sum_j a_{ij}x_j = b_i$ and $k \succeq_i r$ for all $k \in [n]$ such that $a_{ik} > 0$ and $x_k > 0$.

For all $e \in E$ there is a $v \in V$ such that $e \in \delta(v)$ and

$$\sum_{f\succ_v e} x_f + x_e = 1$$

Quinzii Housing Model

 $N = \{1, 2, \ldots, n\}$ is a set of agents.

Each $i \in \{1, \ldots, q\}$ owns house h_i .

Agents $i \in \{q + 1, \dots, n\}$ do not own a house.

Each $i \in N$ has money in the amount w_i .

Utility of agent *i* for a monetary amount *y* and house h_i is denoted $u_i(y, h_i)$.

Each u_i is continuous and non-decreasing in money for each house.

D = set of single doctors

C = set of couples, each couple $c \in C$ is denoted $c = (f_c, m_c)$

 $D^*=D\cup\{m_c|c\in C\}\cup\{f_c|c\in C\}.$

H = set of hospitals

Each $s \in D$ has a strict preference relation \succ_s over $H \cup \{\emptyset\}$

Each $c \in C$ has a strict preference relation \succ_c over $H \cup \{\emptyset\} \times H \cup \{\emptyset\}$

 $k_h = \text{capacity of hospital } h \in H$

Preference of hospital *h* over subsets of D^* is modeled by choice function $ch_h(.): 2^{D^*} \to 2^{D^*}$.

 $ch_h(.)$ is responsive

h has a strict priority ordering \succ_h over elements of $D \cup \{\emptyset\}$.

 $ch_h(R)$ consists of the (upto) min{ $|R|, k_h$ } highest priority doctors among the feasible doctors in R.

 $\mu = {\rm matching}$

 μ_h = the subset of doctors matched to *h*.

 $\mu_s = \text{position that single doctor } s$ receives.

 $\mu_{f_c}, \mu_{m_c} =$ positions that female member and male member of the couple c obtain, respectively.

 $\boldsymbol{\mu}$ is individually rational if

- $ch_h(\mu_h) = \mu_h$ for any hospital h
- $\mu_s \succeq_s \emptyset$ for any single doctor s
- $\blacktriangleright (\mu_{f_c}, \mu_{m_c}) \succeq_c (\emptyset, \mu_{m_c})$
- $\blacktriangleright (\mu_{f_c}, \mu_{m_c}) \succeq_c (\mu_{f_c}, \emptyset)$
- $\blacktriangleright (\mu_{f_c}, \mu_{m_c}) \succeq_c (\emptyset, \emptyset)$

A matching μ can be blocked in one of three ways.

By a single doctor, $d \in D$ and a lone hospital, $h \in H$

- ► $h \succ_d \mu(d)$
- ► $d \in ch_h(\mu(h) \cup d)$

By a couple $c \in C$ and a pair of distinct hospitals $h, h' \in H$

- ► $(h, h') \succ_c \mu(c)$
- $f_c \in ch_h(\mu(h) \cup f_c)$ when $h \neq \emptyset$
- $m_c \in ch_{h'}(\mu(h') \cup m_c)$ when $h' \neq \emptyset$

By a couple $c \in C$ and a single hospital $h \in H$

- ► $(h,h) \succ_c \mu(c)$
- $(f_c, m_c) \subseteq ch_h(\mu(h) \cup c)$

Non-Existence: Roth (84), Klaus-Klijn (05)

Hospital 1:
$$d_1 \succ_{h_1} \succ d_3 \succ_{h_1} \emptyset \succ_{h_1} d_2$$
, $k_{h_1} = 1$
Hospital 2: $d_3 \succ_{h_2} \succ d_2 \succ_{h_2} \emptyset \succ_{h_2} d_1$, $k_{h_2} = 1$
Couple $\{1, 2\}$: $(h_1, h_2) \succ_{(d_1, d_2)} \emptyset$
Single doctor d_3 : $h_1 \succ h_2$

Given an instance of a matching problem with couples, determining if it has a stable matching is NP-hard.

Roth & Peranson algorithm (1999): Heuristic modification of Gale-Shapley

On all recorded instances in NRMP, it returns a matching that is stable wrt reported preferences.

Kojima-Pathak-Roth (QJE 2013); Ashlagi-Braverman-Hassidim (OR 2014)

- Randomized preferences,
- Market size increases to infinity
- Fraction of couples goes to 0

Probability that Roth & Peranson gives a stable matching approaches 1.

US: resident matching: 40,000 doctors participate every year, fraction of couples couples can be upto 10%.

Ashlagi et al: If the fraction of couple does *not* goes to 0, the probability of no stable matching is positive.

Simulations by Biro et. al.: when the number of couples is large, Roth & Perason algorithm fails to find a stable match.

(Thanh Nguyen & Vohra)

Given any instance of a matching problem with couples, there is a 'nearby' instance that is guaranteed to have stable matching.

For any capacity vector k, there exists a k' and a stable matching with respect to k', such that

1.
$$|k_h - k'_h| \leq 4 \ \forall h \in H$$

2.
$$\sum_{h\in H} k_h \leq \sum_{h\in H} k'_h \leq \sum_{h\in H} k_h + 9.$$

x(d, h) = 1 if single doctor d is assigned to hospital $h \in H$ and zero otherwise.

x(c, h, h') = 1 if f_c is assigned to h and m_c is assigned to h' and zero otherwise.

x(c, h, h) = 1 if f_c and m_c are assigned to hospital $h \in H$ and zero otherwise.

Every 0-1 solution to the following system is a feasible matching and vice-versa.

$$\sum_{h\in H} x(d,h) \le 1 \,\,\forall d \in D \tag{1}$$

$$\sum_{h,h'\in H} x(c,h,h') \leq 1 \,\,\forall c \in D \tag{2}$$

 $\sum_{d\in D} x(d,h) + \sum_{c\in C} \sum_{h'\neq h} x(c,h,h') + \sum_{c\in C} \sum_{h'\neq h} x(c,h',h) + \sum_{c\in C} 2x(c,h,h) \le k_h \ \forall h\in H \ (3)$

 $A = m \times n$ nonnegative matrix and $b \in \mathbb{R}^m_+$ with b >> 0.

 $\mathcal{P} = \{ x \in \mathbb{R}^n_+ : Ax \le b \}.$

Each row $i \in [m]$ of A has a strict order \succ_i over the set of columns j for which $a_{ij} > 0$.

A vector $x \in \mathcal{P}$ dominates column r if there exists a row i such that $\sum_j a_{ij}x_j = b_i$, $a_{ir} > 0$ and $k \succeq_i r$ for all $k \in [n]$ such that $a_{ik} > 0$ and $x_k > 0$.

 \mathcal{P} has an extreme point that dominates every column of A.

25

Constraint matrix and RHS satisfy conditions of Scarf's lemma.

Each row associated with single doctor or couple (1-2) has an ordering over the variables that 'include' them from their preference ordering.

Row associated with each hospital (3) does not have a natural ordering over the variables that 'include' them.

(1-3) not guaranteed to have integral extreme points.

Use choice function to induce an ordering over variables for each hospital.

Construct ordering so that a dominating solution wrt this ordering will correspond to a stable matching.

Apply Scarf's Lemma to get a 'fractionally' stable solution.

Round the fractionally stable solution into an integer solution that preserves stability (sharpening of Shapley-Folkman-Starr Lemma).

 $\{S^j\}_{j=1}^n$ be a collection of sets in \Re^m with n > m.

 $S = \sum_{i=1}^{m} conv(S^i)$

Every $b \in S$ can be expressed as $\sum_{j=1}^{n} x^{j}$ where $x^{j} \in conv(S^{j})$ for all j = 1, ..., n and $|\{j : x^{j} \in S^{j}\}| \ge n - m$.

Shapley-Folkman-Starr

Let A be an $m \times n$ 0-1 matrix and $b \in \Re^m$ with n > m.

Denote each column j of the A matrix by a^{j} .

 $S^j = \{a^j, 0\}.$

Suppose $b = Ax^* = \sum_{j=1}^n a^j x_j^*$ where $0 \le x_j^* \le 1 \ \forall j$.

SFS $\Rightarrow b = \sum_{j=1}^{n} a^{j} y_{j}$ where each $y_{j} \in [0, 1]$ with at at least n - m of them being 0-1.

y has at most m fractional components.

Let y^* be obtained by rounding up each fractional component.

$$||Ay^* - b||_{\infty} \leq m$$

29

Suppose $b = \sum_{j=1}^{n} a^{j} y_{j}$ with at least m + 1 components of y being fractional.

Let C be submatrix of A that corresponds to integer components of y.

Let \overline{C} be submatrix of A that corresponds to fractional components of y.

$$b = \bar{C}y_{\bar{C}} + Cy_{\bar{C}}$$

$$b-Cy_C=\bar{C}y_{\bar{C}}$$

Suppose (for a contradiction) that \overline{C} has more columns ($\geq m+1$) than rows (m).

$$\Rightarrow \ \textit{ker}(ar{C})
eq 0 \ \Rightarrow \ \exists z \in \textit{ker}(ar{C})$$

Consider $y_{\bar{C}} + \lambda z$.

$$b - Cy_C = C[y_{\bar{C}} + \lambda z]$$

Choose λ to make at least one component of $y_{\overline{C}}$ take value 0 or 1.

A gulf profound as that Serbonian Bog Betwixt Damiata and Mount Casius old, Where Armies whole have sunk.

Exchange economy with non-convex preferences i.e., upper contour sets of utility functions are non-convex.

```
n agents and m goods with n \ge m.
```

Starr (1969) identifies a price vector p^* and a feasible allocation with the property that at most *m* agents do not receive a utility maximizing bundle at the price vector p^* .

 u_i is agent *i*'s utility function.

 e^i is agent *i*'s endowment

Replace the upper contour set associated with u_i for each i by its convex hull.

Let u_i^* be the quasi-concave utility function associated with the convex hull.

 p^* is the Walrasian equilibrium prices wrt $\{u_i^*\}_{i=1}^n$.

 x_i^* be the allocation to agent *i* in the associated Walrasian equilibrium.

For each agent *i* let

$$S^i = \arg \max\{u_i(x) : p^* \cdot x \leq p^* \cdot e^i\}$$

w = vector of total endowments and $S^{n+1} = \{-w\}$.

Let $z^* = \sum_{i=1}^n x_i^* - w = 0$ be the excess demand with respect to p^* and $\{u_i^*\}_{i=1}^n$.

 z^* is in convex hull of the Minkowski sum of $\{S^1, \ldots, S^n, S^{n+1}\}$.

By the SFS lemma $\exists x_i \in conv(S^i)$ for i = 1, ..., n, such that $|\{i : x_i \in S^i\}| \ge n - m$ and $0 = z^* = \sum_{i=1}^n x_i - w$.

$$\max \sum_{j=1}^n f_j(y_j)$$

s.t. $Ay = b$
 $y \ge 0$

A is an $m \times n$ matrix with n > m.

 $f_i^*(\cdot)$ is the smallest concave function such that $f_i^*(t) \ge f_j(t)$ for all $t \ge 0$

Shapley-Folkman-Starr

Solve the following to get y^* :

 $\max \sum_{j=1}^{n} f_{j}^{*}(y_{j})$ s.t. Ay = b $y \ge 0$

$$e_j = \sup_t [f_j^*(t) - f_j(t)]$$

Sort e_i 's in decreasing order.

$$\sum_{j=1}^{n} f_j(y_j^*) \ge \sum_{j=1}^{n} f_j^*(y_j^*) - \sum_{j=1}^{m} e_j$$

Shapley-Folkman-Starr

Let A be an $m \times n$ 0-1 matrix and $b \in \Re^m$ with n > m.

Denote each column j of the A matrix by a^{j} .

 $S^j = \{a^j, 0\}.$

Suppose $b = Ax^* = \sum_{j=1}^n a^j x_j^*$ where $0 \le x_j^* \le 1 \ \forall j$.

SFS $\Rightarrow b = \sum_{j=1}^{n} a^{j} y_{j}$ where each $y_{j} \in [0, 1]$ with at at least n - m of them being 0-1.

y has at most m fractional components.

Let y^* be obtained by rounding up each fractional component.

$$||Ay^* - b||_{\infty} \leq m$$

Does not allow you to control which constraints to violate.

Want to satisfy (1-2) but are willing to violate (3).

Degree of violation is large because it makes no use of information about A matrix. In our case each variable intersects exactly two constraints.

We use this sparsity to show that no constraint can contain many occurences of a fractional variable.

Kiralyi, Lau & Singh (2008)

Gandhi, Khuller, Parthasarathy & Srinivasan (2006)

(Thanh Nguyen & Vohra)

Given any instance of a matching problem with couples, there is a 'nearby' instance that is guaranteed to have stable matching.

For any capacity vector k, there exists a k' and a stable matching with respect to k', such that

$$|k_h-k_h'|\leq 3 \ \forall h\in H.$$

Step 0: Choose extreme point $x^* \in \arg \max\{w \cdot x : Ax \le b, x \ge 0\}$.

Step 1: If x^* is integral, output x^* , otherwise continue to either Step 2a or 2b.

Step 2a: If any coordinate of x^* is integral, fix the value of those coordinates, and update the linear program and move to step 3.

C = columns of A that correspond to the non-integer valued coordinates of x^* .

 \overline{C} = columns of A that correspond to the integer valued coordinates of x^* .

 A_C and $A_{\overline{C}}$ be the sub-matrices of A that consists of columns in C and the complement \overline{C} , respectively.

Let x_C and $x_{\overline{C}}$ be the sub-vector of x that consists of all coordinates in C and \overline{C} . The updated LP is:

$$\max\{w_C \cdot x_C : \text{ s.t. } D_C \cdot x_C \leq d - D_{\overline{C}} \cdot x_{\overline{C}}^{opt}\}.$$

- Step 2b: If all coordinates of x^* fractional, delete *certain* rows of A (to be specified later) from the linear program. Update the linear program, move to Step 3.
 - Step 3: Solve the updated linear program $\max\{w \cdot x \text{ s.t. } Ax \leq b\}$ to get an extreme point solution. Let this be the new x^* and return to Step 1.

Start with an extreme point solution x^* to the following:

$$\sum_{h \in H} x(d,h) \leq 1 \; orall d \in D$$
 $\sum_{h,h' \in H} x(c,h,h') \leq 1 \; orall c \in D$

 $\sum_{d \in D} x(d,h) + \sum_{c \in C} \sum_{h' \neq h} x(c,h,h') + \sum_{c \in C} \sum_{h' \neq h} x(c,h',h) + \sum_{c \in C} 2x(c,h,h) \leq k_h \ \forall h \in H$

Round x^* into a 0-1 solution \bar{x} such that

$$\sum_{h \in H} \bar{x}(d, h) \leq 1 \,\forall d \in D$$
$$\sum_{h,h' \in H} \bar{x}(c, h, h') \leq 1 \,\forall c \in D$$
$$\bar{x}(d, h) + \sum_{c \in C} \sum_{h' \neq h} \bar{x}(c, h, h') + \sum_{c \in C} \sum_{h' \neq h} \bar{x}(c, h', h) + \sum_{c \in C} 2\bar{x}(c, h, h) \leq k_h + 3 \,\forall h \in H$$
$$\bar{x}(d, h) + \sum_{c \in C} \sum_{h' \neq h} \bar{x}(c, h, h') + \sum_{c \in C} \sum_{h' \neq h} \bar{x}(c, h', h) + \sum_{c \in C} 2\bar{x}(c, h, h) \geq k_h - 3 \,\forall h \in H$$

 $\sum_{d\in D}$

 $\sum_{d\in D}$

If every component of x^* is < 1 (all fractional), there must be a hospital h where

$$\sum_{d\in D} \lceil x^*(d,h) \rceil + \sum_{c\in C} \sum_{h'\neq h} \lceil x^*(c,h,h') \rceil + \sum_{c\in C} \sum_{h'\neq h} \lceil x^*(c,h',h) \rceil + \sum_{c\in C} 2\lceil x^*(c,h,h) \rceil \le k_h + 3$$

OR

$$\sum_{d \in D} \lfloor x^*(d,h) \rfloor + \sum_{c \in C} \sum_{h' \neq h} \lfloor x^*(c,h,h') \rfloor + \sum_{c \in C} \sum_{h' \neq h} \lfloor x^*(c,h',h) \rfloor + \sum_{c \in C} 2 \lfloor x^*(c,h,h) \rfloor \ge k_h - 3$$

In setp 2(b) of the iterative rounding method, delete this row/constraint.

If false, then for *every* hospital h

$$\sum_{d\in D} \lceil x^*(d,h) \rceil + \sum_{c\in C} \sum_{h'\neq h} \lceil x^*(c,h,h') \rceil + \sum_{c\in C} \sum_{h'\neq h} \lceil x^*(c,h',h) \rceil + \sum_{c\in C} 2\lceil x^*(c,h,h) \rceil \ge k_h + 4$$

AND

$$0 = \sum_{d \in D} \lfloor x^*(d, h) \rfloor + \sum_{c \in C} \sum_{h' \neq h} \lfloor x^*(c, h, h') \rfloor + \sum_{c \in C} \sum_{h' \neq h} \lfloor x^*(c, h', h) \rfloor + \sum_{c \in C} 2 \lfloor x^*(c, h, h) \rfloor \le k_h - 4$$

- 1. Every column of A contains at most 3 non-zero entries.
- 2. The columns of A that correspond to non-zero entries of x^* are linearly independent and form a basis.
- 3. The number of non-zero entries that intersect row h is at least $k_h + 4$.

N = set of players

Value function $V: 2^N \to \Re$ is monetary value of subset S forming a coalition.

 $V(N) \geq \max_{S \subset N} V(S).$

TU Co-op Game

An allocation z specifies a division of the total surplus:

$$\sum_{i\in N} z_i = V(N).$$

An allocation z is **blocked** by a coalition $S \subset N$ if

$$\sum_{i\in S} z_i < V(S).$$

The **Core** of (v, N) is the set of unblocked allocations:

$$C(V, N) = \{z \in \Re^n : \sum_{j \in N} z_j = V(N), \sum_{j \in S} z_j \ge V(S) \ \forall S \subset N\}.$$

Let B(N) be feasible solutions to the following:

$$\sum_{\mathcal{S}:i\in\mathcal{S}}\delta_{\mathcal{S}}=1\quadorall i\in\mathcal{N}$$
 $\delta_{\mathcal{S}}\geq0\quadorall \mathcal{S}\subset\mathcal{N}$

Each $\delta \in B(N)$ are called balancing weights. $C(V, N) \neq \emptyset$ iff

$$V(N) \geq \sum_{S \subset N} V(S) \delta_S \quad \forall \delta \in B(N).$$

A game with nontransferable utility is a pair (N, V) where N is a finite set of players, and, for every coalition $S \subseteq N$, V(S) is a subset of \Re^n satisfying:

- 1. If $S \neq \emptyset$, then V(S) is non-empty and closed; and $V(\emptyset) = \emptyset$.
- 2. For every $i \in N$ there is a V_i such that for all $x \in \Re^n$, $x \in V(i)$ if and only if $x_i \leq V_i$.
- 3. If $x \in V(S)$ and $y \in \Re^n$ with $y_i \le x_i$ for all $i \in S$ then $y \in V(S)$ (lower comprehensive).
- 4. The set $\{x \in V(N) : x_i \leq V_i\}$ is compact.

Core of an NTU-game (N, V) is all payoff vectors that are feasible for the grand coalition N and that cannot be improved upon by any coalition, including N itself.

If $x \in V(N)$, then coalition S can improve upon x if there is a $y \in V(S)$ with $y_i > x_i$ for all $i \in S$.

Core of the game (N, V) is

 $V(N) \setminus \bigcup_{S \subseteq N} int V(S).$

NTU game (N, V) is balanced if for any balanced collection C of subsets of N, $\bigcap_{S \in C} V(S) \subseteq V(N).$

Scarf's lemma: a balanced NTU game has a non-empty core.

A is an $m \times n$ positive matrix.

 $\mathcal{P} = \{x \ge 0 : Ax \le e\}.$

 $U = \{u_{ij}\}$ is an $m \times n$ positive matrix.

 $x \in F$ is **dominating** if for each column index k there is a row index i such that

1.
$$\sum_{j=1}^{n} a_{ij} x_j = 1$$
 and

2.
$$u_{ik} \leq \min_{j:x_j>0} u_{ij}$$
.

Associate a 2 person game with the pair (U, A).

Fix a large integer t, let $w_{ij} = -\frac{1}{u_{ij}^t}$.

Payoff matrix for row player will be A.

Payoff matrix for the column player will be W.

 (x^*, y^*) is an equilibrium pair of mixed strategies for the game.

 x^* is mixed strategy for column (payoff matrix W).

 y^* is mixed strategy for row player (payoff matrix A).

For all pure strategies q for row:

$$\sum_{i=1}^{m} y_i^* [\sum_{j=1}^{n} a_{ij} x_j^*] \ge \sum_{j=1}^{n} a_{qj} x_j^*, \ \forall q.$$
(4)

(4) will bind when
$$y_q^* > 0$$
.

For all pure strategies r for column

$$\sum_{i=1}^{m} y_i^* [\sum_{j=1}^{n} (u_{ij})^{-t} x_j^*] = \sum_{j=1}^{n} x_j^* [\sum_{i=1}^{m} (u_{ij})^{-t} y_i^*] \le \sum_{i=1}^{m} (u_{ir})^{-t} y_i^*, \ \forall r$$
(5)

Therefore, for each column r there is a row index i_r with $y_{i_r}^* > 0$ such that

$$\sum_{j=1}^{n} (u_{i_r j})^{-t} x_j^* \leq (u_{i_r r})^{-t} \Rightarrow u_{i_r r} \leq (\frac{1}{\sum_{j=1}^{n} (u_{i_r j})^{-t} x_j^*})^{1/t}$$

Proof of Scarf's Lemma

$$u_{i_r r} \leq \frac{u_{i_r k}}{(x_k^*)^{1/t}}$$
 for all $x_k^* > 0$.

 $t \to \infty$, x^* and y^* will converge to some \bar{x} and \bar{y} respectively.

For sufficiently large t, $\bar{x}_j > 0 \implies x_j^* > 0$ and $\bar{y}_j > 0 \implies y_j^* > 0$.

$$u_{i_rr} \leq rac{u_{i_rk}}{(x_k^*)^{1/t}}
ightarrow u_{i_rk} \; orall x_k^* > 0$$

Recall that for index i_r we have $y_{i_r}^* > 0$. Therefore, $\sum_{j=1}^m a_{i_r j} x_j^* = \sum_{i=1}^n y_i^* [\sum_{j=1}^m a_{ij} x_j^*] = v.$

$$x = \frac{\bar{x}}{v} \in F$$
 and $\sum_{j=1}^{n} a_{i_r j} x_j = 1$.