Protein networks: from topology to logic

Roded Sharan

School of Computer Science, Tel Aviv University & International Computer Science Institute at Berkeley

Motivation

- Goal: an executable model of a process of interest
- Current experimental techniques yield only the global wiring of proteins
- What is missing:
 - Directionality information
 - Process specific subnetwork
 - The underlying logic

erbb12 endocyt_degrad shp2 ccbl sos1 rasgap rntre rin1 rab5a-**Fas** sos1_eps8_e3b1 vav2 rac_cdc42 raf1 mekk1 mekk4 mlk3 mek12 mkk4 limk1 r mkk7 mkk6 mkk3 p90rsk jnk nucerk12 p38 pp2b cfos mk2 actin_reory

Sharan, EMBO Reports'13

nrg2b

nrgla

pi3k

plcg

dag

pkc

ip3

ca

stat1

stat3

csrc

pi34p2

mtor_ric

tsc1_tsc2

rheb

pp2a

p70s6_1

bad

ship2

pten

mtor_rap

Network Orientation Subnetwork inference Logical model learning

erbb13

nck

nak1

gab1

pip3

akt

pdk1

gsk3

Network orientation

Are protein interactions directed?

The computational problem

- Directionality is not revealed by the experiments
- Indirect information is obtained from knockout experiments:
 - > Observe: knockout of protein s affects t
 - > Assume: there is a directed (*s*,*t*) path
- <u>Goal</u>: predict directions to maximize #KO-pairs that can be "explained"

Complexity of Max. Tree Orientation

- NP-hard (reduction from MAX DI-CUT)
- Hard to approximate to within 12/13
- Ω(loglog n/log n) approximation
- Can we do better?

Medvedovsky et al., WABI 2008 Gamzu et al., WABI 2010 Elberfeld et al., Internet Math. 2011

An Integer Programming Formulation

- Assign a single direction for each edge
 O(v,w) + O(w,v) = 1
- Describe reachability relations
 c(s,t) ≤ O(x,y) for all edges in the path from s to t

Objective: max ∑ c(s,t)

Medvedovsky et al., WABI 2008

A biological complication

- In reality, some of the edges are predirected, e.g. kinase-substrate interactions.
- Can we deal with mixed graphs?
- On the theoretical side, large gap between upper (7/8) and lower $(\tilde{\Omega}(1/n^{1/\sqrt{2}}))$ approximation bounds.

Mixed vs. undirected

In the mixed graph there are cycles which cannot be contracted The graph cannot be reduced to a tree There may be multiple paths between a pair of vertices

An ILP for mixed graphs

- Contract all cycles, obtaining an acyclic graph
- Use topological sorting to create a graph of trees connected by left-to-right directed edges:

- Work recursively on pairs crossing from $G_i = T_1 \cup ... \cup T_i$ to T_{i+1}
- A path between trees decomposes to subpaths within trees and a single directed edge between the trees.

A taste of the results

- Applied to yeast data: ~50K pairs, ~8,000 interactions (mixed) and 1361 test edges (KPIs) whose directions are hidden from the algorithm.
- After cycle contraction:
 ~2,000 edges
 - 166 test edges
- Coverage: % oriented (with confidence)
- Accuracy: % correct (confident) orientations

Increasing coverage

- Most edges are eliminated by the cycle contraction phase, hence their directions remain ambiguous.
- One "biologically-meaningful" attack is to require the connecting path to be SHORTEST
- Can be efficiently tackled via ILP by:
 - For any given pair (s,t) build a graph of all shortest paths
 - Perform flow computations in this graph to determine if the pair is connected under a given orientation.

The SHORTEST approach (application)

• Yeast: similar accuracy, 8fold more coverage!

Silverbush et al., Bioinformatics'14

The SHORTEST approach (application)

Silverbush et al., Bioinformatics'14

Subnetwork inference

Identifying process-specific proteins

From components to a map

Goal: Infer the underlying subnetwork

Shachar et al., MSB 2008 Yosef et al., MSB 2009 Atias et al., MBS 2013

From components to a map (cont.)

- Unique approach to simultaneously optimize subnetwork size and length of anchor-terminal paths.
- Shown to outperform existing tools on yeast and human data
- Implemented as a cytoscape plugin called ANAT

(www.cs.tau.ac.il/~bnet/ANAT)

Yosef et al., Science Signaling'11 Atias et al., MBS'13

Application to alternative splicing events in cancer

Dror Hollander, Gil Ast

Logical model learning

The Boolean model

- Each node=protein/ligand can be active (1) or inactive (0).
- The activity of a node is a *Boolean* function of the activities of its predecessors in the network.

The computational problem

<u>Input:</u> (i) Directed network (ii) Protein activity readouts following different perturbations

<u>Goal:</u> learn the Boolean functions so as to minimize disagreements with experimental data

Stimuli							
TGFα	+	8 - 1	+	+	+	+	
TNF		+	+	—	+	-	5
Inhibitors							iu d
PI3K	1	-	-	+	+	-	
Raf	(-		-		+	
Readouts							
NFκB	0	0	1	0	0	0	6
ERK	1	0	1	1	1	0	
C8	0	1	1	0	1	0	
AKT	1	0	1	0	0	1	N

Algorithmic results

- *ILP* formulation, solved to *optimality*
- Activation/repression effects are automatically learned as part of the logic
- Particularly efficient solution for *threshold* functions (generalize AND & OR)

Application to EGFR signaling

- Detailed model by Oda et al. and Samaga et al. contains:
 - > 112 nodes
 - > 157 non-I/O reactions
- Readouts: 11 proteins under 34 perturbations
- 76% fit to data

Improving the fit

- Focus on 16 uncertain gates (2^33 possible models), for 4 of which modifications were manually proposed
- 11 of 12 reconstructed functions matched the curated description
- 3 of 4 proposed changes were predicted correctly, the fourth rejected.
- The learned model achieved the same 90% fit as the manual model!

Original function	Proposed modification	Reconstructed function
erb11 AND (pip3 OR pi34p2) \rightarrow vav2	$erb11 \rightarrow vav2$	${ m erb11} ightarrow { m vav2}$
$sos1eps8e3b1 \rightarrow raccdc42$	REMOVE	$sos1eps8e3b1 \rightarrow raccdc42$
erb11 AND csrc \rightarrow stat3	REMOVE	REMOVE
$mk2 \rightarrow hsp27$	REMOVE	REMOVE

Challenges ahead

- Integrate the three phases (orientation, inference, logic) into a coherent pipeline
- Deal with multiple solutions:
 - Confidence computation
 - Experimental design
 - Rank via biologically-motivated secondary criteria
- Advance from static (acyclic) to dynamic models

Atias et al., Bioinformatics'14 (ECCB)

Acknowledgments

<u>Orientation</u> Dana Silverbush Michael Elberfeld Danny Segev...

<u>Inference</u> Nir Yosef Nir Atias Assaf Gottlieb Gil Ast Dror Hollander Martin Kupiec Eytan Ruppin... <u>Logic</u> Richard Karp Nir Atias...

