

Successes and challenges of modelling and verification at the nanoscale (and some failures too...)

Marta Kwiatkowska, University of Oxford

Simons Institute, 13th August 2015

At the nanoscale...

World of molecules

 Aim to understand their function not only in biological processes, but also as engineering material

Modelling molecular networks

- Focus on modelling dynamics and analysis of behaviours
 - networks of molecules
 - molecular interaction
 - molecular motion
 - self-assembly
- Rather than
 - geometry
 - structure
 - sequence
- <u>Chemical reaction networks</u>
- Emphasis on quantitative/probabilistic characteristics
- Stochasticity essential for low molecular counts

Used to encode a real or hypothetical mechanism

2: Relocation of FGFR (whilst phosphorylated) FGFR \rightarrow $k_3=0.1 \text{ s}^{-1}$

Can map to different semantics/representation

Used to encode a real or hypothetical mechanism

1: FGF binds/releases FGFR FGFR + FGF \rightarrow FGFR:FGF FGFR + FGF \leftarrow FGFR:FGF $k_1=5e+8 M^{-1}s^{-1}$ $k_2=0.002 s^{-1}$

2: Relocation of FGFR (whilst phosphorylated) FGFR \rightarrow $k_3=0.1 \text{ s}^{-1}$

Can map to different semantics/representation

- Now can apply probabilistic model checking to obtain model predictions...
 - software tools exist and are well used, e.g. PRISM
- Sounds easy?

The PRISM model checker

- Inputs CTMC models in reactive modules or SBML
- and specifications given in probabilistic temporal logic CSL
 - what is the probability that the concentration reaches min?
 - $P_{=?}$ [F c>min]
 - in the long run, what is the probability that the concentration remains stable between min and max?

 $S_{=?}$ [(c \geq min) \land (c \leq max)]

Then computes model predictions via

- exhaustive analysis to compute probability and expectations over time (with numerical precision)
- or probability estimation based on simulation (approximate, with confidence interval)
- See www.prismmodelchecker.org

PRISM 4.0:Verification of Probabilistic Real-time Systems, Kwiatkowska et al, In Proc.CAV'1 10

What's involved

Modelling formalisms

- chemical reaction networks, continuous-time Markov chains, reactive modules, stochastic Petri nets, pi-calculus...
- Specification notations
 - temporal logic (LTL, CTL, PCTL, CSL)
- Analysis methods
 - model construction/extraction/reduction, graph-theoretical algorithms, symbolic (BDD/MTBDD), symbolic (SAT/SMT), linear equation solving, uniformisation, fast adaptive uniformisation, LNA, ODE solving, stochastic simulation, model checking, probabilistic model checking, statistical model checking, parallelisation...
 - Distinctive CS influence
 - abstractions, logic, general purpose formalisms and languages, symbolic algorithms and representations...

Case study 1: FGF pathway

- Fibroblast Growth Factor (FGF) pathway
 - regulator of skeletal development
- Biological challenges
 - unknown function of molecules
 - expensive experimental scenarios
- Aim to analyse the dynamics of FGF signalling
 - model different hypothetical regulation mechanisms
 - "in silico genetics"
- Modelling
 - PRISM model highly complex, 2m states (one molecule each)
 - ODE model > 300 equations, need simplifications
- Predictions
 - new, experimentally validated [Sandilands et al, 2007]

In silico genetics experiment (FGF)

SRC prominent determinant of FGF signalling

Case study 2: Inducible genes

Immediate early gene induction, e.g. c-fos and c-jun

- viewed as two-state or continuously variable

Stochastic modelling of the interface between regulatory enzymes and transcriptional 14 initiation at inducible genes, Ceska *et al*, in preparation, 2015

Inducible genes: results

Modelling approach

- both types of switch accommodated in the interface (step function and sigmoidal function)
- fit to experimental activation profiles

Modelling challenges

- large population of MAPK signalling vs single copy of gene
- stochasticity and noise considerations
- rates determined by kinase activation profile, so inhomogeneous CTMC
- approximate using piecewise constant CTMCs
- Perform "in silico" comparison of the two switches
- Obtain reasonable predictions that support the hypothesis
 - continuous switch provides a more viable controlling mechanism for IE genes
 - binary switch fails to reproduce the induction profiles

DNA computation

- DNA: versatile, easily accessible, cheap to synthesise material
- Moore's law, hence need to make devices smaller...
- DNA computation, directly at the molecular level
 - DNA logic circuit designs
 - nanorobotics, via programmable molecular motion
- Many applications envisaged
 - e.g. biosensing, point of care diagnostics, smart therapeutics, ...
- Apply quantitative verification and synthesis to
 - automatically find design flaws in DNA computing devices
 - analyse reliability and performance of molecular walkers
 - automatically synthesise reaction rates to guarantee a specified level of reliability
 - develop predictive model of origami folding

Digital circuits

- Logic gates realised in silicon
- Os and 1s are represented as low and high voltage
- Hardware verification indispensable as design methodology

DNA circuits, in solution

[Qian, Winfree, *Science* 2012]

- "Computing with soup" (The Economist 2012)
- Single strands are inputs and outputs
- Circuit of 130 strands computes square root of 4 bit number, rounded down
- 10 hours, but it's a first...

Pop quiz, hotshot: what's the square root of 13? *Science Photo Library/Alamy*

Case study 3: DNA transducer gate

- DNA computing with a restricted class of DNA strand displacement structures (process algebra by Cardelli)
 - double strands with nicks (interruptions) in the top strand

 and two-domain single strands consisting of one toehold domain and one recognition domain

 $t \times t$ $t \times t$ $t \times t$ $t \times t$ $x \to t$

- "toehold exchange": branch migration of strand <t^ x> leading to displacement of strand <x t^>
- Used to construct transducers, fork/join gates
 - can be formed into cascades
 - all gates in a cascade mixed together...

DNA transducer flaw

Checking, Lakin et al, Journal of the Royal Society Interface, 9(72), 1470-1485, 2012

Quantitative properties

- We can also use PRISM to study the kinetics of the pair of (faulty) transducers:
 - $P_{=?} [F^{[T,T]} "deadlock"]$

DNA nanostructures

U.S. National Library of Medicine

DNA origami

DNA origami [Rothemund, Nature 2006]

- DNA can self-assemble into structures "molecular IKEA?"
- programmable self-assembly (can form tiles, nanotubes, boxes that can open, etc)
- simple manufacturing process (heating and cooling), not yet well understood

DNA origami tiles

• DNA origami tiles: molecular breadboard [Turberfield lab]

- a. Tile design, showing staples 'pinning down' the scaffold and highlighting seam staples
- b. Circular single strand (scaffold) that folds into tile
- c. AFM image of the tile

<u>Guiding the folding pathway of DNA origami</u>. Dunne, Dannenberg, Ouldridge, Kwiatkowsk a_{2}^{3} Turberfield & Bath, Nature (in press)

Case study 4: DNA walkers

- How it works...
 - tracks made up of anchor strands laid out on DNA origami tile
 - can make molecule
 'walk' by attaching/ detaching from anchor
 - autonomous, constant average speed
 - can control movement
 - can carry cargo
 - all made from DNA

Direct observation of stepwise movement of a synthetic molecular transporter. Wickham 24 et al, Nature Nanotechnology 6, 166–169 (2011)

Walker stepping action in detail...

- 1. Walker carries a quencher (Q)
- 2. Sections of the track can be selectively unblocked
- 3. Walker detaches from anchor strand
- 4. Walker attaches to the next anchor along the track
- 5. Fluorophores (F) detect walker reaching the end of the track

DNA walker circuits

- Computing with DNA walkers
 - branching tracks
 laid out on DNA
 origami tile
 - starts at 'initial',
 signals when reaches
 'final'
 - can control 'left'/'right' decision
 - (this technology) single use only,
 'burns' anchors
 - any Boolean function
- Localised computation, well mixed assumption as in solution does not apply

DNA walker circuits: Computational potential, design, and verification. Dannenberg *et al*, 26 Natural Computing, To appear, 2014

Decision circuits k/100 k /50 Path R W (a) (b) Initia Final3 Path 13 Final4 Path LI Path RR (c) 2[¢] (d) Inițial

DNA walkers: applications

- Walkers can realise biosensors: safety/reliability paramount
- Molecular walker computation inherently unreliable...
 - 87% follow the correct path
 - can jump over one or two anchorages, can deadlock

- Analyse reliability of molecular walker circuits using PRISM
 - devise a CTMC model, fit to experimental data
 - analyse reliability, deadlock and performance
 - use model checking results to improve the layout

From verification to synthesis...

- Automated verification aims to establish if a property holds for a given model
- Can we find a model so that a property is satisfied?
 - difficult...
- The parameter synthesis problem is
 - given a parametric model, property and probability threshold
 - find a partition of the parameter space into True, False and Uncertain regions s.t. the relative volume of Uncertain is less or equal than a given ε
- Successive region refinement, based on over & under approx., implemented in PRISM

<u>Precise Parameter Synthesis for Stochastic Biochemical Systems</u>, Ceska *et al*, Proc. CMSB, To appear, 2014

DNA walkers: parameter synthesis

- Application to biosensor design: can we synthesise the values of rates to guarantee a specified reliability level?
- For the walker model:
 - walker stepping rate $k = funct (k_s, c_s)$ where
 - k_s lies in interval [0.005,0.020], c in [0.25, 4]
 - find regions of values of $k_{\mbox{\scriptsize s}};$ and c where $% k_{\mbox{\scriptsize s}}$ property is satisfied

a) $\Phi_1 = P_{\geq 0.4}[F^{[30,30]} \text{ finish-correct}]$ b) $\Phi_2 = P_{\leq 0.08}[F^{[30,30]} \text{ finish-incorrect}]$ c) $\Phi_1 \land \Phi_2$

Fast: for T=200, 88s with sampling, 329 subspaces

Case study 5: Modelling DNA origami

- DNA origami robust technique
 - robust assembly technique
 - folds into the single most stable shape
- Aim to understand how to control the folding pathways
 - develop a 'dimer' origami design, which has several wellfolded shapes (planar and unstrained) corresponding to energy minima
 - formulate an abstract Markov chain model that is thermodynamically self-consistent
 - obtain model predictions using Gillespie simulation
 - perform a range of experiments (e.g. removing or cutting staples in half) that favour certain well-folded shapes
- Remarkably, the model is consistent with experimental observations

<u>Guiding the folding pathway of DNA origami</u>. Dunne, Dannenberg, Ouldridge, Kwiatkowska^{3,0} Turberfield & Bath, Nature (in press)

Dimer origami

• Develop image processing software to classify shapes

The CTMC model

- Abstract the scaffold as a sequence of domains (16nt)
 - each staple has 2 positions to bind to
 - single-domain and two-domain staples
- State space
 - for monomer, 5 possibilities for two-domain staples

- for dimer, $4^{N} \times 34^{M}$,
 - N = 24 one-domain and
 - M = 156 two-domain staples
- Rates (inhomogeneous CTMC)
 - can use mass action only for staple binding from solution
 - otherwise, estimate free energy change
 - need to consider loop formation...

Loop formation

- Main idea: shortening of the loop by staple binding increases stability
 - use Dijkstra's shortest path algorithm to calculate adjustment in free energy
- Thus presence of staple A accelerates hybridization of B
- Planarity constraints

Results on folding

- Distribution of shapes classified via offset
- Gillespie simulation

Modified tile

What has been achieved?

Some successes

- automatically found a flaw in DNA program
- design automation for DNA walker circuits, can guarantee reliability levels, fast
- improved scientific understanding of DNA origami folding
- Also failures: limited scalability (but see [CMSB 2015])
 - DNA transducer: 6-7 molecules
 - DNA walker circuits: smaller models can be handled with fast adaptive unformisation, lager ones only with statistical model checking, sometimes with better accuracy
 - DNA origami folding: only simulation is feasible
- Challenges
 - need to incorporate physics (thermodynamics, entropy, energy)

Conclusions

- Demonstrated that quantitative/probabilistic verification can play a central role not only in systems biology, but also in design automation of molecular devices
- Many positive results:
 - predictive models
 - successful experimental validation
 - demonstrated practical feasibility of probabilistic modelling and verification in some contexts
- Key challenge (as always): state space explosion
 - can we exploit **compositionality** in analysis?
 - can we synthesise walker circuit layout? origami designs?
 - parameter/model synthesis for more complex models...

Acknowledgements

- My group and collaborators in this work
- Project funding
 - ERC, EPSRC, Microsoft Research
 - Oxford Martin School, Institute for the Future of Computing
- See also
 - VERWARE <u>www.veriware.org</u>
 - PRISM www.prismmodelchecker.org