# Parallel Composition in Biology

Nir Piterman

University of Leicester

Based on joint work with:

J. Fisher, A. Hajnal, B. Hall, T. A. Henzinger, M. Mateescu, D. Nickovic, A.V. Singh, and M.Y. Vardi

#### Are there useful macros to structure the "hairball"?



We are looking for the organizing principle: the programming language, only then for the program!

# Settling on less ambitious goals (for now):

- Create useful models of certain biological phenomena.
- Understand the principles that allow to create certain types of models.
  - Create models.
- Improve analysis for these kinds of models.
  - Verify them.
- Improve tool support for these kinds of models.

## Cell cycle regulation of NOTCH signaling



-

### Cell cycle regulation of NOTCH signalin



t al., 2012

St

#### Assumptions

- Models are **very** abstract:
  - Personal belief.
  - Personal preference.
- We **want** to use a simple state machine to represent a biological process (usually at a cell level).
- We **want** to represent the process in several cells.
- We **want** them to run concurrently.
- We **want** simulation and additional analysis.



*Computer* **38**:1 (2005)





#### Fisher, Piterman, Hajnal, and Henzinger

Efro

PLOS Computational Biology (2007)



005

12-01 2-0-8.









PLOS Computational Biology (2007)





#### What's a cell?

- Each cell is a state machine.
- They take discrete transitions:
  - Can depend on outside information (location/neighbours/environment).
  - Can be deterministic/nondeterministic/stochastic.
- The model consists of coordinating these changes across many cells.





#### **Parallel Composition**

- Putting multiple cells together.
- When does each cell change its state compared to other cells?
- Classical answers:
  - All together: all cells read current values and change to new values.
  - One by one: choose a cell, it reads current values, and changes to new values.

# From Synchrony to Timed

#### BioModelAnalyzer



### **Qualitative Networks**

- Variables ranging over (small) finite domains.
- Algebraic update functions.
- Variables change by at most 1 either up or down.
- All variables updated simultaneously.
- Result:
  - Deterministic
  - Synchronous
- Analysis:
  - Simulations
  - Global analysis: stabilization, temporal properties

#### **Bounded LTL model checking**



Claessen et al. CAV 2013

#### **Cell-cell Communication**

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

#### Synchronous Composition

- No way to break symmetry.
- Identical processes go through exactly the same computation.
- In our case:
  - All cells assume same fate.

### **Asynchronous Composition**

- Conflicting requirements:
  - Running in isolation.
  - Chosen repeatedly by scheduler.
- No way to choose the right way to run.

#### **Bounded Asynchrony**

- Count the number of steps each cell does.
- Disallow schedules where one cell moves in front of the others.
- Essentially, have a barrier in front of the cells.
- Once all cells reach the barrier, move the barrier forward.

#### Advantages

- Asynchrony breaks symmetry.
- Bound breaks the isolation / scheduler dilemma.
- Scheduler allows to concentrate on more important aspects of model.

### Simulation and Analysis

- Global scheduler allows cells to move separately bounding individual progress.
- In each simulation step:
  - Choose cells that haven't reached barrier.
  - Update these cells together.
- Result:
  - Asynchronous
- Analysis:
  - Simulations
  - Temporal properties

#### **QN+Physical Simulation**

![](_page_23_Figure_1.jpeg)

### **Simulation Details**

- Global clock ticks.
- In each simulation step:
  - Update discrete state.
  - Update physical state (or remove for efficiency).
  - Data passes between physical and discrete.
- Result:
  - Stochastic (physical parameters)
  - Synchronous
- Analysis:
  - Simulations
  - Time invariants (physical model) enable global analysis of discrete model

#### Lineage Computation

![](_page_25_Figure_1.jpeg)

#### Main features

- Each cell type has its own program.
- Transitions:
  - Real time.
  - Change discrete state.
  - Set time for next transition.
  - Possible to divide and initialize other programs.
- No physics (for now).
- Only simulation.

# Summary

### Timing is everything

- Strict control of individual and global time.
- Synchronous composition rules.
- Additional mechanisms for randomness or breaking symmetry.
- When using, keep asynchrony in check.

#### **Scientific Method**

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)