Questions and Challenges in Tissue and Whole Organ Modeling

Radu Grosu Vienna University of Technology

NSF-Expeditions Project CMACS NSF-Frontiers Project CyberHeart

The Grand Challenge

Error-Free Heart

Error-Prone Heart

Can we predict and control abnormal behavior?

Abstraction, approximation and composition

A Taste of Complexity: Systems

Electrical system: Responsible for synchroniztion

A Taste of Complexity: Systems

Mechanical system: responsible for contraction

A Taste of Complexity: Systems

Vascular system: responsible for transportation

System abstraction: electrical, mechanical, vascular

A Taste of Complexity: Multiscale

A Taste of Complexity: Tools

Complicated structure: Atrium

Canine heart: slices (DTMRI @ 250 microns resolution)

Pittsburgh NMR Center

MicroCT Cornell

5 billion cells synchronize their contraction to create a heart beat!

From Cell to EKG and Tissue

From Cell to Whole Heart

3D Model of a Pig Heart (FK 3V Model)

Topological approximations:

- 0D, 1D: EKG (no space), cable propagation
- 2D, 3D: tissue/organ, (an)isotropic, (no)veins, etc.

The Cell: Action-Potential

Cellular Approximation Challenge

Can we construct simpler models?

Cellular-Approx: Nonlinear HA-Model

Cellular-Approx: Nonlinear HA-Model

Cellular-Approx: Nonlinear HA-Model

 $(\theta_{u} \leq u < u_{u})$ $\dot{u} = e + (u - \theta_v)(u_u - u)v g_{fi} + ws g_{si} - g_{so}(u)$ $\dot{v} = -v g_{u}^{+}$ $\dot{w} = -w g_{w}^{+}$ 4 $\dot{s} = S^+(u, k_s, u_s, 0, 1) g_{s_2} - s g_{s_2}$ $\theta_{w} \leq u < \theta_{v}$ $u < \theta_{v} \quad \dot{u} = e + ws \ g_{si} - g_{so}(u) \quad (3)$ $u \ge \theta_v$ $\dot{v} = -v g_{v_2}$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u, k_s, u_s, 0, 1) g_{s_2} - s g_{s_2}$ $\theta_{o} \leq u < \theta_{w}$ (2) $u < \theta_{w}$ $\dot{u} = e - u g_{o_2}$ $\dot{v} = -v g_{v_2}^{-}$ $u \geq \theta_{u}$ $\dot{w} = (w_{\infty}^* - w) g_{w}^{-}(u)$ $\dot{s} = S^+(u, k_s, u_s, 0, 1) g_{s_1} - s g_{s_1}$ $0 \leq u < \theta_{a}$ $u < \theta_o \mid \dot{u} = e - u g_{o_1}$ 1 $\begin{array}{ccc}
\dot{v} &= (1 - v) g_{v_1}^- \\
\dot{w} &= (1 - u g_{w_{\infty}} - w) g_{w}^-(u)
\end{array}$ $\dot{s} = S^+(u,k_s,u_s,0,1) g_{s_1} - s g_{s_1}$

PDEs are simulated as Finite Difference Equations

 $(\theta_{v} \leq u < u_{u})$ $\dot{u} = e + (u - \theta_v)(u_u - u)v g_{fi} + ws g_{si} - g_{so}(u)$ $\dot{v} = -v g_{u}^{+}$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u,k_s,u_s,0,1) g_{s_2} - s g_{s_2}$ $\theta_{w} \leq u < \theta_{v}$ $\begin{array}{c}
u < \theta_{v} \leq u < \theta_{v} \\
\dot{u} = e + ws \ g_{si} - g_{so}(u) \\
\dot{v} = -v \ g_{v_{2}}
\end{array}$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u,k_s,u_s,0,1) g_{s_2} - s g_{s_2}$ $\theta_{a} \leq u < \theta_{w}$ $u < \theta_w$ $\dot{u} = e - u g_{o_2}$ $\dot{v} = -v g_{v_2}^{-}$ $u \geq \theta_w$ $\dot{w} = (w_{\infty}^* - w) g_{w}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$ $0 \leq u < \theta_{o}$ $u < \theta_o \qquad \dot{u} = e - u g_{o_1}$ $\dot{v} = (1 - v) g_{v_1}^{-}$ $u \ge \theta_o$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$

 $(\theta_v \leq u < u_u)$ $\dot{u} = e + (u - \theta_v)(u_u - u)v g_{fi} + ws g_{si} - g_{so}(u)$ $\dot{v} = -v g_{u}^{+}$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u,k_s,u_s,0,1) g_{s_2} - s g_{s_2}$ $\theta_{w} \leq u < \theta_{v}$ $\begin{array}{c}
u < \theta_{v} \leq u < \theta_{v} \\
\dot{u} = e + ws \ g_{si} - g_{so}(u) \\
\dot{v} = -v \ g_{v_{2}}
\end{array}$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u, k_s, u_s, 0, 1) g_{s_2} - s g_{s_3}$ $\theta_{a} \leq u < \theta_{w}$ $u < \theta_w$ $\dot{u} = e - u g_{o_2}$ $\dot{v} = -v g_{v_2}^$ $u \geq \theta_w$ $\dot{w} = (w_{\infty}^* - w) g_{w}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$ $0 \leq u < \theta_{0}$ $u < \theta_o \qquad \dot{u} = e - u g_{o_1}$ $\dot{v} = (1 - v) g_{v_1}^{-}$ $u \ge \theta_o$ $\dot{w} = (1 - u g_{w_{w}} - w) g_{w}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$

 $g_{so}(u)$

 $\theta_{11} = \theta_{v}$

 $(\theta_{v} \leq u < u_{u})$ $\dot{u} = e + (u - \theta_v)(u_u - u)v g_{fi} + ws g_{si} - g_{so}(u)$ $\dot{v} = -v g_{...}^{+}$ $\dot{w} = -w g_{w}^{+}$ $\dot{s} = S^+(u,k_s,u_s) g_{s_2} - s g_{s_2}$ $\theta_{w} \leq u < \theta_{v}$ $\begin{array}{c} u < \theta_{v} \\ u \geq \theta_{v} \end{array} \qquad \begin{array}{c} \theta_{v} \geq u < \theta_{v} \\ \dot{u} = e + ws \ g_{si} - g_{so}(u) \\ \dot{v} = -v \ g_{v_{2}}^{-} \end{array}$ $S^+(u,u_s,k_s)$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u,k_s,u_s) g_{s_2} - s g_{s_3}$ $\theta_{o} \leq u < \theta_{w}$ $u < \theta_w$ $\dot{u} = e - u g_{o_2}$ $\dot{v} = -v g_{v_2}$ $u \geq \theta_w$ $\dot{w} = (w_{\infty}^* - w) g_{w}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$ $0 \leq u < \theta_{o}$ θ_{11} $\theta_{8} = \theta_{w}$ $\theta_{\rm o}$ θ_{10} $u < \theta_o$ u $\dot{u} = e - u g_{o_1}$ $\dot{v} = (1 - v) g_{v_1}^{-}$ $u \geq \theta_o$ $\dot{w} = (1 - u g_{w_{\infty}} - w) g_{w}^{-}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$

 $(\theta_{v} \leq u < u_{u})$ $\dot{u} = e + (u - \theta_v)(u_u - u)v g_{fi} + ws g_{si} - g_{so}(u)$ $\dot{v} = -v g_{...}^{+}$ ¥. $\dot{w} = -w g_{w}^{+}$ $\dot{s} = S^+(u,k_s,u_s) g_{s_2} - s g_{s_2}$ $\theta_{w} \leq u < \theta_{v}$ $u < \theta_v$ $\dot{u} = e + ws g_{si} - g_{so}(u)$ $(u-\theta_v)(u_u-u)g_{fi}$ $\dot{v} = -v g_{v_2}$ $\dot{w} = -w g_w^+$ $\dot{s} = S^+(u,k_s,u_s) g_{s_2} - s g_{s_3}$ $\theta_o \leq u < \theta_w$ $u < \theta_w$ $\dot{u} = e - u g_{o_2}$ $S^+(u,u_s,k_s)$ $\dot{v} = -v g_{v_2}^{-}$ $u \ge \theta_w$ $\dot{w} = (w_{\infty}^* - w) g_{w}(u)$ $g_{so}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$ $\theta_{12} = \theta_{y} - \theta_{13}$ θ_{15} θ_{16} θ_{17} θ_{18} θ_{19} θ_{20} θ_{21} θ_{14} θ_{23} θ_{22} θ_{24} θ_{25} θ_{26} $0 \leq u < \theta_{o}$ $u < \theta_o$ $\dot{u} = e - u g_{o_1}$ $\dot{v} = (1 - v) g_{v_1}^{-}$ $u \geq \theta_o$ $\dot{w} = (1 - u g_{w_{w}} - w) g_{w}^{-}(u)$ $\dot{s} = S^+(u,k_s,u_s) g_{s_1} - s g_{s_1}$

$$\begin{array}{c} \theta_{12} = \theta_v < u \le u_u = \theta_{26} \\ \dot{u} = e + \sum_{i=12}^{25} R(u, \theta_i, \theta_{i+1}, u_{f_i}, u_{f_{i+1}}) \lor g_{f_i} + ws \ g_{si} - \sum_{i=12}^{25} R(u, \theta_i, \theta_{i+1}, u_{so_i}, u_{so_{i+1}}) \ g_{sv} \\ \dot{v} = -v \ g_v^+ \\ \dot{w} = -w \ g_v^+ \\ \dot{s} = (\sum_{i=12}^{25} R(u, \theta_i, \theta_{i+1}, u_{s_i}, u_{s_{i+1}}) - s) \ g_{s_2} \\ \end{array}$$

$$\begin{array}{c} \theta_8 = \theta_w \le u < \theta_v = \theta_{12} \\ \theta_8 = \theta_w \le u < \theta_v = \theta_{12} \\ \dot{u} < \theta_v \\ \dot{v} = -v \ g_{v_2}^- \\ \dot{w} = -v \ g_v^- \\ \dot{s} = (\sum_{i=1}^{11} R(u, \theta_i, \theta_{i+1}, u_{s_i}, u_{s_{i+1}}) - s) \ g_{s_2} \\ \end{array}$$

$$\begin{array}{c} \theta_2 = \theta_o \le u < \theta_w = \theta_8 \\ \dot{u} = e - u \ g_{o_2} \\ \dot{v} = -v \ g_{v_2}^- \\ \dot{w} = (w_{w}^+ - w) \ \sum_{i=2}^{7} R(u, \theta_i, \theta_{i+1}, u_{w_i}, u_{w_{i+1}}) \ g_{w_b} \\ \dot{s} = (\sum_{i=2}^{1} R(u, \theta_i, \theta_{i+1}, u_{s_i}, u_{s_{i+1}}) - s) \ g_{s_1} \\ \end{array}$$

$$\begin{array}{c} \theta_0 = 0 \le u < \theta_o = \theta_2 \\ \dot{u} < \theta_v \\ \dot{u} \ge \theta_v \\ \dot{w} = (u < \theta_o \\ \dot{w} = (1 - v) \ g_{v_1}^- \\ \dot{w} = (1 - v) \ g_{v_1}^- \\ \dot{w} = (\sum_{i=0}^{1} R(u, \theta_i, \theta_{i+1}, u_{s_i}, u_{s_{i+1}}) - wR(u, \theta_i, \theta_{i+1}, u_{w_i}, u_{w_{i+1}})) \ g_{w_a} \\ \dot{s} = (\sum_{i=0}^{1} R(u, \theta_i, \theta_{i+1}, u_{s_i}, u_{s_{i+1}}) - s) \ g_{s_1} \end{array}$$

Nonlinear vs Multi-Affine HA Model

Cellular-Approx: Restitution

Cellular-Approx: Cycle-Linear HA-Model

$$\begin{bmatrix} q_{0} : \operatorname{Resting \& FR} \\ \dot{v}_{z} = \alpha_{z}^{0} v_{z} f(\theta), \dot{v}_{y} = \alpha_{y}^{0} v_{y} \\ \dot{v}_{z} = \alpha_{z}^{0} v_{z}, v = v_{x} - v_{y} + v_{z} \\ \{v < V_{R}\} \end{bmatrix} \begin{bmatrix} [V_{s}] \\ v_{n} = v \\ \downarrow \\ v < q(V_{T}) \land \tilde{V}_{s} \end{bmatrix} \begin{bmatrix} q_{1} : \operatorname{Stimulated} \\ \dot{v}_{x} = i_{st}, \dot{v}_{y} = \alpha_{y}^{1} v_{y}, \dot{v}_{z} = \alpha_{z}^{1} v_{z} \\ v = v_{x} - v_{y} + v_{z} \\ \{v < V_{R}\} \end{bmatrix} \begin{bmatrix} v \leq V_{R} \end{bmatrix} \begin{bmatrix} [v \leq q(V_{T}) \land \tilde{V}_{s} \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \begin{bmatrix} v \geq g(V_{T}) \end{bmatrix} \\ (v < h(V_{O}) \land v > V_{R} \end{bmatrix} \begin{bmatrix} v \geq h(V_{O}) \land v > g(V_{T}) \end{bmatrix} \end{bmatrix}$$
 (CMSB'05)

Cellular-Approx: Cycle-Linear HA-Model

time=0s 1st stimulus occurs

time=0.07s

time=0.145s 2nd stimulus occurs

time=0.18s

time=0.21s

time=0.27s

time=0.34s

time=0.55s

(CMSB'05)

Cellular-Approx: Timed-Automata

Cellular Approx: Cellular-Automata

- Waves take the form of lattice! Curvature, velocity,...

Recent approach: Preserves most wave properties

3D Wave

Cellular Approximation Challenge

Assumption: V is the only variable of interest Question: Is there a systematic way to approximate the model? Idea: Approximate each channel at a time

Channel Approximation: Na⁺ Channel

Channel Approximation: Na⁺ Channel

Channel Approximation: Patch-Clamp

Channel Approx: IMW Model

 $\dot{C}_{01} = C_f C_{00} + \beta(V)C_{11} / a - (C_n + 4\alpha(V)a)C_{01}$

Channel Approx: HH-Na-Channel

Compositionality Challenge: IMW with HH

 $\alpha_{m}(V)$ $\beta_m(V)$ m

 $\dot{\mathbf{m}} = \alpha_{\mathbf{m}}(\mathbf{V})(\mathbf{1}-\mathbf{m}) - \beta_{\mathbf{m}}(\mathbf{V})\mathbf{m}$ $\dot{\mathbf{h}} = \alpha_{\mathbf{h}}(\mathbf{V})(\mathbf{1}-\mathbf{h}) - \beta_{\mathbf{h}}(\mathbf{V})\mathbf{h}$

h $\beta_h(V)$ $\alpha_h(V)$ 0

Compositionality Challenge: IMW with HH

Problem: HH-Channel was not completely closing

Learned a better δ -bisimulation A way to predict such problems?

Error δ was amplified δ-bisim not compositional

$$\begin{array}{c} I_{Na}^{IMW} \cong^{\delta} I_{Na}^{HH} \\ \hline R \parallel I_{Na}^{IMW} \cong^{f(\delta)} R \parallel I_{Na}^{HH} \end{array}$$

Bisimulation Functions with SGC

Small-gain condition (SGC) for bisimulation function S:

- 1. Sbounds output difference: $x_1 = [m,h]$ $\| o(x_1) - o(x_2) \| \le S(x_1,x_2)$ $x_2 = [C_{00},...,C_{41},I,O_1,O_2]$
- 2. S decays along trajectories : $\forall u_1, u_2, x_1, x_2, \exists \lambda > 0, \gamma \ge 0 \text{ st.}$ $\dot{S} = \frac{\partial S}{\partial x_1} f_1(x_1, u_1) + \frac{\partial S}{\partial x_2} f_2(x_2, u_2) \le -\lambda S(x_1, x_2) + \gamma || u_1 - u_2 ||$ $K \cong^S R \quad I_{Na}^{MWV} \cong^T I_{Na}^{HH}$ BFs compose linearly subject to SGC: -BFs computed using SoS-TOOLS $R \parallel I_{Na}^{MWV} \cong^{aS+bT} R \parallel I_{Na}^{HH}$

(HSCC'14-15)

Conclusions

Models become increasingly sophisticated

- Mollecular processes better understood
- Investigation of very specific treatments

However, simulation of whole organ infeasible

- No method to automatically learn a channel's env
- Compositionality is a big obstacle

CMACS: Multi-Institutional, -Disciplinary Team

CyberHeart: Multi-Institutional, -Disciplinary Team

Scott Smolka Stony Brook

Rick Gray FDA

Rance Cleaveland

Elizabeth Cherry RIT

Ed Clarke CMU

Sean Gao CMU

James Glimm Stony Brook

Radu Grosu Stony Brook / Vienna

Arnab Ray Fraunhofer

Director of Cardiac Electrophysiology Philadelphia VA Hospital

Rahul Mangharam Flavio Fenton Penn Gatech