
Scarf’s Lemma (1967)

A = m × n nonnegative matrix and b ∈ Rm
+ with b >> 0.

P = {x ∈ Rn
+ : Ax ≤ b}.

Each row i ∈ [m] of A has a strict order �i over the set of columns j for which aij > 0.

A vector x ∈ P dominates column r if there exists a row i such that
∑

j aijxj = bi ,
air > 0 and k �i r for all k ∈ [n] such that aik > 0 and xk > 0.

P has an extreme point that dominates every column of A.
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Stable Matching-Gale & Shapley

Complete Bipartite Graph

D ∪ H = set of vertices (single doctors and hospitals with capacity 1)

E = complete set of edges

δ(v) ⊆ E set of edges incident to v ∈ D ∪ H

Each v ∈ D ∪ H has a strict ordering �v over edges in δ(v)
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Stable Matching-Gale & Shapley

Let xe = 1 if we select edge e = (d , h) and 0 otherwise.

Selecting edge e = (d , h) corresponds to matching doctor d to hospital h.

The convex hull of all feasible matchings is given by∑
e∈δ(v)

xe ≤ 1 ∀v ∈ D ∪ H
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Stable Matching-Gale & Shapley

A matching x is blocked by a pair e = (d , h) if

1. xe = 0

2. h �d h′ where xdh′ = 1, and,

3. d �h d ′ where xd ′h = 1.

A matching x is called stable if it cannot be blocked by any pair.
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Stable Matching

A = m × n nonnegative matrix and b ∈ Rm
+ with b >> 0.∑

e∈δ(v)

xe ≤ 1 ∀v ∈ D ∪ H

Each row i ∈ [m] of A has a strict order �i over the set of columns j for which aij > 0.

Each v ∈ D ∪ H has a strict ordering �v over edges in δ(v).

x ∈ P dominates column r if ∃i such that
∑

j aijxj = bi and k �i r for all k ∈ [n]
such that aik > 0 and xk > 0.

For all e ∈ E there is a v ∈ D ∪ H such that e ∈ δ(v) and∑
f�v e

xf + xe = 1
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Stable Roomates

Non-Bipartite Graph

V = set of vertices

E = complete set of edges

δ(v) ⊆ E set of edges incident to v ∈ V

Each v ∈ V has a strict ordering �v over edges in δ(v)
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Stable Roomates

Let xe = 1 if we select edge e = (u, v) and 0 otherwise.

The integer points of ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

form a matching.
A matching x is blocked by a pair e = (u, v) if

1. xe = 0

2. u �v u′ where xvu′ = 1, and,

3. v �u v ′ where xv ′u = 1.

A matching x is stable if it cannot be blocked by any pair.
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Stable Roomates

The extreme points of ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V , xe ≥ 0 ∀e ∈ E

are 1/2 fractional (xe = 0, 1, 1/2).

If xe = 1/2 in one extreme point it takes that value in all extreme points.

Edges that correspond to xe = 1/2 lie on odd cycles.
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Stable Partition

Stable Partition of (V ,E ) is a subset P of edges such that

1. Each component of P is either an edge or an odd cycle.

2. Each cycle {e1, e2, . . . , ek} of P satisfies the following:

e1 �vk ek �vk−1
ek−1 . . . �v3 e3 �v2 e2 �v1 e1

‘odd preference cycle’

3. ∀e ∈ E \ P, there exists vertex v covered by P and incident to e such that f �v e
for all f ∈ P ∩ δ(v).

Scarf’s lemma: existence of stable partition.
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Stable Partition

A = m × n nonnegative matrix and b ∈ Rm
+ with b >> 0.∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

Each row i ∈ [m] of A has a strict order �i over the set of columns j for which aij > 0.

Each v ∈ V has a strict ordering �v over edges in δ(v).

x ∈ P dominates column r if ∃i such that
∑

j aijxj = bi and k �i r for all k ∈ [n]
such that aik > 0 and xk > 0.

For all e ∈ E there is a v ∈ V such that e ∈ δ(v) and∑
f�v e

xf + xe = 1
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Quinzii Housing Model

N = {1, 2, . . . , n} is a set of agents.

Each i ∈ {1, . . . , q} owns house hi .

Agents i ∈ {q + 1, . . . , n} do not own a house.

Each i ∈ N has money in the amount wi .

Utility of agent i for a monetary amount y and house hj is denoted ui (y , hj).

Each ui is continuous and non-decreasing in money for each house.
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Stable Matching with Couples

D = set of single doctors

C = set of couples, each couple c ∈ C is denoted c = (fc ,mc)

D∗ = D ∪ {mc |c ∈ C} ∪ {fc |c ∈ C}.

H = set of hospitals

Each s ∈ D has a strict preference relation �s over H ∪ {∅}

Each c ∈ C has a strict preference relation �c over H ∪ {∅} × H ∪ {∅}
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Stable Matching with Couples

kh = capacity of hospital h ∈ H

Preference of hospital h over subsets of D∗ is modeled by choice function
chh(.) : 2D

∗ → 2D
∗
.

chh(.) is responsive

h has a strict priority ordering �h over elements of D ∪ {∅}.

chh(R) consists of the (upto) min{|R|, kh} highest priority doctors among the feasible
doctors in R.
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Blocking

µ = matching

µh = the subset of doctors matched to h.

µs = position that single doctor s receives.

µfc , µmc = positions that female member and male member of the couple c obtain,
respectively.
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Individual Rationality

µ is individually rational if

I chh(µh) = µh for any hospital h

I µs �s ∅ for any single doctor s

I (µfc , µmc ) �c (∅, µmc )

I (µfc , µmc ) �c (µfc , ∅)

I (µfc , µmc ) �c (∅, ∅)
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Blocking #1

A matching µ can be blocked in one of three ways.

By a single doctor, d ∈ D and a lone hospital, h ∈ H

I h �d µ(d)

I d ∈ chh(µ(h) ∪ d)
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Blocking #2

By a couple c ∈ C and a pair of distinct hospitals h, h′ ∈ H

I (h, h′) �c µ(c)

I fc ∈ chh(µ(h) ∪ fc) when h 6= ∅

I mc ∈ chh′(µ(h′) ∪mc) when h′ 6= ∅
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Blocking #3

By a couple c ∈ C and a single hospital h ∈ H

I (h, h) �c µ(c)

I (fc ,mc) ⊆ chh(µ(h) ∪ c)
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Non-Existence: Roth (84), Klaus-Klijn (05)

Hospital 1: d1 �h1� d3 �h1 ∅ �h1 d2, kh1 = 1

Hospital 2: d3 �h2� d2 �h2 ∅ �h2 d1, kh2 = 1

Couple {1, 2}: (h1, h2) �(d1,d2) ∅

Single doctor d3: h1 � h2

1 2h                   h

1 2 3                  
        
d d d

1 2h                   h

1 2 3                   
        
d d d

1 2h                   h

1 2 3                     
        
d d d
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Matching with Couples

Given an instance of a matching problem with couples, determining if it has a stable
matching is NP-hard.

Roth & Peranson algorithm (1999): Heuristic modification of Gale-Shapley

On all recorded instances in NRMP, it returns a matching that is stable wrt reported
preferences.

Kojima-Pathak-Roth (QJE 2013); Ashlagi-Braverman-Hassidim (OR 2014)

I Randomized preferences,

I Market size increases to infinity

I Fraction of couples goes to 0

Probability that Roth & Peranson gives a stable matching approaches 1.
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Matching with Couples

US: resident matching: 40,000 doctors participate every year, fraction of couples
couples can be upto 10%.

Ashlagi et al: If the fraction of couple does not goes to 0, the probability of no stable
matching is positive.

Simulations by Biro et. al.: when the number of couples is large, Roth & Perason
algorithm fails to find a stable match.
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Matching with Couples

(Thanh Nguyen & Vohra)

Given any instance of a matching problem with couples, there is a ‘nearby’ instance
that is guaranteed to have stable matching.

For any capacity vector k , there exists a k ′ and a stable matching with respect to k ′,
such that

1. |kh − k ′h| ≤ 4 ∀h ∈ H

2.
∑

h∈H kh ≤
∑

h∈H k ′h ≤
∑

h∈H kh + 9.
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Matching with Couples

x(d , h) = 1 if single doctor d is assigned to hospital h ∈ H and zero otherwise.

x(c , h, h′) = 1 if fc is assigned to h and mc is assigned to h′ and zero otherwise.

x(c , h, h) = 1 if fc and mc are assigned to hospital h ∈ H and zero otherwise.
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Matching with Couples

Every 0-1 solution to the following system is a feasible matching and vice-versa.∑
h∈H

x(d , h) ≤ 1 ∀d ∈ D (1)

∑
h,h′∈H

x(c , h, h′) ≤ 1 ∀c ∈ D (2)

∑
d∈D

x(d , h)+
∑
c∈C

∑
h′ 6=h

x(c , h, h′)+
∑
c∈C

∑
h′ 6=h

x(c , h′, h)+
∑
c∈C

2x(c , h, h) ≤ kh ∀h ∈ H (3)
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Scarf’s Lemma (1967)

A = m × n nonnegative matrix and b ∈ Rm
+ with b >> 0.

P = {x ∈ Rn
+ : Ax ≤ b}.

Each row i ∈ [m] of A has a strict order �i over the set of columns j for which aij > 0.

A vector x ∈ P dominates column r if there exists a row i such that
∑

j aijxj = bi ,
air > 0 and k �i r for all k ∈ [n] such that aik > 0 and xk > 0.

P has an extreme point that dominates every column of A.
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Matching with Couples

Constraint matrix and RHS satisfy conditions of Scarf’s lemma.

Each row associated with single doctor or couple (1-2) has an ordering over the
variables that ‘include’ them from their preference ordering.

Row associated with each hospital (3) does not have a natural ordering over the
variables that ‘include’ them.

(1-3) not guaranteed to have integral extreme points.
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Matching with Couples

Use choice function to induce an ordering over variables for each hospital.

Construct ordering so that a dominating solution wrt this ordering will correspond to a
stable matching.

Apply Scarf’s Lemma to get a ‘fractionally’ stable solution.

Round the fractionally stable solution into an integer solution that preserves stability
(sharpening of Shapley-Folkman-Starr Lemma).
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Shapley-Folkman-Starr (Starr (1969))

{S j}nj=1 be a collection of sets in <m with n > m.

S =
∑m

i=1 conv(S i )

Every b ∈ S can be expressed as
∑n

j=1 x
j where x j ∈ conv(S j) for all j = 1, . . . , n and

|{j : x j ∈ S j}| ≥ n −m.
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Shapley-Folkman-Starr

Let A be an m × n 0-1 matrix and b ∈ <m with n > m.

Denote each column j of the A matrix by aj .

S j = {aj , 0}.

Suppose b = Ax∗ =
∑n

j=1 a
jx∗j where 0 ≤ x∗j ≤ 1 ∀j .

SFS ⇒ b =
∑n

j=1 a
jyj where each yj ∈ [0, 1] with at at least n−m of them being 0-1.

y has at most m fractional components.

Let y∗ be obtained by rounding up each fractional component.

||Ay∗ − b||∞ ≤ m
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Shapley-Folkman-Starr

Suppose b =
∑n

j=1 a
jyj with at least m + 1 components of y being fractional.

Let C be submatrix of A that corresponds to integer components of y .

Let C̄ be submatrix of A that corresponds to fractional components of y .

b = C̄ yC̄ + CyC
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Shapley-Folkman-Starr

b − CyC = C̄ yC̄

Suppose (for a contradiction) that C̄ has more columns (≥ m + 1) than rows (m).

⇒ ker(C̄ ) 6= 0 ⇒ ∃z ∈ ker(C̄ )

Consider yC̄ + λz .
b − CyC = C [yC̄ + λz ]

Choose λ to make at least one component of yC̄ take value 0 or 1.
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Shapley-Folkman-Starr

A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,

Where Armies whole have sunk.

Exchange economy with non-convex preferences i.e., upper contour sets of utility
functions are non-convex.

n agents and m goods with n ≥ m.

Starr (1969) identifies a price vector p∗ and a feasible allocation with the property that
at most m agents do not receive a utility maximizing bundle at the price vector p∗.
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Shapley-Folkman-Starr

ui is agent i ’s utility function.

e i is agent i ’s endowment

Replace the upper contour set associated with ui for each i by its convex hull.

Let u∗i be the quasi-concave utility function associated with the convex hull.

p∗ is the Walrasian equilibrium prices wrt {u∗i }ni=1.

x∗i be the allocation to agent i in the associated Walrasian equilibrium.
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Shapley-Folkman-Starr

For each agent i let
S i = arg max{ui (x) : p∗ · x ≤ p∗ · e i}

w = vector of total endowments and Sn+1 = {−w}.

Let z∗ =
∑n

i=1 x
∗
i − w = 0 be the excess demand with respect to p∗ and {u∗i }ni=1.

z∗ is in convex hull of the Minkowski sum of {S1, . . . ,Sn,Sn+1}.

By the SFS lemma ∃xi ∈ conv(S i ) for i = 1, . . . , n, such that |{i : xi ∈ S i}| ≥ n −m
and 0 = z∗ =

∑n
i=1 xi − w .
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Shapley-Folkman-Starr

max
n∑

j=1

fj(yj)

s.t. Ay = b

y ≥ 0

A is an m × n matrix with n > m.

f ∗j (·) is the smallest concave function such that f ∗j (t) ≥ fj(t) for all t ≥ 0
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Shapley-Folkman-Starr

Solve the following to get y∗:

max
n∑

j=1

f ∗j (yj)

s.t. Ay = b

y ≥ 0

ej = supt [f
∗
j (t)− fj(t)]

Sort ej ’s in decreasing order.

n∑
j=1

fj(y
∗
j ) ≥

n∑
j=1

f ∗j (y∗j )−
m∑
j=1

ej
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Shapley-Folkman-Starr

Let A be an m × n 0-1 matrix and b ∈ <m with n > m.

Denote each column j of the A matrix by aj .

S j = {aj , 0}.

Suppose b = Ax∗ =
∑n

j=1 a
jx∗j where 0 ≤ x∗j ≤ 1 ∀j .

SFS ⇒ b =
∑n

j=1 a
jyj where each yj ∈ [0, 1] with at at least n−m of them being 0-1.

y has at most m fractional components.

Let y∗ be obtained by rounding up each fractional component.

||Ay∗ − b||∞ ≤ m
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Shapley-Folkman-Starr: Weakness

Does not allow you to control which constraints to violate.

Want to satisfy (1-2) but are willing to violate (3).

Degree of violation is large because it makes no use of information about A matrix. In
our case each variable intersects exactly two constraints.

We use this sparsity to show that no constraint can contain many occurences of a
fractional variable.
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Iterative Rounding

Kiralyi, Lau & Singh (2008)

Gandhi, Khuller, Parthasarathy & Srinivasan (2006)
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Matching with Couples

(Thanh Nguyen & Vohra)

Given any instance of a matching problem with couples, there is a ‘nearby’ instance
that is guaranteed to have stable matching.

For any capacity vector k , there exists a k ′ and a stable matching with respect to k ′,
such that

|kh − k ′h| ≤ 3 ∀h ∈ H.
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Iterative Rounding

Step 0: Choose extreme point x∗ ∈ arg max{w · x : Ax ≤ b, x ≥ 0}.

Step 1: If x∗ is integral, output x∗, otherwise continue to either Step 2a or 2b.

Step 2a: If any coordinate of x∗ is integral, fix the value of those coordinates, and update
the linear program and move to step 3.
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Iterative Rounding: Updating LP

C = columns of A that correspond to the non-integer valued coordinates of x∗.

C = columns of A that correspond to the integer valued coordinates of x∗.

AC and AC be the sub-matrices of A that consists of columns in C and the
complement C , respectively.

Let xC and xC be the sub-vector of x that consists of all coordinates in C and C . The
updated LP is:

max{wC · xC : s.t. DC · xC ≤ d − DC · x
opt

C
}.
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Iterative Rounding

Step 2b: If all coordinates of x∗ fractional, delete certain rows of A (to be specified later)
from the linear program. Update the linear program, move to Step 3.

Step 3: Solve the updated linear program max{w · x s.t. Ax ≤ b} to get an extreme point
solution. Let this be the new x∗ and return to Step 1.
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Rounding & Matching

Start with an extreme point solution x∗ to the following:∑
h∈H

x(d , h) ≤ 1 ∀d ∈ D

∑
h,h′∈H

x(c , h, h′) ≤ 1 ∀c ∈ D

∑
d∈D

x(d , h) +
∑
c∈C

∑
h′ 6=h

x(c, h, h′) +
∑
c∈C

∑
h′ 6=h

x(c , h′, h) +
∑
c∈C

2x(c , h, h) ≤ kh ∀h ∈ H
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Rounding & Matching

Round x∗ into a 0-1 solution x̄ such that∑
h∈H

x̄(d , h) ≤ 1 ∀d ∈ D

∑
h,h′∈H

x̄(c , h, h′) ≤ 1 ∀c ∈ D

∑
d∈D

x̄(d , h) +
∑
c∈C

∑
h′ 6=h

x̄(c , h, h′) +
∑
c∈C

∑
h′ 6=h

x̄(c , h′, h) +
∑
c∈C

2x̄(c, h, h) ≤ kh + 3 ∀h ∈ H

∑
d∈D

x̄(d , h) +
∑
c∈C

∑
h′ 6=h

x̄(c , h, h′) +
∑
c∈C

∑
h′ 6=h

x̄(c , h′, h) +
∑
c∈C

2x̄(c, h, h) ≥ kh− 3 ∀h ∈ H
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Iterative Rounding & Matching

If every component of x∗ is < 1 (all fractional), there must be a hospital h where∑
d∈D
dx∗(d , h)e+

∑
c∈C

∑
h′ 6=h

dx∗(c , h, h′)e+
∑
c∈C

∑
h′ 6=h

dx∗(c , h′, h)e+
∑
c∈C

2dx∗(c , h, h)e ≤ kh+3

OR∑
d∈D
bx∗(d , h)c+

∑
c∈C

∑
h′ 6=h

bx∗(c , h, h′)c+
∑
c∈C

∑
h′ 6=h

bx∗(c , h′, h)c+
∑
c∈C

2bx∗(c , h, h)c ≥ kh−3

In setp 2(b) of the iterative rounding method, delete this row/constraint.
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Iterative Rounding & Matching

If false, then for every hospital h∑
d∈D
dx∗(d , h)e+

∑
c∈C

∑
h′ 6=h

dx∗(c , h, h′)e+
∑
c∈C

∑
h′ 6=h

dx∗(c , h′, h)e+
∑
c∈C

2dx∗(c , h, h)e ≥ kh+4

AND

0 =
∑
d∈D
bx∗(d , h)c+

∑
c∈C

∑
h′ 6=h

bx∗(c , h, h′)c+
∑
c∈C

∑
h′ 6=h

bx∗(c , h′, h)c+
∑
c∈C

2bx∗(c , h, h)c ≤ kh−4

1. Every column of A contains at most 3 non-zero entries.

2. The columns of A that correspond to non-zero entries of x∗ are linearly
independent and form a basis.

3. The number of non-zero entries that intersect row h is at least kh + 4.
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TU Co-op Game

N = set of players

Value function V : 2N → < is monetary value of subset S forming a coalition.

V (N) ≥ maxS⊂N V (S).

Rakesh Vohra 48



TU Co-op Game

An allocation z specifies a division of the total surplus:∑
i∈N

zi = V (N).

An allocation z is blocked by a coalition S ⊂ N if∑
i∈S

zi < V (S).

The Core of (v ,N) is the set of unblocked allocations:

C (V ,N) = {z ∈ <n :
∑
j∈N

zj = V (N),
∑
j∈S

zj ≥ V (S) ∀S ⊂ N}.
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TU Co-op Game

Let B(N) be feasible solutions to the following:∑
S :i∈S

δS = 1 ∀i ∈ N

δS ≥ 0 ∀S ⊂ N

Each δ ∈ B(N) are called balancing weights. C (V ,N) 6= ∅ iff

V (N) ≥
∑
S⊂N

V (S)δS ∀δ ∈ B(N).
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NTU Co-op Game

A game with nontransferable utility is a pair (N,V ) where N is a finite set of players,
and, for every coalition S ⊆ N, V (S) is a subset of <n satisfying:

1. If S 6= ∅, then V (S) is non-empty and closed; and V (∅) = ∅.
2. For every i ∈ N there is a Vi such that for all x ∈ <n, x ∈ V (i) if and only if

xi ≤ Vi .

3. If x ∈ V (S) and y ∈ <n with yi ≤ xi for all i ∈ S then y ∈ V (S) (lower
comprehensive).

4. The set {x ∈ V (N) : xi ≤ Vi} is compact.
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NTU Co-op Game

Core of an NTU-game (N,V ) is all payoff vectors that are feasible for the grand
coalition N and that cannot be improved upon by any coalition, including N itself.

If x ∈ V (N), then coalition S can improve upon x if there is a y ∈ V (S) with yi > xi
for all i ∈ S .

Core of the game (N,V ) is
V (N) \ ∪S⊆N intV (S).
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NTU Co-op Game

NTU game (N,V ) is balanced if for any balanced collection C of subsets of N,

∩S∈CV (S) ⊆ V (N).

Scarf’s lemma: a balanced NTU game has a non-empty core.

Rakesh Vohra 53



Proof of Scarf’s Lemma

A is an m × n positive matrix.

P = {x ≥ 0 : Ax ≤ e}.

U = {uij} is an m × n positive matrix.

x ∈ F is dominating if for each column index k there is a row index i such that

1.
∑n

j=1 aijxj = 1 and

2. uik ≤ minj :xj>0 uij .
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Proof of Scarf’s Lemma

Associate a 2 person game with the pair (U,A).

Fix a large integer t, let wij = − 1
utij

.

Payoff matrix for row player will be A.

Payoff matrix for the column player will be W .
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Proof of Scarf’s Lemma

(x∗, y∗) is an equilibrium pair of mixed strategies for the game.

x∗ is mixed strategy for column (payoff matrix W ).

y∗ is mixed strategy for row player (payoff matrix A).

For all pure strategies q for row:

m∑
i=1

y∗i [
n∑

j=1

aijx
∗
j ] ≥

n∑
j=1

aqjx
∗
j , ∀q. (4)

(4) will bind when y∗q > 0.
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Proof of Scarf’s Lemma

For all pure strategies r for column

m∑
i=1

y∗i [
n∑

j=1

(uij)
−tx∗j ] =

n∑
j=1

x∗j [
m∑
i=1

(uij)
−ty∗i ] ≤

m∑
i=1

(uir )−ty∗i , ∀r (5)

Therefore, for each column r there is a row index ir with y∗ir > 0 such that

n∑
j=1

(uir j)
−tx∗j ≤ (uir r )−t ⇒ uir r ≤ (

1∑n
j=1(uir j)

−tx∗j
)1/t .

Rakesh Vohra 57



Proof of Scarf’s Lemma

uir r ≤
uir k

(x∗k )1/t for all x∗k > 0.

t →∞, x∗ and y∗ will converge to some x̄ and ȳ respectively.

For sufficiently large t, x̄j > 0 ⇒ x∗j > 0 and ȳj > 0 ⇒ y∗j > 0.

uir r ≤
uirk

(x∗k )1/t
→ uirk ∀x∗k > 0

Recall that for index ir we have y∗ir > 0. Therefore,∑m
j=1 air jx

∗
j =

∑n
i=1 y

∗
i [
∑m

j=1 aijx
∗
j ] = v .

x = x̄
v ∈ F and

∑n
j=1 air jxj = 1.
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