Questions and challenges in cancer biology

Gerard I. Evan Dept. Biochemistry University of Cambridge

p53

Ras

p53

Ras

Where to target cancers?

Where to target cancers?

Ligand/Receptor Tyrosine Kinase cloud

Intracellular kinase cloud

The problem of robustness

Where to target cancers?

Ligand/Receptor Tyrosine Kinase cloud

Intracellular kinase cloud

The problem of robustness

Biochemistry & Molecular Biology

Tools for dissecting biological systems **Biochemistry & Molecular Biology**

Reductionist analysis of components

Tools for dissecting biological systems Biochemistry &

Molecular Biology

Reductionist analysis of components
Limited analysis of interactions

Biochemistry & Molecular Biology

- Reductionist analysis of components
- Limited analysis of interactions
- Very limited analysis of interaction dynamics

Biochemistry & Molecular Biology

Biochemistry & Molecular Biology

Genetics

Tools for dissecting biological systems Biochemistry &

Molecular Biology

Genetics

Algebraic approach to structure and function

Mutation

Mutation

"Essential gene"

Mutation

"Redundant" gene"

Compensated adult phenotype

Mutation

"Redundant" gene"

Partially compensated adult phenotype

Teleology also confounds classical genetics

Teleology also confounds classical genetics

Genes, proteins, biological processes have no purpose or goal, Teleology also confounds classical genetics

Genes, proteins, biological processes have *no* purpose or goal, just contextual function

Biochemistry & Molecular Biology

Genetics

Biochemistry & Molecular Biology

Genetics

in silico modeling of systems

in silico modeling of systems

Complexity

Complexity

Localization

Complexity

Localization

Evolved, not designed, function

Complexity

Localization

Evolved, not designed, function

Computability?

Koza, Keane & Streeter

More efficient

Koza, Keane & Streeter

More efficient
More complex (irreducibly?)

Koza, Keane & Streeter

More efficient
More complex (irreducibly?)
More complicated

Koza, Keane & Streeter

- More efficient
 More complex
- (irreducibly?)
- More complicated
- Redundant parts

Koza, Keane & Streeter

The problems with rationally targeting cancers

The problems with rationally targeting cancers

 Cancer cells and tissues are very similar to their regenerating normal counterparts

The problems with rationally targeting cancers

Cancer cells and tissues are very similar to their regenerating normal counterparts

 We don't know why any of our cancer therapies kill cancer cells
The problems with rationally targeting cancers

 Cancer cells and tissues are very similar to their regenerating normal counterparts

- We don't know why any of our cancer therapies kill cancer cells
- Cancer cells adapt to pharmacological perturbation and evolve under pharmacological selection

The problems with rationally targeting cancers

- Cancer cells and tissues are very similar to their regenerating normal counterparts
- Even our best targeted drugs fail to correct the actual oncogenic dysfunction (which is signal *misregulation*)
- We don't know why any of our cancer therapies *kill* cancer cells
- Cancer cells adapt to pharmacological perturbation and evolve under pharmacological selection

Kills cancer cells

Kills cancer cells 100% effective

Kills cancer cells 100% effective No resistance ever emerges

Its inhibition induces cancer cell death

- Its inhibition induces cancer cell death
- Its inhibition induces minimal/no side-effects in any normal tissue

- Its inhibition induces cancer cell death
- Its inhibition induces minimal/no side-effects in any normal tissue
- Its function is obligate and non-redundant for tumor maintenance

- Its inhibition induces cancer cell death
- Its inhibition induces minimal/no side-effects in any normal tissue
- Its function is obligate and non-redundant for tumor maintenance
- Target is common to many/most/all cancers

- Its inhibition induces cancer cell death
- Its inhibition induces minimal/no side-effects in any normal tissue
- Its function is obligate and non-redundant for tumor maintenance
- Target is common to many/most/all cancers "Impersonalized Medicine"

Transcription factor activated by DNA damage and other stresses

- Transcription factor activated by DNA damage and other stresses
- Once activated, p53 triggers cytostatic and/or apoptotic effectors

- Transcription factor activated by DNA damage and other stresses
- Once activated, p53 triggers cytostatic and/or apoptotic effectors
- Either p53 or components of its attendant pathways are functionally inactivated in >85% of human cancers

- Transcription factor activated by DNA damage and other stresses
- Once activated, p53 triggers cytostatic and/or apoptotic effectors
- Either p53 or components of its attendant pathways are functionally inactivated in >85% of human cancers
- So there is something about p53 that tumor cells could not, or cannot, tolerate

Worldwide distribution of cancers and p53 mutations

SNCBI Resources 🗹	How To 🖂	Sign in to NCBI
Publed.gov US National Library of Medicine National	PubMed	Help
Institutes of Health Article types Clinical Trial	Summary - 20 per page - Sort by Most Recent - Send to: -	Filters: Manage Filters
Review Customize	Results: 1 to 20 of 77148 << First < Prev	New feature Try the new Display Settings option - Sort by Relevance
Text availability Abstract Free full text Full text	 cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Queiroz EA, Fortes ZB, da Cunha MA, Barbosa AM, Khaper N, Dekker RF. Int J Biochem Cell Biol. 2015 Aug 5. pii: S1357-2725(15)00204-6. doi: 10.1016/j.biocel.2015.08.003. 	Results by year
PubMed Commons Reader comments Trending articles	[Epub ahead of print] PMID: 26255117 <u>Similar articles</u>	
Publication dates	 <u>A multi-resolution textural approach to diagnostic neuropathology reporting.</u> Fauzi MF, Gokozan HN, Elder B, Puduvalli VK, Pierson CR, Otero JJ, Gurcan MN. J Neurooncol. 2015 Aug 9. [Epub ahead of print] 	Download CSV
5 years 10 years Custom range	PMID: 26255070 Similar articles	Related searches mutant p53
Species Humans Other Animals	 <u>TP53 and FGFR3 Gene Mutation Assessment in Urine: Pilot Study for Bladder Cancer Diagnosis.</u> Noel N, Couteau J, Maillet G, Gobet F, D'Aloisio F, Minier C, Pfister C. Anticancer Res. 2015 Sep;35(9):4915-21. 	p53 cancer p53 review p53 apoptosis
<u>Clear all</u>	PMID: 26254388 Similar articles	p53 breast
Show additional filters	 Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway. Namba T, Chu K, Kodama R, Byun S, Yoon KW, Hiraki M, Mandinova A, Lee SW. Oncotarget. 2015 Jun 23. [Epub ahead of print] PMID: 26254280 Free Article Similar articles 	PMC Images search for <i>p53</i>

p53-mediated tumor suppression

p53-mediated tumor suppression

How, why, when and where?

Member of an evolutionarily ancient, metazoan family

- Member of an evolutionarily ancient, metazoan family
- Evolved originally as transcriptional coordinator of cellular responses to stress/damage during development

- Member of an evolutionarily ancient, metazoan family
- Evolved originally as transcriptional coordinator of cellular responses to stress/damage during development
- Tumor suppression is a "recent" evolutionary retrofit

<section-header><text><text>

Survival and recovery

Transient stress/ repairable damage **Reversible** arrest, repair, autophagy

Survival and recovery

Persistent signals (oncogenic, irreparable damage) **Apoptosis, irreversible** arrest/senescence **Cell ablation**

Persistent signals Transient stress/ (oncogenic, irreparable repairable damage damage) **Apoptosis, irreversible Reversible arrest**, arrest/senescence repair, autophagy Survival and recovery **Cell ablation**

Many diverse mutations in cancers all converge on a few key pathways

Many diverse mutations in cancers all converge on a few key pathways

How can we model inhibition of the common cancer pathways?

How can we model inhibition of the common cancer pathways?

What was the question?

Inhibiting endogenous Myc in normal and tumour tissues *in vivo*

Sergio Nasi Laura Soucek

Inhibiting endogenous Myc in normal and tumour tissues in vivo

Sergio Nasi Laura Soucek

Sergio Nasi Laura Soucek

Systemic Myc inhibition suppresses proliferation in normal tissues

testis

intestine

Systemic Myc inhibition suppresses proliferation in normal tissues

testis

intestine

epidermal thinning arrested hair growth

villus attrition

Restoration of Myc triggers rapid and complete GI recovery

Restoration of Myc triggers rapid and complete GI recovery

Days after Omomyc switch off

Impact of competitive systemic Myc inhibition on body weight

Impact of competitive systemic Myc inhibition on body weight

Impact of competitive systemic Myc inhibition on body weight

Mice remain healthy and "seem" happy

Systemic Myc inhibition triggers regression of multiple tumor types

KRas^{G12D} Lung Tumors SV40 LT/ST Lung Tumors Wnt mammary tumors HER2 mammary tumors

Systemic Myc inhibition triggers regression of multiple tumor types

KRas^{G12D} Lung Tumors SV40 LT/ST Lung Tumors Wnt mammary tumors HER2 mammary tumors

Myc inhibited

Myc inhibited by systemic induction of OmoMyc (DN Myc)

Tumors recur at reduced multiplicity following Omomyc cessation

16 weeks KRas ^{G12D} activity

Tumors recur at reduced multiplicity following Omomyc cessation

16 weeks KRas ^{G12D} activity

+ 4 weeks Myc inhibition

Tumors recur at reduced multiplicity following Omomyc cessation

+ 4 weeks Myc inhibition

Recurrence at 8 weeks

37% mean reduction in tumor multiplicity

And remain completely susceptible to repeated Myc inhibition

Recurrence at 8 weeks

2nd round Myc inhibition (1 wk)

Myc is a Ras downstream effector

1982: Myc and Ras cooperate to transform fibroblasts in culture

Land, Parada & Weinberg

HRas^{V12}

HRas^{V12} + Myc

Мус

1982: Myc and Ras cooperate to transform fibroblasts in culture

Land, Parada & Weinberg

HRas^{V12}

HRas^{V12} + Myc

Мус

1982: Myc and Ras cooperate to transform fibroblasts in culture

Land, Parada & Weinberg

HRas^{V12}

Myc

HRas^{V12} + Myc

What does Myc do for Ras and Ras do for Myc?

Is Myc a Ras effector or cooperator?

If Ras can drive Myc, why does Ras need Myc for oncogene *cooperation*? If Ras can drive Myc, why does Ras need Myc for oncogene cooperation? **Oncogenic Myc is** deregulated and often over-expressed

BrdU

Hoechst

KRas^{G12D}-driven lung tumours

KRas^{G12D}-driven lung tumours have a very low proliferative index

BrdU

Hoechst

KRas^{G12D}-driven lung tumours

Myc deregulation exacerbates K-Ras^{G12D}- driven lung tumorigenesis

K-Ras^{G12D} alone

n > 10

Myc ON 6 weeks

Myc ON 12 weeks

Myc ON 18 weeks

H&E staining

Myc deregulation exacerbates K-Ras^{G12D}- driven lung tumorigenesis

K-Ras^{G12D} alone

K-Ras^{G12D} + Myc

n > 10

H&E staining

Myc ON

Acute activation of MycER^{TAM} elicits rapid increase in KRas^{G12D} tumor proliferation,

Acute activation of MycER^{TAM} elicits rapid increase in KRas^{G12D} tumor proliferation, angiogenesis

FITC-Lycopersicon esculentum lectin Rhodamine-Ricinus communis agglutinin (vascular permeability)

Acute activation of MycER^{TAM} elicits rapid increase in KRas^{G12D} tumor proliferation, angiogenesis and inflammocyte infiltration

Ki67

BrdU

CD31

Lectins

CD45

GR1

FITC-Lycopersicon esculentum lectin Rhodamine-Ricinus communis agglutinin (vascular permeability)

KRas^{G12D}-driven lung tumours acquire dependency upon deregulated Myc

KRas^{G12D} ON for 6 weeks Then Myc ON as well for 6 weeks

KRas^{G12D}-driven lung tumours acquire dependency upon deregulated Myc

KRas^{G12D} ON for 6 weeks Then Myc ON as well for 6 weeks

KRas^{G12D} ON for 6 weeks Then Myc ON as well for 6 weeks Then Myc OFF for 4 weeks

Differential impact of KRas and Myc in pancreatic epithelium

Nicole Sodir

Differential impact of KRas and Myc in pancreatic epithelium

Nicole Sodir

Differential impact of KRas and Myc in pancreatic epithelium

Nicole Sodir

Activation of MycER^{TAM} in KRas^{G12D}-driven PanIN triggers the signature PDAC desmoplastic reaction

pdx1-KRas^{G12D} + Myc 3 wks

Nicole Sodir

Kras Myc ON 2 wk

Kras Myc ON 2 wk Kras Myc ON 2W OFF 1 d

Kras Myc ON 2W OFF 1 d Kras Myc ON 2W OFF 3 d

Kras Myc ON 2W OFF 1 d Kras Myc ON 2W OFF 3 d

Sustained Myc de-activation induces PDAC regression

Pdx1-cre; LSL-kras^{G12D/+} Myc OFF

H&E

KI67

Sustained Myc de-activation induces PDAC regression

Pdx1-cre; LSL-kras^{G12D/+} Myc OFF Pdx1-cre; LSL-kras^{G12D/+} Myc ON (3 wk)

H&E

KI67

Sustained Myc de-activation induces PDAC regression

Pdx1-cre; LSL-kras^{G12D/+} Myc OFF Pdx1-cre; LSL-kras^{G12D/+} Myc ON (3 wk) Pdx1-cre; LSL-kras^{G12D/+} Myc ON (3 W); Myc OFF (3W)

Myc-driven regenerative programmes - pancreas vs lung

Pancreas	Lung
Highly proliferative PanIN—PDAC	Highly proliferative Adenoma→Adenocarcinoma
Avascular, highly desmoplastic	Highly angiogenic, little desmoplasia
normoxia→hypoxia	hypoxia→normoxia
Influx of macrophages and neutrophils	Influx of PD-LI+ macrophages
Clearance of CD3+T cells (PD-LI on tumor cells)	Clearance of CD3+T cells (PD-L1 on incoming MФ)
Maintenance is Myc-dependent	Maintenance is Myc-dependent